

CNSC - U.S. NRC Cooperation on Advanced Reactor Technologies and Small Modular Reactors

January 11, 2023

Outline

- Introduction
- Memorandum of Cooperation process
- First products
- Current work
- Future projects

Introduction

- Memorandum of Cooperation signed in 2019 to collaborate on reviews of designs submitted for review in the U.S. and Canada
- Goal Collaborate on ART-SMR design reviews and share experience
- Benefits to CNSC and USNRC
 - Effective and efficient regulation
 - Risk-informed agile decisionmaking

Implementation of the MOC

Scope of Memorandum of Cooperation (MOC)

Scope of projects

- Pre-licensing engagement
- Licensing reviews
- Science and research

Development of work plans Processes for collaboration

Joint NRC/CNSC Products

Pre-licensing Engagement

- X-energy Xe100 reactor pressure vessel construction code assessment
 - GEH- BWRX-300 Containment Evaluation Method
 - Terrestrial postulated initiating events

Review Approaches

• Report Comparting the U.S. LMP with the Canadian Approach

Unique Technical Considerations

TRISO fuel qualification

Lessons Learned and Improvements to the Collaboration Process

Project Selection

- Request by vendors
- Criteria
 - The extent to which the vendor is engaging in meaningful prelicensing activity with each regulator
 - The similarity between the vendor's engagement activities in each country
 - The timelines for engaging with each regulator
 - The ability of the vendor to share information about their design with both regulators

Current Work

Collaborative work plans underway

Safety Classification of Structures, Systems and Components

TRISO Fuel Qualification

Outer Pyrolytic Carbon
Silicon Carbide
Inner Pyrolytic Carbon
Porous Carbon Buffer
Fuel Kernel (UCO, UO₂)

GEH BWRX-300

Joint Review of GE Hitachi's BWRX-300

- TVA, OPG, SaskPower independently selected the same technology (GE Hitachi's BWRX-300 design)
- NRC and CNSC are conducting collaborative reviews on specific technical topics Under the MOC
- Goal: Efficient and coordinated reviews resulting in common technical positions
- To date, NRC and CNSC have successfully collaborated and issued a joint report on BWRX-300 containment evaluation method.

CNSC-NRC MOC BWRX-300 Current Projects

- BWRX-300: Advanced construction techniques. The NRC and CNSC staff are reviewing a white paper on BWRX-300 Steel-Plate Composite (SC) Containment Vessel (SCCV) and Reactor Building Structural Design
- BWRX-300: Safety Strategy. The NRC and CNSC staff are reviewing a white paper on the Safety Strategy for BWRX-300. The Safety Strategy incorporates selected guidance from the IAEA Safety Standards Specific Safety Requirements No. SSR-2/1, Revision 1, "Safety of Nuclear Power Plants: Design."
- BWRX-300: fuel verification and validation. CNSC is leveraging previous USNRC reviews of the GNF2 fuel product in the CNSC's review of OPG's construction license application.

Next Steps

- Work with vendors and utilities to identify specific technical issues and perform joint reviews of topical reports and white papers in the pre-application phase
- Cooperate on the review of specific sections or topics in licensing applications.

