RECLANIATION Managing Water in the West

Incorporating Breach Parameter Estimation and Physically-Based Dam Breach Modeling into Probabilistic Dam Failure Analysis

Tony L. Wahl **USBR Hydraulics Laboratory** Denver, Colorado

Issues

- How to evaluate failure probability?
- How to estimate breach parameters in a probabilistic way?
 - Size of breach
 - Shape of breach
 - Time of failure (rate of erosion)

Scope of this talk limited to embankment dams

Failure Probability

Failure probability is a central question

Hydrologic Failure Modes

- Is depth and duration of overtopping sufficient to produce unstoppable erosion?
- Can flood surcharge in the reservoir trigger a seepage-erosion sequence that progresses too quickly to stop?

Riley 1986

- First work discussing analysis of limited overtopping that might not cause dam failure
- Applied only to cohesive, erosion-resistant embankments protected by well maintained vegetation
- Suggested permissible duration-velocity limits for flow over crest and down the slope
- Also suggested permissible total volumes of flow in a given duration

Riley 1986

- Addressed the "will it fail?" question
 - Suggested conservative thresholds for when failure would occur
- Did not address the probability of failure question
 - When thresholds were exceeded, probability of failure was 1

Fragility Curves

- Attempt to estimate probability of failure based on engineering judgment of team members
 - Depth of overtopping
 - Velocity of flow
 - Duration of overtopping / Volume of water
 - Quality of slope protection (vegetation or riprap)
 - Erodibility of embankment materials
- Very subjective...

New Tools

- Physically-based dam breach models
 - WinDAM (USDA-ARS)
 - HR BREACH (HR Wallingford)
 - Others...

Dam Breach Models

Inputs

- Hydraulic attack (overtopping depth, velocity, shear stress, stream power)
- Slope protection, threshold of failure
- Erodibility of embankment material (measured!)
 - Estimate erosion rates
 - Simulate mechanics of headcut development
- Simulate extent of erosion during duration of event

Submerged Jet Test - Erodibility

Compaction & Erodibility

Dam Breach Models

- Output
 - Determine whether threshold for failure is reached
 - Outflow hydrograph
 - Time-history of breach development

Consequence analysis

- Probabilistic uses
 - Models run quickly
 - Can readily analyze variations in flood loading, slope protection and soil erodibility

Greg Hanson and Sherry Hunt – USDA-ARS

Soils used in breach widening tests

Soil	Sand ¹	Fines ¹	Fines ¹	PI^2	Soil
	>	>	<2μm		Classification ¹
	75μm	$2\mu m$	(%)		
	(%)	(%)			
2	63	31	6	NP	SM-Silty Sand
3	25	49	26	17	CL-Lean Clay

Effect of Wet or Dry Compaction is Dramatic

Figure 6. a) Critical stress, τ_c vs. water content for Soil 2 and Soil 3, b) Dry density vs water content.

Figure 7. a) k_d vs. water content for Soil 2 and Soil 3, b) Dry density vs water content.

Figure 12. k_d vs. molding water content for standard, 16 B/L, and 9 B/L compaction effort of Soil 2.

Compaction effort is also important

Figure 13. k_d vs. molding water content for standard, 9 B/L, and 5 B/L compaction effort of Soil 3.

Table 7. — Approximate values of k_d in cm³/(N-s) as a function of compaction conditions and % clay (Hanson et al. 2010). [1 cm³/(N-s) = 0.5655 ft/hr/psf]

% Clay	Modified		Standard		Low		
(<0.002 mm)	Compaction		Compaction		Compaction		
	(56,250 ft-lb/ft ³)		(12,375 ft-lb/ft ³)		(2,475 ft-lb/ft ³)		
	≥OptWC%	<optwc%< td=""><td>≥OptWC%</td><td><optwc%< td=""><td>≥OptWC%</td><td><optwc%< td=""></optwc%<></td></optwc%<></td></optwc%<>	≥OptWC%	<optwc%< td=""><td>≥OptWC%</td><td><optwc%< td=""></optwc%<></td></optwc%<>	≥OptWC%	<optwc%< td=""></optwc%<>	
	Erodibility, k _d , cm ³ /(N·s)						
>25	0.05	0.5	0.1	1	0.2	2	
14-25	0.5	5	1	10	2	20	
8-13	5	50	10	100	20	200	
0-7	50	200	100	400	200	800	

Table 8. — Approximate values of τ_e in Pa as a function of compaction conditions and % clay (Hanson et al. 2010). [1 Pa = 0.0209 psf]

% Clay	Modified		Standard		Low		
(<0.002 mm)	Compaction		Compaction		Compaction		
	(56,250 ft-lb/ft ³)		(12,375 ft-lb/ft ³)		(2,475 ft-lb/ft ³)		
	≥OptWC%	<optwc%< td=""><td>≥OptWC%</td><td><optwc%< td=""><td>≥OptWC%</td><td><optwc%< td=""></optwc%<></td></optwc%<></td></optwc%<>	≥OptWC%	<optwc%< td=""><td>≥OptWC%</td><td><optwc%< td=""></optwc%<></td></optwc%<>	≥OptWC%	<optwc%< td=""></optwc%<>	
	Critical shear stress, το, Pa						
>25	16	0.16	4	0	1	0	
14-25	0.16	0	0	0	0	0	
8-13	0	0	0	0	0	0	
0-7	0	0	0	0	0	0	

Dam Breach Model Status Today

WinDAM B

- USDA-ARS (Stillwater, Oklahoma)
- Homogeneous embankments
- Vegetation or riprap slope protection
- Overtopping only
- Energy- and stress-based headcut erosion options
- Public domain
- Piping erosion module being developed...
- Zoned embankments envisioned for future...

Dam Breach Model Status Today

HR BREACH

- HR Wallingford
- Homogeneous or zoned embankments
- Vegetation or riprap slope protection
- Overtopping and piping
- Energy-based headcut erosion
- Surface erosion option (for granular materials)
- Monte Carlo simulation option
- NOT Public domain
 - Being used in consulting
 - Being incorporated into other tools (InfoWorks RS 2D, AREBA rapid appraisal tool for homogeneous embankment breach)

Simplified Methods

- When physically-based erosion and dam breach modeling is not justified or practical:
 - Breach parameters can be predicted using established regression equations
 - Does not help address the "will it fail?" question
- Can we put probabilities on ranges of breach parameters?

Probabilistic Breach Parameters

- No work has been done that specifically assigns probabilities
- Three studies in last 10 years have addressed uncertainty of breach parameters
 - Wahl (2004)
 - Froehlich (2008)
 - Xu & Zhang (2009)

Wahl (2004)

- Evaluated existing breach width and breach time equations to see how accurately they predicted observed values from case studies
- Uncertainties:

Breach width ± 1/3 order of magnitude

Breach time ± 1.0 order of magnitude

Peak outflow ± 0.5 to 1.0 order of magnitude

- USBR (1988), Von Thun & Gillette (1990) and Froehlich (1995) similar for breach width
- Froehlich (1995) peak flow and time equations were superior to competitors

Froehlich (2008)

- Revised breach parameter equations
 - Breach width
 - Time of failure
 - Side slope of trapezoidal breach opening
- Presented case study of using a Monte Carlo-type stochastic dam breach flood model
 - Inputs were breach parameters above, plus the critical overtopping head needed to trigger failure

Xu & Zhang (2009)

- Developed new equations using multiparameter nonlinear regression techniques and different input variables
 - dam height, reservoir shape coefficient, dam type, failure mode, and dam erodibility (high, medium, low)
 - dam erodibility was most significant factor
- Performed uncertainty analysis to compare their equations to others

Breach Parameters in Risk Assessment

- Use uncertainty estimates and assumed probability distributions
- It is only practical to treat many parameters this way if you have a flood model that supports Monte Carlo simulation or equivalent

Xu & Zhang (2009)

- Failure time equations should be used with caution
- Approx. 30 dam failure cases were used to develop their failure time equations
- 9 dams used in their analysis were also used by Froehlich (1995)
 - Same failure time for 4 of the 9
 - Dramatically longer failure times for 5 of the 9 (4x longer)
 - No specific explanation of why they differ

Teton Dam

Fig. 3. Observed outflow discharge during failure of Teton Dam on June 5, 1976

- Froehlich $T_f = 1.25 \text{ hr}$
- Xu & Zhang, $T_f = 4 hr$

80% of volume released in 1.5 hrs

Questions?