

NUREG/CR-7151, Vol. 2

Development of a Fault
Injection-Based Dependability
Assessment Methodology for
Digital I&C Systems

Volume 2

Office of Nuclear Regulatory Research

	

NRC Reference Material

As of November 1999, you may electronically access
NUREG-series publications and other NRC records at
NRC’s Public Electronic Reading Room at
http://www.nrc.gov/reading-rm.html. Publicly released
records include, to name a few, NUREG-series
publications; Federal Register notices; applicant,
licensee, and vendor documents and correspondence;
NRC correspondence and internal memoranda; bulletins
and information notices; inspection and investigative
reports; licensee event reports; and Commission papers
and their attachments.

NRC publications in the NUREG series, NRC
regulations, and Title 10, “Energy,” in the Code of
Federal Regulations may also be purchased from one
of these two sources.
1. The Superintendent of Documents

 U.S. Government Printing Office Mail Stop SSOP
Washington, DC 20402–0001
Internet: bookstore.gpo.gov
Telephone: 202-512-1800
Fax: 202-512-2250

2. The National Technical Information Service
Springfield, VA 22161–0002
www.ntis.gov
1–800–553–6847 or, locally, 703–605–6000

A single copy of each NRC draft report for comment is
available free, to the extent of supply, upon written
request as follows:
Address: U.S. Nuclear Regulatory Commission

 Office of Administration
 Publications Branch
 Washington, DC 20555-0001

E-mail: DISTRIBUTION.RESOURCE@NRC.GOV
Facsimile: 301–415–2289

Some publications in the NUREG series that are
posted at NRC’s Web site address
http://www.nrc.gov/reading-rm/doc-collections/nuregs
are updated periodically and may differ from the last
printed version. Although references to material found on
a Web site bear the date the material was accessed, the
material available on the date cited may subsequently be
removed from the site.

Non-NRC Reference Material

Documents available from public and special technical
libraries include all open literature items, such as books,
journal articles, transactions, Federal Register notices,
Federal and State legislation, and congressional reports.
Such documents as theses, dissertations, foreign reports
and translations, and non-NRC conference proceedings
may be purchased from their sponsoring organization.

Copies of industry codes and standards used in a
substantive manner in the NRC regulatory process are
maintained at—

The NRC Technical Library
Two White Flint North
11545 Rockville Pike
Rockville, MD 20852–2738

These standards are available in the library for reference
use by the public. Codes and standards are usually
copyrighted and may be purchased from the originating
organization or, if they are American National Standards,
from—

American National Standards Institute
11 West 42nd Street
New York, NY 10036–8002
www.ansi.org
212–642–4900

	

AVAILABILITY OF REFERENCE MATERIALS
IN NRC PUBLICATIONS

Legally binding regulatory requirements are stated
only in laws; NRC regulations; licenses, including
technical specifications; or orders, not in NUREG-
series publications. The views expressed in
contractor-prepared publications in this series are
not necessarily those of the NRC.

The NUREG series comprises (1) technical and
administrative reports and books prepared by the
staff (NUREG–XXXX) or agency contractors
(NUREG/CR–XXXX), (2) proceedings of
conferences (NUREG/CP–XXXX), (3) reports
resulting from international agreements
(NUREG/IA–XXXX), (4) brochures (NUREG/BR–
XXXX), and (5) compilations of legal decisions and
orders of the Commission and Atomic and Safety
Licensing Boards and of Directors’ decisions
under Section 2.206 of NRC’s regulations
(NUREG–0750).

DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Government.
Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any third party’s use, or the results of such use, of any information,
apparatus, product, or process disclosed in this publication, or represents that its use by such third party would not
infringe privately owned rights.

p

Development of a Fault
Injection-Based Dependability
Assessment Methodology for
Digital I&C Systems

Volume 2

Manuscript Completed: November 2011
Date Published: December 2012

Prepared by:
C. R. Elks, N. J. George, M. A. Reynolds, M. Miklo,
C. Berger, S. Bingham, M. Sekhar, B. W. Johnson

The Charles L. Brown Department of Electrical
 and Computer Engineering
The University of Virginia
Charlottesville, Virginia

NRC Project Managers:
S. A. Arndt, J. A. Dion, R. A. Shaffer, M. E. Waterman

NRC Job Code N6214

Prepared for:
Division of Engineering
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

NUREG/CR-7151, Vol. 2

iii

ABSTRACT

Today’s emergent computer technology has introduced the capability of integrating information
from numerous plant systems and supplying needed information to operations personnel in a
timely manner that could not be envisioned when previous generation plants were designed and
built. For example, Small Modular Reactor (SMR) plant designs will make extensive use of
computer based I&C systems for all manner of plant functions, including safety and non-safety
functions. On the other hand, digital upgrades in existing light water reactor plants are
becoming necessary in order to sustain and extend plant life while improving plant performance,
reducing maintenance costs of aging and obsolete equipment, and promoting prognostic system
monitoring and human machine interface (HMI) decision making.

The extensive use of digital instrumentation and control systems in new and existing plants
raises issues that were not relevant to the previous generation of analog and rudimentary digital
I&C systems used in the 1970’s style plants. These issues include the occurrence of unknown
failure modes in digital I&C systems and HMI issues. Therefore, digital system reliability/safety,
classification of digital I&C system failures and failure modes, and software validation remain
significant issues for the Light Water Sustainability and SMR initiatives and the digital I&C
system community at large.

The purpose of the research described in volume 1 thru volume 4 is to help inform the
development of regulatory guidance for digital I&C systems and potential improvement of the
licensing of digital I&C systems in NPP operations. The work described herein presents; (1) the
effectiveness of fault injection (as applied to a digital I&C system) for providing critical safety
model parameters (e.g., coverage factor) and system response information required by the PRA
and reliability assessment processes, (2) the development and refinement of the methodology
to improve applicability to digital I&C systems, and (3) findings for establishing a basis for using
fault injection as applied to a diverse set of digital I&C platforms. Some of the specific issues
addressed in Volume 1 are:

 Fault Injection as a support activity for PRA activities.
 Development of the UVA fault injection based methodology.
 Fault models for contemporary and emerging IC technology in Digital I&C Systems.
 Requirements and challenges for realizing Fault Injection in Digital I&C systems.
 Solutions to challenges for realizing fault injection in digital I&C systems.

Volume 1 presents the findings of developing a fault injection based quantitative assessment
methodology with respect to processor based digital I&C systems for the purpose of evaluating
the capabilities of the method to support NRC probabilistic risk assessment (PRA) and review of
digital I&C systems. Fault injection is defined as a dependability validation technique that is
based on the realization of controlled validation experiments in which system behavior is
observed when faults are explicitly induced by the deliberate introduction (injection) of faults into
the system [Arlat 1990]. Fault injection is therefore a form of accelerated testing of fault
tolerance attributes of the digital I&C system under test.

Volumes 2 and 3 of this research present the application of this methodology to two
commercial-grade digital I&C system executing a reactor protection shutdown application.

In Volumes 2 and 3, the research identified significant results related to the operational behavior
of the benchmark systems, and the value of the methodology with respect to providing data for
the quantification of dependability attributes such as safety, reliability, and integrity. By applying
a fault injection-based dependability assessment methodology to a commercial grade digital
I&C, the research provided useful evidence toward the capabilities and limitations of fault

iv

injection-based dependability assessment methods with respect to modern digital I&C systems.
The results of this effort are intended to assist NRC staff determine where and how fault
injection-based methodologies can best fit into the overall license review process.

The cumulative findings and recommendations of both applications of the methodology and
application of the generalized results to broader classes of digital I&C systems are discussed in
volume 4.

The digital I&C systems under test for this effort, herein defined as Benchmark System I and
Benchmark System II, are fault tolerant multi-processor safety-critical digital I&C systems typical
of what would be used in a nuclear power plant 1-e systems. The benchmark systems contain
multiple processing modules to accurately represent 4 channel or division 2 out of 4 reactor
protection systems. In addition, the systems contain a redundant discrete digital input and
output modules, analog input and output modules, inter-channel communication network
modules, other interface modules to fully represent and implement a Reactor Protection
System. The application Reactor Protection System software was developed using the
benchmark systems software development and programming environments.

To establish a proper operational context for the fault injection environment a prototype
operational profile generator tool based on the US NRC systems analysis code TRACE
[NRC 2011] was developed. This tool allowed generation of realistic system sensor inputs to
the Reactor Protection System (RPS) application based on reactor and plant dynamics of the
simulated model. In addition, the tool allowed creation of accident events such as large break
LOCAs, turbine trips, etc., to stress the RPS application under the various design basis events.

Bibliography

[NRC 2001] Commission, U.S. Nuclear Regulatory. Computer Codes. April 2011.

http://www.nrc.gov/about-nrc/regulatory/research/comp-codes.html
(accessed 2011).

[Arlat 1990] J. Arlat, M. Aguera, et. al. "Fault Injection for Dependability Evaluation: A
Methodology and Some Applications." IEEE Transactions on Software
Engineering, February 2 , 1990.

v

FOREWORD

As discussed in the NRC Policy Statement on Probabilistic Risk Assessment (PRA), the NRC
intends to increase its use of PRA methods in all regulatory matters to the extent supported by
state-of-the-art PRA methods and data. Currently, I&C systems are not modeled in PRAs. As
the NRC moves toward a more risk-informed regulatory environment, the staff will need data,
methods, and tools related to the risk assessment of digital systems. Fault injection methods
can provide a means to estimate quantitatively the behavior model parameters of the system.
The quantification of these parameters (in a probabilistic sense) can be used to produce more
accurate parameter estimates for PRA models, which in turn produces more a accurate risk
assessment to inform the risk oversight process.

A challenge for evaluating system reliability relates to relatively undeveloped state of the art
methods for assessing digital system reliability. Quantitative measures of digital system
reliability are available for digital system hardware, but procedures for evaluating system level
reliability (both hardware and software) are not well defined in current industry literature.
However, comprehensive use of fault injection techniques for providing critical data toward
evaluating digital system dependability may reduce software reliability uncertainties.

The conduct of fault injection campaigns often yields more information than just quantifying the
fault tolerance aspects of a system; it also is a means to circumspect and comprehend the
behaviors of complex fault tolerant I&C systems to support overall assessment activities for both
the developer and the regulator. Fault injection experiments cannot be performed without
gaining a deeper understanding of a system. The process itself is a learning experience,
providing richer insights into how a system behaves in response to errors arising from system
faults. The inclusion of fault injection information into review processes and PRA activities can
enlighten the review processes of digital I&C systems. Finally, the process of conducting fault
injection testing allows two very important pieces of information to come into direct connection
with each other: what the system is supposed to do, and what it actually does. This information
is essential for anticipating system behaviors, performing verification and validation (V&V)
activities, and conducting methodical system evaluations.

This report describes an important step toward developing a systematic method of evaluating
digital system dependability. Volume 1 presents a broad and in-depth development of a digital
system dependability methodology, and the requirements and challenges of performing fault
injections on digital I&C systems. The process developed in this research project was applied
to two digital systems that modeled nuclear power plant safety functions. The results of this
phase of the research are described in volume 2 and volume 3. The cumulative findings and
recommendations of both applications of the methodology and application of the generalized
results to broader classes of digital I&C systems are discussed in volume 4.

vii

TABLE OF CONTENTS

Section Page

ABSTRACT .. iii
FOREWORD ... v
LIST OF FIGURES ... x
LIST OF TABLES ... xi
ACRONYMS AND ABBREVIATIONS ... xiii

1. INTRODUCTION ... 1
1.1. Background ... 1
1.2. Purpose ... 1
1.3. Background and Motivation ... 1
1.4. Relevance of Research with Respect to Regulatory Guidance 2
1.5. Project Organization and Timeline .. 6
1.6. Organization of this Report .. 6
1.7. Digital and Computer Based I&C Systems: Overview ... 7
1.8. Overview of Fault Injection .. 10
1.9. References .. 22

2. RESEARCH METHODOLOGY ... 25
2.1. Overview ... 25
2.2. Identification and Selection of Appropriate Fault Injection Methods for

Benchmark System I ... 25
2.3. Development of the RPS Application .. 25
2.4. Design and Development of the Fault Injection Environment for Benchmark

System .. 26
2.5. Development of the TRACE-based Operational Profile (TOP) Generator Tool. . 26
2.6. Development of Pre-Fault Injection Analysis Techniques to Support Fault List

Generation ... 27
2.7. Conduct Fault Injection Campaigns on Benchmark System I 27
2.8. Conclusions, and Recommendations .. 28
2.9. References .. 28

3. DESCRIPTION OF BENCHMARK SYSTEM I AND RPS CONFIGURATION 29
3.1. Introduction .. 29
3.2. Benchmark System I ... 29

4. IDENTIFICATION AND SELECTION OF FAULT INJECTION TECHNIQUES FOR
BENCHMARK SYSTEM I ... 41
4.1. Introduction .. 41
4.2. Identification of Fault Injection Methods for Benchmark System I 41
4.3. IEEE 1149.1 JTAG-based Fault Injection .. 44
4.4. ICE-based Fault Injection .. 46
4.5. Software Implemented Fault Injection (SWIFI) .. 47
4.6. X-bus Communication Module .. 48
4.7. Identifying and Selecting Fault Injection Techniques for the X-bus

Communication Modules ... 48
4.8. Summary of Fault Injection Techniques for Benchmark System I 49
4.9. Development of Fault Injection Techniques for Benchmark System I 51
4.10. Development of the ICE-based Fault Injector .. 51

viii

TABLE OF CONTENTS
(continued)

Section Page

4.11. X-bus Fault Injector ... 58
4.12. JTAG Fault Injection Module ... 73
4.13. References .. 78

5. DEVELOPMENT OF THE UVA PLATFORM INDEPENDENT FAULT INJECTION
ENVIRONMENT .. 79
5.1. Introduction .. 79
5.2. Motivation and Background ... 79
5.3. Requirements for Platform Independent Fault Injection Environment 80
5.4. Overview of UNIFI ... 82
5.5. Configuring the UNIFI Tool to a Target System .. 84
5.6. Set up of Fault Injection Campaigns.. 88
5.7. Fault Injection Set Up .. 90
5.8. UNIFI Master Fault Injection Controller and Observation GUI 91
5.9. Configuring the Benchmark System for Fault Injection 93
5.10. Integrating the Benchmark System into the UNIFI Environment 95
5.11. Fault Injection Process for Benchmark System I: Operational Perspective 100
5.12. References .. 103

6. TRACE-BASED OPERATIONAL PROFILE GENERATION TOOL 105
6.1. Introduction .. 105
6.2. Operational Profiles for Real-Time Systems ... 105
6.3. Characterization of Real-time Operational Profile for Fault Injection 105
6.4. TRACE Modeling Tool ... 108
6.5. Big Picture View of TOP Modeling Tool .. 108
6.6. Conclusions ... 114
6.7. References .. 116

7. PRE-FAULT INJECTION ANALYSIS AND FAULT LIST GENERATION METHODS .. 117
7.1. Introduction .. 117
7.2. Pre-fault Injection Analysis .. 117
7.3. Related Work on Pre-fault Injection Analysis .. 119
7.4. Pre- Fault Injection Analysis to Improve Fault Injection Efficiency 120
7.5. Development and Implementation ... 130
7.6. Experimentation and Results .. 131
7.7. Applying Dynamic Pre-Fault Injection Analysis to the Benchmark System 137
7.8. Results of Applying Pre-Injection Analysis to Benchmark System I 137
7.9. Other Techniques: Map File-based Fault List Generation 138
7.10. Conclusions ... 139
7.11. References .. 140

8. APPLICATION OF FAULT INJECTION TO BENCHMARK SYSTEM I: RESULTS 141
8.1. Introduction .. 141
8.2. System Test Configuration .. 141
8.3. Typical Fault Injection Sequence For Benchmark System I 143
8.4. Experiment Definition .. 145

ix

TABLE OF CONTENTS
(continued)

Section Page

8.5. Processor-based Fault Injection Experiments ... 146
8.6. Pre-fault Injection Analysis Verification ... 148
8.7. Digital Output Response and Output Disabled Experiments 148
8.8. Fault and Error Latency Analysis .. 149
8.9. Addressing No-response Faults .. 158
8.10. X-Bus Fault Injections ... 159
8.11. References .. 168

9. SUMMARY, FINDINGS, AND CONCLUSIONS .. 169
9.1. Summary of Key Activities and Results ... 169
9.2. Conclusions ... 172
9.3. References .. 172

x

LIST OF FIGURES
Figure Page

1-1 Phases and activities of the research effort .. 6
1-2 Generic digital I&C system architecture model ... 8
1-3 Fault injection model for digital I&C ... 11
1-4 Fault injection experiment ... 12
1-5 Operational view of the fault injection based dependability assessment process 14
1-6 Fault model classes for benchmark digital I&C systems ... 18
1-7 Basic architecture of a fault injection environment .. 21
3-1 Benchmark System I architecture ... 30
3-2 Benchmark System I processing ... 33
3-3 Benchmark System I fault tolerant features .. 36
3-4 RPS configuration for Benchmark System I .. 38
4-1 ICE-based fault injection for Benchmark System I .. 54
4-2 ICE machine pod inserted into the Benchmark System .. 55
4-3 HiTOP view of the target software executing on the Benchmark System 57
4-4 Illustration of token passing mechanism in a multi-master system 60
4-5 Corruption of token when Master 1 attempts to pass token to Master 2 62
4-6 X-bus transmission packet (PTP) .. 64
4-7 X-bus fault injector .. 66
4-8 Sampling of the X-bus traffic by the FPGA ... 67
4-9 Block diagram representation of the FPGA X-bus fault injection module 68
4-10 JTAG TAP controller test logic diagram .. 74
4-11 JTAG TAP controller state machine .. 75
4-12 Block diagram representation of the JTAG fault injection module................................... 77
5-1 UNIFI fault injection environment .. 83
5-2 Functional representation of the I/O interface module .. 84
5-3 UNIFI physical interfaces to the target system .. 86
5-4 UNIFI interface for fault injection ... 88
5-5 Screenshot of Master Controller window... 89
5-6 Process for generating a fault list using UNIFI .. 91
5-7 Screenshot from single fault injection trial performed by UNIFI master GUI 92
5-8 Configuration 1 of Benchmark System I .. 93
5-9 Configuration 2 of Benchmark System I .. 94
5-10 Integrating the fault injectors into Benchmark System I .. 96
5-11 Integrating UNIFI/LabView environment into Benchmark System I 98
5-12 ICE machine fault injection control script .. 100
5-13 Fault injection operation for Benchmark System I ... 101
6-1 TRACE-based operational profile generation tool ... 109
6-2 SNAP plant representation .. 110
6-3 AptPlot tool .. 111
6-4 Configuring the Trace AptPlot output file .. 112
6-5 Combining the steady and transient output runs for a complete profile 113
6-6 Excel screenshot used to generate the operational profile ... 115
7-1 Venn diagram representation of fault space ... 120
7-2 Fault activation for different workloads .. 121
7-3 Levels of analysis .. 122
7-4 Flow chart representing fault list generation using dynamic analysis 125
7-5 Populating the data structures with source and destination operands 126
7-6 Illustration of the window of opportunity .. 127

xi

LIST OF FIGURES
(continued)

Figure Page

7-7 Generating the fault list ... 127
7-8 Error propagation window of opportunity .. 128
7-9 Cross referencing in IDA Pro® ... 130
7-10 Results obtained from fault injection experiments ... 132
7-11 Comparison of ACE Bits obtained between random and directed fault injection

experiments ... 133
7-12 Frequency of invoked functions for each of eight inputs ... 134
7-13 Integration of pre-fault injection analysis algorithms into Benchmark System I and

execution trace files generated ... 137
7-14 Snip of a map file .. 138
8-1 Benchmark system configurations .. 142
8-2 Fault Injection sequence for Benchmark System I .. 144
8-3 Example of fault and error latency .. 149
8-4 Error log transcript from the SMS server ... 150
8-5 Fault latency of memory fault injections .. 152
8-6 First 50 variable locations of the memory fault injection campaign 153
8-7 Distribution of memory-based fault latency ... 154
8-8 Cumulative fault latency distribution .. 155
8-9 Fault latency of register-based fault injections .. 156
8-10 Distribution of register-based fault latency .. 157
8-11 Halt latency of injected processor ... 158
8-12 Structure of a token message ... 159
8-13 Structure of a variable length data message ... 160
8-14 Jamming signal output correctly, but not applied to the X-bus circuit 163
8-15 Jamming signal applied to X-bus thereby corrupting transmission 164
8-16 Token message fault response graph ... 167
8-17 Data message fault response graph ... 167

LIST OF TABLES
Table Page

4-1 Fault injection techniques for Benchmark System I. ... 50
4-2 Performance delay times for ICE-based fault injection of a few models. 58
6-1 Example composition of an operational profile for Benchmark System I. 106
7-1 Number of fault injection experiments. .. 124
7-2 Results of fault injection experiments in SimpleScaler. ... 131
7-3 Figure 7-12 function invocation and cross reference count... 135
8-1 Summary of experiments run on Benchmark System I. .. 145
8-2 Details of registers used in fault injection experiment. .. 147
8-3 Summary of results from memory based fault injection experiments. 148
8-4 Results from UNIFI experiments to detect CPU register faults 149
8-5 Synchronization times following uncorrupted and corrupted token in X-bus. 165
8-6 Data message response for long duration fault injections. ... 168

xiii

ACRONYMS AND ABBREVIATIONS

ACE Architecturally Correct Execution
A/D Analog to Digital
API Application Programmer Interface
ASIC Application Specific Integrated Circuit
AVF Architectural Vulnerability Factor
BDM Background Debug Mode
BSC Boundary Scan Chain
BWR Boiling Water Reactor
CCITT Commite' Consultatif International de Telegraphique et Telephonique.

(International Consultative Committee on Telecommunications and Telegraphy).
CFR Code of Federal Regulations
CPU Central Processing Unit
CRC Cyclic Redundancy Check
DA Destination Address
D/A Digital to Analog
DC Direct Current
DFWCS Digital Feedwater Control System
DLPDU Data Link Protocol Data Unit
ED Ending Delimiter
EDM Error Detection Mechanism
EEPROM Electrically Erased Programmable Read-Only Memory
ESFAS Engineered Safety Features Actuation System
FARM Faults, Activations, Readouts and Measures
FDD Fixed Data
FDIM Fault Detection, Isolation and Mitigation
FMEA Failure Modes and Effects Analysis
FPGA Field Programmable Gate Array
FW Firmware
GUI Graphical User Interface
GOOFI Generic Object Oriented Fault Injection
HiTOP In-Circuit Emulator Tool
HMI Human Machine Interface
I&C Instrumentation and Control
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IC Integrated Circuit
I/O Input/Output
ISA Instruction Set Architecture
ISR Interrupt Service Routine
JTAG Joint Test Action Group
LMS List of Master Stations
LOCA Loss of Coolant Accident
MI Monitor Interface
MTTF Mean Time to Failure
NDD No Data
NFTAPE University of Illinois Fault Injection Tool
NPP Nuclear Power Plant
NRC Nuclear Regulatory Commission
NS Next Station
OCD On-Chip Debugger

xiv

OP Operational Profile
PC Program Counter
PRA Probabilistic Risk Assessment
PS Previous Station
PTP X-bus Transmission Packet
PWR Pressurized Water Reactor
PXI National Instruments Data Acquisition Controller
RAM Random Access Memory
ROM Read Only Memory
RPS Reactor Protection System
RTE Runtime Environment
RTL Register Transfer Level
SA Starting Address
SCADA Supervisory Control and Data Acquisition
SCIFI Scan Chain Implemented Fault Injection
SD Start Delimiter
SMR Small Modular Reactor
SNAP TRACE Graphical User Interface
SoC Systems on a Chip
SWIFI Software Implemented Fault Injection
TAP Test Access Port
TCK Test Clock
Tcom Communication Cycle Time
TDI Test Data In
TDO Test Data Out
TMS Test Mode Select
TOP TRACE-based Operational Profile
TRACE TRAC/RELAP Advanced Computational Engine
TRST Test Reset
UNIFI Universal Platform Independent Fault Injection
UVA University of Virginia
VDC Volts DC
VHDL Very High Speed Integrated Circuit Hardware Description Language
VI Virtual Instrument
V&V Verification and Validation
VLDD Variable Length Data

1

1. INTRODUCTION

1.1. Background

This report is Volume 2 of a multi-volume set of reports that present the cumulative efforts,
findings, and results of U.S. Nuclear Regulatory Commission (NRC) contract JCN N6124 –
“Digital System Dependability Performance”. The reports are organized as follows:

Volume 1 – Presents a broad and in-depth development of the methodology, the requirements

and challenges of realizing fault injection on digital instrumentation and control
(I&C) systems.

Volume 2 – Presents the application of the methodology to Benchmark System I.
Volume 3 – Presents the application of the methodology to Benchmark System II- employing

the lessons learned from Benchmark System I.
Volume 4 – Presents the cumulative findings and recommendations of both applications of the

methodology and generalizes the results to broader classes of digital I&C systems.

1.2. Purpose

This report (Volume 2) presents the findings of applying a fault injection based quantitative
assessment methodology (presented in Volume 1) to a processor-based digital I&C system for
the purpose of evaluating the capabilities of the method to support NRC probabilistic risk
assessment (PRA) and review processes for digital I&C systems. The further purpose of this
work is to help inform the development of regulatory guidance processes for digital I&C systems
and potential improvements to the licensing process for digital I&C systems in nuclear power
plant (NPP) operations. The work described herein broadly presents; (1) the development of
the fault injection methods and techniques that were applied to the Benchmark system, (2) the
development of a fault injection environment for digital I&C systems (3) development of pre-
injection analysis methods for automatically generating fault lists for digital I&C systems, (4)
results of the application of the fault injection method to benchmark systems, (5) the challenges
to applying fault injection to contemporary digital I&C systems, and (6) the findings for
addressing these challenges and establishing a basis for implementing fault injection to digital
I&C platforms.

1.3. Background and Motivation

In recent years significant effort has gone into improving safety critical system design
methodologies, assessment methods, and the updating of regulatory industry standards and
NRC regulatory guidelines to ensure that digital I&C systems can be designed and assessed to
the high safety requirement levels required of highly critical applications. Of particular interest
recently are quantitative dependability assessment methodologies that employ fault injection
methods to ensure proper compliance of digital I&C system fault handling mechanisms [Arlat
1993; Yu 2004; Smith 2000; Elks 2009(a); Aldemir 2007; Smidts 2004]. The goal of a
dependability assessment methodology is to provide a systematic process for characterizing the
safety and performance behavior of embedded systems (e.g. digital I&C systems) in the
presence of faults.

Dependability evaluation involves the study of failures and errors and their potential impact on
system attributes such as reliability, safety, and security. Often the nature of failures or system
crashes and long error latency often make it difficult to identify the causes of failures in the
operational environment. Thus, it is particularly difficult to recreate a failure scenario for large,
complex systems just from system failure logs alone. To identify and understand potential
failures, the use of an experiment-based or measurement based approach for studying the

2

dependability of a system is gaining acceptance in the nuclear industry for better understanding
the effects of errors and failures to promote an informed understanding of risk. Such an
approach is useful not only during the concept and design phases, but also during licensing
review activities.

From a practical point of view, most digital I&C systems are designed as safety critical systems
employing extensive fault detection/tolerance and design diversity features to ensure proper
operational and fail safe behavior in the event of a system failure. For example, Fault Detection,
Isolation, and Mitigation (FDIM) software and online diagnostic functions of the benchmark
systems in this research effort account for as much as 40 to 50 percent of the executable
system software code [Barton 1990; Palumbo 1986; Young 1989]. This code is rarely
challenged during normal operations because faults and failures are an infrequent occurrence.
This FDIM code is vital toward system dependability and safety compliance, and can only be
effectively tested and validated by realistic fault injection campaigns.

1.4. Relevance of Research with Respect to Regulatory Guidance

The NRC has a comprehensive set of regulatory guidelines for reviewing and assessing the
safety and functionality of digital I&C systems. The NRC PRA technical community has not yet
agreed on how to model the reliability of digital systems in the context of PRA and the level of
detail that digital systems require in reliability modeling. Nonetheless, it is clear that PRA
models must adequately represent the complex system interactions that can contribute to digital
system failure modes. The essential research aim of the PRA technical community is to
accurately model digital I&C system behaviors to take into account interactions of the system
fault handling behaviors, coverage of fault tolerance features, and the view of the system as an
integrated software and hardware system.

Fault injection is a formal-based process to collect evidence to gauge the dependability of safety
functions associated with I&C systems that has an underlying mathematical theory (with
explicitly stated assumptions) that allows one to place stronger justification or refutation on
claims of the overall safety of an I&C system. Fault injection as part of a quantitative
assessment process is a robust testing process that can support verification and validation
(V&V) and quality assurance activities to gather evidence that the digital I&C system can
perform its safety functions in the presence of faulted and failure conditions in compliance with
NRC regulations. In addition, those aspects of Appendix B of Title 10 of the Code of Federal
Regulations (CFR), Part 50 (10 CFR 50), the NRC Standard Review Plan (NUREG-0800), and
other relevant guidelines that address requirements for testing processes, methods and
evidence to support safety function operational effectiveness are clear candidates for the
application of fault injection methods.

1.4.1. Relationship to NRC Research Activities

The research conducted under this contract was done with the consideration of previous and
on-going research efforts related to the safety and reliability assessment of digital I&C systems.
Accordingly, the research effort was attentive of complementary research efforts and how those
efforts could benefit from the work accomplished through this effort. Specifically, the
researchers recognized that the products developed from this research could have the potential
to be used in other research efforts. Therefore, the researchers endeavored to catalog research
findings in way that promoted broader relevance and helpful information for other research
efforts.

3

1.4.2. Research Objectives

The overall objective of this work was to develop a body of evidence to inform the development
of regulatory guidance processes and potentially improve licensing processes for digital I&C
systems in NPP operations. In support of this objective the research investigated the
effectiveness of fault injection applied to digital I&C systems for providing critical parameters
and information required by PRA and reliability assessment processes. The results and findings
of this effort are aimed at assisting NRC staff in determining when, where and how fault injection
based methodologies can best fit in the overall PRA and license review process. The major
goals of the research effort are listed below:

Objective 1
Demonstrate the effectiveness of the University of Virginia (UVA) quantitative safety
assessment process on commercial safety grade I&C systems executing reactor protection
applications with respect to a simulated NPP safety system design.

Objective 2
Identify, document, and develop improvements to the process that make it easier and more
effective to apply to a wider spectrum of digital I&C systems. Document the limitations,
sensitive assumptions, and implementation challenges that would encumber the application of
fault injection processes for digital I&C systems.

Objective 3
Document the quantitative and qualitative results that can be obtained through application of the
assessment process, and provide the technical basis upon which NRC can establish the
regulatory requirements for safety-related digital systems, including acceptance criteria and
regulatory guidance documents.

Secondary Objective 1
Assess the level of effort and cost to implement the fault injection capability in a vendor or
licensee environment.

Secondary Objective 2
Identify and develop innovative fault injection methods that would make fault injection more
efficient and easier to adopt by NRC and the nuclear industry.

The scope of this work is targeted at safety critical digital I&C systems, but applies to non-safety
related systems as well. The target benchmark systems were configured to be representative of
a four-channel Reactor Protection Systems (RPS) system, but were limited in scale due to
budget constraints on equipment availability. Therefore, the systems lacked some redundant
hardware modules that would normally be found in an actual RPS. The overall complexity and
configuration of the system, however, was sufficient to stress the methodology, which was the
overall objective of the research effort. The specific benchmark system data results obtained
from the study should be interpreted with respect to the benchmark system configuration
described in this report unless stated otherwise.

Further, the methodology that was developed and applied in this research effort is part of a
larger comprehensive assessment and review process, and is not intended to be interpreted as
a “replacement” for existing processes. Rather the methodology is viewed as a complementary
method in an effort to establish more efficient, repeatable and objective design assessment and
review processes.

4

1.4.3. Work Tasks for Phase II

The basic research plan of the project is presented in Section 9 of Volume 1, which is used as a
guide to realize the UVA fault injection-based dependability assessment methodology on the
benchmark systems. This plan has two categories of tasks. The first task category includes
items that require additional research and development to determine their potential for
implementation. As such, the researchers realized early that this would be on-going work for
the project. The second category are tasks that needed little or no additional research effort to
implement to determine their overall effectiveness. The second category should be viewed as
items that needed to be accomplished in order to support the overall research objectives.

1.4.3.1. Research Oriented Tasks

The research oriented tasks listed below are specifically tied to key challenges identified in
Section 8 of Volume 1. The challenges are:

High performance fault injection – The need for fault injection techniques to support various
fault models for fault injection that can be implemented in a manner that is minimally intrusive,
controllable, repeatable and reproducible is critical to the application of fault injection to digital
I&C systems. The purpose of this task is to investigate, design, develop and implement new
methods to achieve these goals. This task is considered to be a high risk effort and, as such,
less risky back up fault injection methods could be considered in parallel to this effort.

Data collection and analysis – In support of better measurement practices, the needs required
for data collection from the benchmark systems should be investigated. This investigation
includes developing a thorough understanding of the relationship between the error messages
from the target benchmark system and the underlying error detection and fault tolerant
mechanisms in the target benchmark systems. Prior experience has shown that vast amounts
of data are the norm during long fault injection campaigns. Finding methods to manage the
data, establish relationships between the data sets, and reduce the data sets to essential
attributes is a key goal for developing an effective analysis process.

Fault list generation and pre-injection analysis – Being a statistical experiment, fault
injection testing may require a large number of experiments to be conducted in order to
guarantee statistically significant results. Thus, efficiency of the fault injection testing is
important. Generating fault lists for a fault injection experiment or campaign is a critical activity
for fault injection. Pre-injection analysis is a method to guide the fault injection process to
produce more effective and efficient results. It is a means to reduce or eliminate the “no-
response” problem associated with fault injection. The goal of this research objective is to
develop a methodology for pre-analyzing the binary listing of the target benchmark system I&C
system to reduce no-response fault injections, accelerate error propagation, and improve
efficiency.

Operational profile generation – Operational profiles and workloads of the target system are
required to set the operational and environmental context of the system. The operational
profiles must be representative of the different system configurations and workloads that would
be experienced in actual field operations. In order to provide a diverse and representative set of
operational profiles for the target system, the use of high fidelity NPP simulator tools to generate
nominal, off-nominal, and accident event profiles is a promising approach. To support this task,
the research effort developed a process for integrating TRAC/RELAP Advanced Computational
Engine (TRACE) thermo-hydraulic NPP simulator results into the UVA fault injection
environment so that real time process data from the simulator could be used to drive the inputs
of the target benchmark system under various conditions and modes.

5

1.4.3.2. Research Support Tasks

Research tasks are necessary to support research activities using Benchmark System I. As
seen in previous fault injection process efforts, the amount of time to design, develop, test, and
integrate various fault injection components together and then interface these components into
the target Benchmark system can be significant. These research support tasks are:

Training and experience – To effectively apply fault injection to complex digital I&C systems of
the type found in the benchmark systems, the research staff at UVA required professional
training by the respective vendors of the benchmark system platforms. Once this training was
completed, the staff required time to gain additional experience on the systems to fully
understand the details of the system platforms from various points of view.

Fault injection environment – A well-formed fault injection environment is one of the most
important aspects of a fault injection-based methodology to support credible, repeatable, and
controllable fault injection campaigns. Furthermore, the fault injection environment plays a
crucial role in the data collection and measurement of the responses, which are important to
produce the measures of dependability (e.g. coverage, error latency, etc.). Further, the user
must have the ability to manage the types of faults to be injected into the system, where they
are injected, how they are injected, and when they are injected. Additionally, the responses to
the fault injections must be acquired in a manner that allows the responses to be traced back to
the faults so that any fault injection trial can be repeated as needed to reproduce the system
response.

Over and beyond the basic functional requirements for a fault injection, effective fault injection
environments must also be practical to implement and use, adaptable to changing technology,
and supportable. Several development goals for the fault injection environment to allow for
adaptability for different I&C systems include:

 Flexibility for a wide variety of applications
 Easy to use and familiar to the engineering culture
 Industry-grade, supportable, and open source
 Modular
 Extensible
 Evolutionary

To achieve these goals, the National InstrumentsTM LabVIEW® toolset was selected to develop
the basic architecture of the fault injection environment. Proven technology and industry
acceptance made this choice obvious. Due to the complex nature of fault injection and need for
tight coordination of several processes (e.g. data acquisition, operational profile sequencing,
fault injection, data logging, etc), a cross-platform tool was most effective to support these
functions.

Application code development – The benchmark systems were not delivered to UVA with an
application embedded on them. Therefore, the researchers built a representative reactor
protection system (RPS) application as the benchmark application.

Integration and testing – Integrating the various components of the fault injection environment,
the data acquisition system, and the target benchmark systems required substantial skills and
knowledge. The most prominent of these tasks was the integration of the fault injector into the
target I&C system. This task required considerable modifications to the fault injector to
effectively integrate the fault injector into the target system.

6

1.4.4. Scope of Study

Fault injection-based methodologies are but one part of a comprehensive process of estimating
the reliability of a digital system (hardware and software) for PRA applications. From the
highest level perspective, the essential information needed for reliability estimation are
(1) knowledge of the likelihood of faults (software or hardware), and (2) the consequence of
activating these faults in the system context. Fault injection methods are most useful in
characterizing system responses to activated faults - the second requirement. That is, providing
empirical knowledge on the triggering, detection, tolerance, and propagation of errors due to
software or hardware faults in the system. How a digital I&C system responds to a fault and
mitigates the fault are essential elements for accurate system reliability modeling. As such, the
methodology developed and presented in this report is aimed at providing empirical data in
support of developing system fault response data, such as fault detection, error propagation,
fault latency, timing delays, etc.

1.5. Project Organization and Timeline

This project was carried out over a 3.5 year period beginning in 2007. Three phases of work
were conducted during this timeframe. The first phase, which is principally reported in this
volume, developed and refined the methodology so that it could be successfully applied to the
benchmark systems. This effort lasted about 12 months. The second phase of the work was
applying the methodology to the first benchmark system, based on the recommendations and
plan of action from the first phase of the work. The third and final phase of the work was
applying the methodology to a second benchmark system based on the lessons learned from
the first and second phase of the work. Figure 1-1 shows the progression of this effort through
the lifecycle of the project.

Figure 1-1 Phases and activities of the research effort

1.6. Organization of this Report

This report provides a contemporary and comprehensive perspective on fault injection for digital
I&C systems for the NRC staff. In addition, this report also serves the greater digital I&C
community by providing solid and deep perspective of fault injection with specific focus on digital
I&C systems. This report is organized around three main themes: (1) selection of appropriate
fault injection techniques, (2) development of an configurable fault injection environment for

Phase 1
• Developement of the

methodoloy
•Lessons learned from

previous efforts
•Challenges to fault

injection wrt to DI&C
•Plan of action for

applying fault injection
to Benchmark systems .

Phase 2
•Continue Research and

development on fault
injection methods

•Integrate Benchmark
System I into fault
injection enviroment

•Perform fault injection
studies

•Assess the
methodology

Phase 3
•Develop the

improvements to the
methodology.

•Perform fault injection
studies on Benchmark
System II

•Final Assessment of the
Research effort.

7

digital I&C systems, (3) application of the fault injection based dependability assessment
methodology to Benchmark System I, and (4) results, outcomes and challenges associated with
the application of fault injection to the benchmark systems. The Sections each build on and
connect to previous Sections. Sections 1 and 2 provide an overview of the fault injection based
dependability assessment methodology, the research methodology of this phase of the research
effort, and a solid and deep foundational understanding of the concepts of fault injection with
respect to digital I&C systems. Section 3 presents a detailed overview of the Benchmark
System I. Section 4 presents an overview of the RPS code development. Section 5 presents
analysis and selection of candidate fault injection techniques for Benchmark System I. Sections
6 and 7 describe the design and implementation of the configurable fault injection environment
that is used to apply fault injection campaigns to Benchmark System I. Section 8 presents the
development of pre-injection analysis methods to generate fault lists for efficient fault injection.
Sections 9 and 10 discuss the results and outcomes of applying the fault injection to Benchmark
System I. Section 11 discusses the findings, insights, and lessons learned from this research
effort.

1.7. Digital and Computer Based I&C Systems: Overview

In order to provide relevance beyond the benchmark systems that were evaluated, the research
developed a generic representation of an I&C system based on the evaluation of several current
digital I&C systems being proposed in new reactor applications and the emerging technologies
that may be utilized in new I&C systems. The characterization that seemed most suitable is
illustrated in Figure 1-2.

Modern digital I&C systems characteristic of the systems addressed in this research are neither
strictly embedded systems nor general purpose computing platforms. Rather they fall into a
special class of embedded computing platforms called adaptive or configurable embedded
computing. That is, the hardware and software architectural elements of the platform allow the
architecture to be tailored to specific constraints of the application domain. To achieve such
flexibility the architecture may trade-off attributes like optimal performance, simplicity, and cost
with respect to a fully custom embedded system. Most I&C systems being considered for
nuclear power plant applications fall into this class of systems.

8

F
ig

u
re

 1
-2

G

en
er

ic
 d

ig
it

al
 I&

C
 s

ys
te

m
 a

rc
h

it
ec

tu
re

 m
o

d
el

P
la

n
t ,

 a
n

o
th

e
r

I&
C

sy

st
e

m
, e

n
d

 u
se

rs

S
y
s
te

m
 h

a
rd

w
a

re

In
tr

a
 -
C

o
m

m
u

n
ic

a
ti
o

n
P

ro
c
e

s
si

n
g
 m

o
d

u
le

P
ro

c
e

s
si

n
g
 m

o
d

u
le

P
ro

c
e

s
s
in

g
 m

o
d

u
le

s

In
te

r-
C

o
m

m
u

n
ic

a
ti
o

n
In

p
u

t:

S
e

n
s
o

r
p

ro
c
e

s
s
in

g

O
u

tp
u

t:

A
c
tu

a
ti
o

n
p

ro
c
e

s
s
in

g

S
y
s
te

m
 s

o
ft

w
a

re

•
m

o
s
tl
y
 p

la
n

t-
in

d
e

p
e

n
d

e
n

t

•
p

re
-d

e
v
e

lo
p

e
d

A
p

p
li
c
a

ti
o

n
 s

o
ft

w
a

re

•
P

la
n

t-
s
p

e
c
if

ic
 I&

C
 f
u

n
c
ti
o

n
s

•
P

la
n

t s
p

e
c
if

ic
 s

a
fe

ty
 f

e
a

tu
re

s
.

O
p

e
ra

ti
n

g
 s

y
s
te

m
 s

o
ft

w
a

re
 a

n
d

 s
e

rv
ic

e
s

R
u

n
ti
m

e
 e

n
v
ir

o
n

m
e

n
t

R
e

d
u

n
d

a
n

c
y
 a

n
d

 f
a

u
lt

to
le

ra
n

c
e

m

a
n

a
g

e
m

e
n

t

F
u

n
c
ti
o

n
a

l c
o

d
e

 –
A

p
p

li
c
a

ti
o

n

fu
n

c
ti
o

n
s
 a

n
d

 d
ia

g
ra

m
 m

o
d

u
le

s

P
la

n
t s

p
e

c
if

ic
 s

a
fe

ty
 c

o
d

e
.

To
 o

th
e

r
ch

a
n

n
e

ls
o

r
su

b
sy

st
e

m
s

v
ia

 b
u

ss
 o

r
n

e
tw

o
rk

.

To
 H

M
I,

 d
ia

g
n

o
st

ic
s,

 m
o

n
it

o
ri

n
g

.

C
P

U
, F

P
G

A
, e

m
b

e
d

d
e

d
 c

o
re

s,
 A

S
IC

S

9

Figure 1-2 illustrates the several important concepts of modern I&C systems, specifically:

 Application adaptive functionality: Configurable to different plant designs, ability to

change parameters and programming to optimize performance and safety.

 Layered Architecture: Separation of Application independent functions and Application
dependent functions.

 Intra-communication and Inter-communication functionality to facilitate integration of I&C
system operational information to other plant systems and personnel.

 Redundancy and diversity to support fail-safe operation and/or degraded operation in the
presence of faults and failures.

 Interfaces and sub-systems to support health monitoring of I&C operations and system
behavior.

 Interfaces to support operator monitoring and actions.

Digital I&C systems depicted in Figure 1-2 serve a variety of functions within NPP operations.
The generic digital I&C architecture provides mapping of function to form, and implementations
to realize the functionality. Digital I&C systems are used in NPP systems such as safety
systems, plant process control systems, monitoring systems, data communication systems, and
sensor processing systems.

The wide range of uses illustrates the importance that digital I&C systems are not just
characterized by their internal form and function, but also by their interaction context with the
environment in which they operate. Context is important. These types of systems may interact
with other systems through communication systems and may indirectly interact with other
systems through plant dynamics. Context establishes the basis for what a system is supposed
to do, and what a system is not supposed to do. Context establishes the basis for what
reasonable assumptions should be made concerning the assessment of a digital I&C system
and what relevant conclusions can be made from the assessment process. The research
described in this report attempted to keep this principle in mind as the methodology was
developed and tested.

Another overarching aspect of modern digital I&C systems (and embedded systems) is their use
of programmable elements throughout the design and implementation. Traditionally, embedded
systems were viewed from two perspectives: the software and the hardware. This view is
largely driven by the development processes that realize the functionality of the system.
Software enables the system to perform its intended functionality in the context of its
environment. Hardware provides the necessary programmability to allow software to be flexible
to different applications. In actuality, neither view by itself is realistic of real behavior. Software
does nothing without hardware to animate it. Hardware is just an organization of digital
functions and signals. The digital I&C system should be viewed from a unified perspective,
seeing them not as completely different domains but rather as an integrated system to achieve
a purpose that is more representative of the functionality that the I&C system implements. This
unified view of the I&C system is often represented at the object code level or register transfer
level (RTL) in digital I&C systems. It is here that the interactions of software and hardware take
place. This is an important concept because the failure of a hardware function can adversely
affect the functionality and reliability of the software relying upon that function. In like manner, a
design flaw in a software function or improper programming fault can produce different errors or

10

failures depending on the hardware architecture and organization. Digital I&C assessment
methodologies, therefore, should be flexible enough to allow this multi-level view of the
application.

Recent trends in digital technology advances have strengthened this integrated view to the point
where there is less distinction between hardware and software. Integrated circuit and
microelectronic capacities have increased to the point that both software processors and
custom hardware now commonly coexist on a single integrated circuit (IC) package – these
Systems on a Chip (SoC) have become very common. This is particularly true of the field-
programmable gate array (FPGA) technology in which embedded processor cores, network and
bus protocol engines, analog to digital (A/D) and digital to analog (D/A) conversion, and memory
management functions are often mapped into a single FPGA structure. FPGA and SoC
technologies are hardware that acts like software. Users can change the hardware organization
at any time during the design, development, and field operation of FPGAs to meet the changing
needs of the customers. This technology is already finding its place in digital I&C systems – as
both digital I&C systems used in this research effort employed FPGA technology.

1.8. Overview of Fault Injection

Section 3 of Volume 1 presented a detailed discourse of fault injection concepts and theories as
needed for the development of fault injection for digital I&C systems. This section presents a
brief overview of fault injection to reacquaint the reader with the principle of fault injection.

Consider the digital I&C system in Figure 1-3, which is referred to as the target system. When
fault injection is applied to the target system, the input domain corresponds to following sets: a
set of faults F taken from a class of faults “Fclass” a set of activations “A” that specifies the
domain used to functionally exercise the system; an output domain corresponding to a set of
readouts “R”, and a set of derived measures “M”. Together, the Faults, Activations, Readouts
and Measures (FARM) sets constitute the major attributes that can be used to fully characterize
fault injection:

F = faults ={Faults injected into the system}
A = input activations = {Pin = inbound communications messages, D = Inputs}
R = Readouts = {U = outputs, Y= current state, Z= global state, Pout = outbound

communication]
M = Measures = {fault coverage, fault latency, responses, etc..}

11

Figure 1-3 Fault injection model for digital I&C

Fault injection is a formal experiment based approach. For each experiment, a fault f is
selected in F and an activation trajectory a is described in A. The reactions of the system are
observed and form a readout r that fully characterizes the outcome of the experiment. An
experiment is thus characterized by the triple ordinate < f, a, r >, where the readouts, r, for each
experiment form a global set of readouts R for the test sequence and can be used to elaborate
a measure in M. A campaign is a collection of experiments to achieve the quantification of a
measure M.

Consider a test sequence of n independent fault injection experiments; in each experiment, a
point in the {F x A} space is randomly selected according to the distribution of occurrences in
{F x A} and the corresponding readouts collected. Expanding the F to include the fault space
dimensionality of time, location, value, and fault type, yields six parameters that define a fault
injection experiment:

a = the set of external inputs
= is the duration of the injected fault
t = fault occurrence time, or when the fault is injected into the system
l = fault location
v = value of the fault
fm = a specific fault type as sampled from fault classes

Figure 1-4 illustrates the basic concept of a fault injection experiment. Specifically, Figure 1-4
shows that faults from F are sampled from the fault space (discussed in Section 3.7 of Volume
1). These faults are elaborated by their fault type fm, the fault duration the fault location l,
value of the fault mask, time of occurrence t, along with the set of inputs a to characterize a set
of experiments. The fault experiments are applied to the target computer, and a set of readouts

12

(the R set) is used to derive the M set (coverage estimation) by statistical estimation. More
importantly, from a practical perspective, the parameters of the coverage equation serve as the
essential requirements in the development of any fault injection methodology or tools to support
fault injection. Fault injection frameworks of any type must address the control of these
parameters and the observable responses of a system to these parameters as they are
sampled. The following sections discuss the statistical theory behind the coverage estimation
and the dependent parameters of coverage.

Figure 1-4 Fault injection experiment

1.8.1. Overview of the Fault Injection Based Methodology

This section provides an overview of the dependability assessment methodology. Fault
injection has been extensively used in many industries to aid in the assessment of fault tolerant
system and safety critical system over the past 30 years [Benso 2002], and is widely used in the
software development and testing community for improving software quality and protection
against cyber threats. In addition, International Electrotechnical Commission (IEC) 61508
“Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems”
highly recommends the use of fault injection to determine the effects of faults and their
mitigation. Thus, fault injection as technique to aid in the dependability evaluation of safety
critical systems is not novel concept, but one of continued maturation and acceptance.

The UVA fault injection-based dependability assessment methodology was developed realizing
that a fault injection approach may serve different goals and purposes as those stated above.
Thus, the methodology was designed to be as flexible as possible to the needs of the assessor
and designer. The goal of the dependability assessment methodology described in this report is
to provide a generic, formal, systematic means of characterizing the dependability behavior of
digital I&C systems and their input/output interactions in the presence of anomalous behaviors,
faults, and failures. The goal (for all parties) is a methodology that provides practical means for
characterizing digital I&C system/plant dependability attributes that will facilitate developers in
improving V&V processes, while helping regulatory entities make informed confirmatory
decisions about licensing I&C systems for critical plant operations.

13

Figure 1-5 shows the basic conceptual framework of the fault injection based dependability
assessment process. In this depiction, the process is driven by the needs of PRA modeling
efforts to estimate more accurately parameters for PRA modeling activities. Statistical sampling
principles are used to guide the parameter estimation process. Then, representative fault
models are selected with respect to the target I&C system. After the faults are injected into the
system, the data is post-processed to produce new estimates of model parameters, and these
are instantiated back into the PRA models to enhance better prediction of the PRA models. The
methodology is described in more detail in Section 4 of Volume 1. The characteristics of each
step in the process are described in the following discussion.

14

F
ig

u
re

 1
-5

O

p
er

at
io

n
al

 v
ie

w
 o

f
th

e
fa

u
lt

 in
je

ct
io

n
 b

as
ed

 d
ep

en
d

ab
ili

ty
 a

ss
es

sm
en

t
p

ro
ce

ss

15

1.8.2. Step 0: Defining the Dependability Metrics

The assessment process begins with defining or selecting the dependability metric of interest
that serve the PRA activities. The metrics that can be used in I&C systems include but are not
limited to, system reliability, probability of coincident failure, system safety, probability of failure
on demand, mean time to system failure, mean time to unsafe system failure, and steady state
unsafe system failure. For instance, an actuation system such as a Reactor Protection System
would be more accurately characterized by probability of failure on demand, and an
instantaneous availability metric rather than a mean time to failure (MTTF) or a system reliability
metric. So, how the system is employed in the context of the plant is very important to the
selection of an appropriate metric. In the case of the RPS, it is a reactive system. A reactive
system is characterized by its ongoing interaction with its environment, continuously accepting
requests from the environment and continuously producing results [Wieringa 2003]. In reactive
systems, correctness or safeness of the reactive system is related to its behavior over time as it
interacts with its environment. Unlike functional computations, which compute a value upon
termination, reactive system or computations usually, do not terminate. If they do terminate, it is
most often due to the fact that an exception event has occurred. Example applications of
reactive systems include process control systems, actuation systems, operating systems, and
telecommunication protocols.

1.8.3. Step 1: Support for PRA Activities

Referring to Figure 1-5, the starting point in the methodology is to understand what is needed
from the PRA process. The purpose of reliability and safety assessment process is to ensure a
system will meet its reliability and safety requirements, show that risk mitigation measures
produce reliability and safety improvements, and the unreliability risk is controlled to an
acceptable level. A probabilistic safety and reliability safety assessment process usually begins
with asking three basic questions: (1) what can go wrong, (2) what is the likelihood, (3) what are
the consequences?

The PRA modeling process usually begins with defining the scope of the analysis and a set of
hazard states of interest and then models (e.g. fault trees, Markov models) are used to
characterize the behavior of the system as sequences of events/actions that could lead to the
hazard state. Often measurement based attributes that are appropriate toward informing the risk
assessment process are used to define the end state probabilities. These typically include
reliability, unreliability, safety as a function of time. In a typical PRA process there may be
several dependability attributes that are used to characterize the system risk. In digital I&C
system reliability assessments, measures such as probability of system failure, probability of
coincident failure, probability of failure on demand, mean time to system failure, mean time to
unsafe system failure, and steady state unsafe system failure are common.

The important point to make here is that PRA activities employ modeling methods like fault
trees, event trees, and Markov models to assist in the determination of risk. These models have
parameters that represent attributes of the system, such as physical failure rates, detection
capability, capability to tolerate faults, fail-safe capability, repair capability, etc… Fault injection
methods provide a means to quantitatively estimate the behavior model parameters of the
system. A behavioral model parameter is a measure of how the system behaved or responded
with respect to a stimulus (e.g. a fault or set of inputs or a disturbance or all). The important
coverage factor parameter presented in Section 3.6 of Volume 1 is a behavioral parameter in
the PRA model. Equally important is stating the assumptions the models or model parameters
make in light of incomplete knowledge of the systems. Since fault injection provides response
information that can be used to statistically estimate these parameters, the quantification of
these parameters (in a probabilistic sense) can be used to produce more accurate parameter

16

estimates for the PRA models which in turn produces more accurate risk assessment to inform
the oversight.

1.8.4. Step 2: Fault Injection by Purpose and Type

It is not uncommon to use fault injection for different purposes in order to get a complete picture
of the system’s behavior response. As indicated in Section 3, Section 3.4 of Volume 1, fault
injection is used in both validation processes of digital I&C systems and design processes of
digital I&C systems.

From a broader stance, fault injection is viewed as a measurement based process that provides
important experimental techniques for assessment and verification of fault-handling
mechanisms. It allows researchers and system designers to study how computer systems react
and behave in the presence of faults. Fault injection is used in many contexts and can serve
different purposes, such as:

 To support on-line monitoring so that systems can react in an appropriate way.

 Assess the effectiveness, i.e., fault coverage, of software and hardware implemented

fault-handling mechanisms.

 Study error propagation and error latency in order to guide the design of fault-handling

mechanisms.

 Provide evidence to support the resilience of the system to unexpected faults and

failures.

Since fault injection can be used for many purposes, is it necessary to identify as early as
possible the type of fault injection and the measurements that will be used and whether it will be
applied to a physical system or a model of the physical system. All fault injection techniques
have specific drawbacks and advantages as indicated in Section 5 of Volume 1. The
comprehensive survey and characterization of fault injection methods and techniques presented
in Section 5 of Volume 1 serve as a guide toward selecting fault injection for a target digital I&C
system.

1.8.5. Step 3: Statistical Guidance to Fault Injection

The purpose of the statistical model is to provide a formal basis for (1) conducting fault injection
experiments and (2) providing a statistical model for a estimating the measures of a fault
injection experiment, such as coverage. As developed in Section 3 and Appendix A of Volume
1, the statistical model supports four specific needs of the fault injection based dependability
assessment methodology:

 Characterize the fault injection experiment in formal statistical framework.

 Quantify and characterize the uncertainty of model parameters.

 Characterize and define the assumptions of the estimation process.

 Statistically estimate, based on the assumptions of the model and model

parameters, the numbers of observations required to estimate a parameter to a
known confidence level.

17

1.8.6. Step 4: Fault Model Selection

Digital I&C systems are subject to faults and failures from a variety of sources, and can manifest
themselves in many ways as was discussed in fault taxonomy of Section 1.7.3 of Volume 1
[Avizienis 2004]. Fault models are abstract representations of real faults. For example, single
event upset caused by a power surge or a cosmic particle strike can be modeled by the bit-flip
fault model. Fault models allow assessors to evaluate the effectiveness of fault detection,
diagnostic tests, and fault tolerance mechanisms with respect to the faults that are anticipated to
arise in the operation of a digital I&C system. Applying these fault models to I&C systems and
observing the responses is a key component of fault injection based assessment processes.
Selecting the appropriate fault model for a fault injection campaign is a crucial decision.

In Figure 1-6 are the fault classes selected to apply to the benchmark systems based on our
research on fault and failure behavior of Digital I&C systems. These fault models and their
justifications were discussed in detail in Section 4 Section 4.5 of Volume 1.

18

F
ig

u
re

 1
-6

F

au
lt

 m
o

d
el

 c
la

ss
es

 f
o

r
b

en
ch

m
ar

k
d

ig
it

al
 I&

C
 s

ys
te

m
s

19

Finally, the output of a fault model selection process should produce a set of faults that is
relevant to a particular digital I&C system, but more importantly the process of fault model
selection produces an audit or evidence trail so the assumptions, factors for determining the
fault models, can be assessed during the licensing and review activities.

After a representative set of fault models has been selected, the next step is to determine a
means for organizing and applying these faults to the digital I&C system. This activity is called
fault list generation. Generating fault lists for a fault injection experiment or campaign is a
critical activity for fault injection. A fault list is a sample set of faults taken from the fault space of
the target I&C systems. Specifically, for a single fault notation in a fault list, each entry identifies.

 The type of fault to be injected – Governed by the fault model selection.

 Where the fault is to be injected – Where the corruption is to take place with respect to

program execution behavior or component use.

 When the fault is injected – At what time the injection takes place, either relative to an

event or when a resource is in use, or randomly selected.

 How long the fault is injected – The persistence of the fault with respect to the time

domain.

 The error mask of the fault – What values represent the fault injection process with

respect to a resource in use or a component.

The fault list can be thought of as a set of directives to the fault injector apparatus. Each of the
directives is under experimental control of the experimenter. The fault list is used to instruct the
fault injection process according to a particular campaign purpose. The fault list is strongly tied
to the fault injection environment and its capabilities to emulate the faults of concern.

An important aspect of fault list generation is improving the efficiency and effectiveness of the
fault injection process. Improving the efficiency and effectiveness of fault injection is often
called error acceleration [Chillarege 2002] or more recently pre-injection analysis [Sekhar 2008;
Barbosa 2005]. Pre-injection analysis is method to guide the fault injection process to produce
more effective and efficient results.

Pre-injection analysis is defined by a set of rules that forces fault injection experiments to push
the limits of the measurement on the probability of systems failure. Section 8 of this report
presents new fault list generation methods that produce efficient and effective fault injection
results for digital I&C systems.

1.8.7. Step 5: Establishing Operational Profile and Workload

An operational profile (OP) is a quantitative representation of how a system will be used within
its use environment [Musa 1998]. It models how users interact and use the system, specifically
the occurrence probabilities of system and user modes over a range of operations.
Traditionally, it is used to generate test cases and to direct testing to the most used functions
thus the potential for improved reliability with respect to the use environment is achieved. It
associates a set of probabilities or weighting factors to the program input space and therefore
assists in the characterization of possible behaviors of the program or collection of programs
that represent a system.

20

As discussed in Section 4 of Volume 1, digital I&C systems that are real-time and reactive
operate on a deterministic time-triggered basis. The difference between an OP for general
purpose computing and a real-time OP is that general purpose OPs typically represents many
customer or user domains, while real-time OPs are specific to a particular application (user) and
its environment. In this effort, an operational profile is defined in the context of its application
specific nature (Reactor Protection System).

Real time operational profiles to be used in the fault injection experiments must be selected to
be representative of the system under various modes of operation and configuration. Digital
I&C System configurations may invoke different hardware and software modules in response to
real time demands, and it is important that the fault injection assessment include sufficient
combinations of these to ensure a thorough evaluation of their behavior in the presence of
faults.

1.8.8. Step 6: Injecting Faults into the Target System

Figure 1-7 shows the essential components of a fault injection environment. There are a
number of fault injection techniques and tools that are available to the designer for dependability
validation. Section 5 of Volume 1 provides a detailed survey, classification of the various fault
injection techniques that are applicable to digital I&C system.

Referring to Figure 1-7, the generic representation of the fault injection environment combines
the key elements of a fault injection methodology into a setting where the theory of fault injection
can be realized. In Figure 1-7, the target system is the system that the fault injection is applied
to. The target system executes tasks assigned from the application workload environment. The
application workload(s) of the system are representative programs which the target system
typically executes in its application domain. The operational profile or inputs define the input
domain for the target system with respect to the various workloads that the system may
execute. The fault library contains lists of faults which will be injected into the target machine by
the fault injector. These include faults which are judged to be representative of fault classes
that are expected to be encountered. The monitor globally keeps track of execution on the
target and initiates data collection when necessary. The data collector should be capable of
capturing the effects of faults as they propagate through the execution on the target. The
effectiveness of the data collector would determine the quality of the results obtained upon
analysis of the collected data.

21

Figure 1-7 Basic architecture of a fault injection environment

Section 5 of Volume 1 developed a set of requirements and a implementation of those
requirements for fault injection environments that are particular to the architectures of digital I&C
systems, and that satisfy the needs of the FARM model. These requirements pertain to
providing capability for automation of fault injection, and some others are concerned with ability
to represent different fault models so that a wide variety of failure modes can be tested.

Support for Representative Fault Models – An effective fault injector must be able to emulate
various fault models or fault classes so that the assessor of the dependable system can test the
fault tolerance mechanisms under the effect of various types of faults that digital I&C system
may subject to over its operational life. The ability to accommodate various fault models or fault
classes using the same fault injection environment is a valuable feature. Furthermore, the
ability to use several different fault injection techniques from a single environment certainly aids
in the overall usability of fault injection from one platform to another.

Support for Precise Fault Activation – This essential feature is related to the requirements of
the FARM model. Recall, the fault space F has three basic dimensions; (1) location of fault
activation, (2) time of fault activation, and (3) duration of fault activation. In fault injection, often
there is concern with the ability to inject a fault based on these dimensions that might be applied
to emulate a certain fault. For example, a fault may need to be injected at a random point in
time to emulate a transient fault. Or, a fault may be injected when a certain mode or input
condition or certain event occurs on a given variable. The ability to set up composite timing and
triggering constraints is an essential feature that ensures various operational modes of the
target system can be exercised effectively. Being able to precisely control the time, location,
and duration of when a fault is to be injected improves the controllability of the fault injection
process, and thus improves the repeatability of the fault injection experiments.

Support for Experiment Control – The design of experiments consists of deciding a number of
controllable parameters such as fault location, fault value, fault dependence, fault timing, and
persistence of faults. The fault injection environment must provide the capability to easily
decide these parameters thereby allowing easy setting up of experiments.

22

Support for Automation – Being able to automate fault injection is essential to be able to
collect large amounts of data so that a good deal of confidence can be placed in the parameters
that are determined during statistical estimation. A number of capabilities need to come
together to enable automation of fault injection. Some of these are described below. When
integrated into a complex microprocessor based system, the fault injector will need to
communicate with the system in order to know when to inject a fault, or to convey status
messages back to the data collection subsystem or any other part of the fault injection
environment. The fault injector must have output signals that it can issue and also input signals
that it can detect. Being able to issue and detect these signals is crucial for communication
between the target system and the fault injector at different levels. The fault injector should also
have commands that can be issued from a remote host computer to perform various tasks, such
as the ability to compile and execute command scripts to enable automatic set up of tasks to
support fault injection. These various tasks include detection of events, setting up, enabling or
disabling software or hardware breakpoints, performing memory/register corruptions, and
halting and resuming the central processor unit (CPU) through low level commands.

1.9. References

[Arlat 1993] Arlat, J, A Costes, Y Crouzet, J-C Laprie, and D Powell. "Fault Injection
and Dependability Evaluation of Fault-Tolerant Systems." IEEE Trans. on
Computers, no. 42 (1993).

[Avizienis 2004] Avizienis, A, J-C Laprie, B Randell, and C Landwehr. "Basic concepts and
taxonomy of dependable and secure computing." IEEE Transactions on
Dependable and Secure Computing, no. 1 (2004): 11-33.

[Barbosa 2005] Barbosa, R, J Vinter, P Folkesson, and J Karlsson. "Assembly-level
preinjection analysis for improving fault injection efficiency." 2005.

[Elks 2009(a)] C. Elks, B.W. Johnson, M. Reynolds. "A Perspective on Fault Injection
Methods for Nuclear Safety Related Digital I&C Systems." 6th
International Topical Meeting on Nuclear Plant Instrumentation Control
and Human Machine Interface Technology. Knoxville, TN: NPIC&HMIT,
2009(a).

[Smidts 2004] C. Smidts, M. Li. Validation of a Methodology for Assessing Software
Quality. NUREG/CR-6848, Washington, D.C.: NRC, Office of Nuclear
Regulatory Research, 2004.

[Chillarege 2002] Chillarege, R., Goswami, K., Devarakonda, M. "Experiement Illustrating
Failure Acceleration and Error Propagation in Fault-Injection." IEEE
International Symposium on Software Reliability Engineering, 2002.

[Smith 2000] D. Smith, T. DeLong, B.W. Johnson. "A Safety Assessment Methodology
for Comples Safety Critical Hardware/Software Systems." International
Topical Meeting on Nuclear Plant Instrumentation, Controls, and Human-
Machine Interface Technology. Washington, D.C., 2000.

[Barton 1990] J.H. Barton, E.W. Czech, Z.Z. Segall, D.P. Siewiorek. "Fault Injection
Experiments Using FIAT." IEEE Transactions on Computers, 1990: 575-
582.

[Benso 2003] A. Benso. Fault Injection Techniques and Tools for Embedded Systems
Reliability Evaluation, Springer, 2003. [Musa 1998] Musa, J.
Software Reliability Engineering. McGraw Hill, 1998.

[Palumbo 1986] Palumbo, D.L., Butler, R.W. "Performance Evaluation of a Software
Implemented Fault-Tolerant Processor." AIAA Journal of Guidance and
Control, vol.3, no.6, 1986: 175-185.

[Sekhar 2008] Sekhar, M. Generating Fault Lists for Efficient Fault Injection into
Processor Based I&C Systems. Charlottesville, VA: University of Virginia,
2008.

23

[Aldemir 2007] T. Aldemir, M.P. Stovsky, J. Kirschenbaum, D. Mandelli, P. Bucci, L.A.
Mangan, D.W. Miller, A. W. Fentiman, E. Ekici, S. Guarro, B.W. Johnson,
C.R. Elks, S.A. Arndt. Reliability Modeling of Digital Instrumentation and
Control Systems for Nuclear Reactor Probabilistic Risk Assessment.
Regulatory Guide NUREG/CR-6942, NRC, 2007.

[Yu 2004] Y. Yu, B.W. Johnson. "Coverage Oriented Dependability Analysis for
Safety-Critical Computer Systems." The International System Safety
Conference (ISSC). System Safety Society, 2004.

[Young 1989] Young, S.D., Elks, C.R. "Performance Evaluation of a Fault Tolerant
Processor." Proceedings of AIAA Computers in Aerospace Conference.
AIAA, 1989. 625-635.

[Wieringa 2003] Wieringa, R.J. "Design Methods for Reactive Systems, 1st ed." Morgan
Kauffman, 2003

25

2. RESEARCH METHODOLOGY

2.1. Overview

The research methodology for this report (Volume 2) consists of six main steps and is described
below:
 Identification and Selection of Appropriate fault injection methods for Benchmark

System I.

 Developing the RPS software for Benchmark System I.

 Design, development and Implementation of the universal platform independent fault

injection (UNIFI)-based fault injection environment for the Benchmark systems.

 Develop the TRACE based Operational Profile Generator Tool.

 Develop Pre-injection analysis methods for fault list generation.

 Conduct fault injection campaigns according to methodology.

 Findings, Conclusions and Recommendations.

Each of these steps will be discussed in detail in the remaining Sections of this report.

2.2. Identification and Selection of Appropriate Fault Injection
Methods for Benchmark System I

Realization and application of fault injection for digital I&C systems is a complex process of
determining what types of faults to inject into system, how to inject the faults into the system,
establish the context of the fault injection process. There are many different types of fault
injection techniques which may or may not be suitable for physical based fault injection of a real
digital I&C system. Using the survey results from Section 5 of Volume 1, knowledge of the
benchmark system critical safety processing components, and the fault models of interest, a set
of fault injection techniques are selected that are applicable to the benchmark system. The
feasibility of implementing these fault injection techniques are assessed from the perspective of
(1) the working knowledge of the system, and (2) the technical working knowledge of the digital
I&C system manufacturer. This step of the research process supports step two and five of the
assessment methodology. This step in the research process also helped narrow the best
candidates for fault injection for not only the benchmark systems. The result of this step is a set
of candidate fault injection techniques for the benchmark system.

2.3. Development of the RPS Application

The UVA research team along with the NRC technical manager selected a RPS multi-
dimensional trip function that uses a number of reactor variables. The RPS function that was
developed for this research is similar to the function used in [Smidt 2004], in that it is a reduced
model. All of the typical reactor measurements for the trip function were not used and
integrated as in a NPP system. The RPS function used in this research used three process
variable measurements: reactor coolant system flow, hot leg pressure, and steam generator
pressure. These reactor process variables are monitored to prevent power operation in an off-
nominal basis as would be in an event such as a Loss of Coolant Accident (LOCA).

26

The application for both systems was modeled on the basis of a typical nuclear power industry
protection system trip function. The RPS function was developed using the software
development tools and environment for the benchmark system.

The purpose of this work was aimed at developing fault injection methodology for digital I&C
systems, and not to produce high quality, high assurance software for the RPS function as
would be typically done for licensed digital I&C system. The RPS was developed using the
function block oriented auto code generation tools from the vendors of the benchmark systems
which are qualified to produce code compliant with the NRC standards.

2.4. Design and Development of the Fault Injection Environment for
Benchmark System

In order to provide a systematic process of conducting fault injection campaigns that would be
representative of a fault injection testing environment found in industry, a platform independent
fault injection environment was developed to implement the methodology.

Most fault injection tools have been developed with a specific fault injection technique in mind
targeting a specific system, and using a custom designed user interface. Extending such tools
with new fault injection techniques, or porting the tool to new target systems is usually a
cumbersome and time-consuming process. Since one of the objectives in this research was to
apply fault injection to digital I&C systems of the type found in NPP operations, the need for a
flexible and portable fault injection environment was a requirement for efficient application of the
UVA fault injection based dependability assessment methodology. Most importantly, the work
on researching and developing appropriate fault injection techniques and environments for
digital I&C systems produced a body of work that the NRC and the nuclear industry can use to
establish a basis for the development and standardization of fault injection. The work presented
in this Section has as its aim to explore, develop and prototype such tools to provide a better
understanding of how physical fault injection can be effectively and efficiently deployed to
contemporary digital I&C systems.

2.5. Development of the TRACE-based Operational Profile (TOP)
Generator Tool.

Context is important in fault injection. For a fault injection based assessment methodology, the
operational profiles must represent the input conditions and system interactions that can occur
not only nominal operations, but also in off-nominal operations and more importantly during
“accident” event scenarios. Gathering profile real plant data across all of these domains of
operations is challenging task. Not all plants in operation have experienced accident events.
Data may be limited due to proprietary sensitivities. In order to provide a diverse and
representative set of operational profiles for the benchmark systems, the use of high fidelity
NPP simulator tools to generate nominal, off-nominal, and accident event profiles is a most
promising way forward. The challenges in this approach are (1) determining how to integrate
the thermo-hydraulic modeling tools like TRACE [Commission 2011] into the fault injection
environment to act as operational profile generator for the target system, and (2) how to
coordinate the selection of the operational profiles to the fault injection process.

This task developed a preliminary tool based on the TRACE thermo-hydraulic NPP modeling
simulator to extract operational profiles from model runs. TRACE is a high-fidelity simulator
developed for the NRC that is capable of solving complex fluid dynamics and heat transfer
problems in components typical of a nuclear power plant – e.g. pipes, valves, boilers, pumps,
etc. TRACE models are developed to represent real-life reactor systems and thus are able to
capture important interactions between the various systems within the plants. The TOP tool

27

parses input files from TRACE and produces a set of process variables that are normally used
as sensor inputs to digital I&C system. These sensor inputs are organized in profile file to
represent an operational profile for the digital I&C system. The profile file is then used as input
to the sensor acquisition modules of the digital I&C system via the I/O data acquisition of the
fault injection environment.

2.6. Development of Pre-Fault Injection Analysis Techniques to
Support Fault List Generation

The fault list of fault injection process can be thought of as a set of directives to the fault injector
apparatus. Each of the directives is under experimental control of the experimenter. The fault
list is used to instruct the fault injection process according to a particular campaign purpose.
The fault list is strongly tied to the fault injection environment and its capabilities to emulate the
faults of concern.

An important aspect of fault list generation is improving the efficiency and effectiveness of the
fault injection process. Improving the efficiency and effectiveness of fault injection is often
called error acceleration [Chillarege 2002] or more recently pre-injection analysis [Sekhar 2008;
Barbosa 2005]. Pre-injection analysis is method to guide the fault injection process to produce
more effective and efficient results.

Pre-injection analysis is a means to reduce or eliminate the “no-response” and the long fault
latency problem associated with fault injection. Being a statistical experiment, fault injection
testing may require a large number of experiments to be conducted in order to guarantee
statistically significant results. Thus, efficiency of the fault injection testing is important.

With random fault injection experiments (e.g. with no regard to when and where a fault is
injected), a large fraction (up to 90%) of fault injection experiments may have no-response
outcomes [Sekhar 2008; Barbosa 2005].

A large percentage of these “no-response” outcomes resulting from fault injections are due to
non-use of the corrupted data by the executing program. For example, a randomly generated
fault could be injected into a memory location that is not used by an application, or could be
injected into a processor register that is not in use by the application at the time of fault injection.
These instances in which the system would not respond to an injected fault do not convey
meaningful information about the fault tolerance capabilities of the system under test. Since
time has an associated cost value, if the efficiency of the fault injection campaign is low, then
the cost of the fault injection campaign is increased. This research task develops a pre-fault
injection analysis method for physical fault injection to improve the efficiency and effectiveness
of fault injection.

2.7. Conduct Fault Injection Campaigns on Benchmark System I

This research step applied the UVA fault injection-based dependability assessment
methodology to the benchmark system. Using the fault injection environment and the fault
injection techniques developed for Benchmark System I, a number of fault injection experiment
campaigns were conducted to assess the capability of the methodology to support PRA
modeling activities and supply system dependability information to the regulatory review of
digital I&C systems. The fault injection experiments are conducted using operational profiles
generated from the TRACE based operational profile generation tool. The fault injection was
applied to RPS application memory locations, operating system memory locations, registers in
the CPU of the processing module, dual port memory of the CPU of the processing module, and
to the X-bus data and token protocol. Approximately 8,000 fault injections were conducted on

28

processing modules, and 10,000 fault injections on the x-bus protocol. Statistical estimation of
parameters of interest include fault coverage factor, latency in fault detection, unknown error
codes, faulted token times of X-bus, and detection of corrupted data packets on X-bus.

2.8. Conclusions, and Recommendations

The final step in the research methodology for this report is to reflect on the overall research
effort and findings with respect to the objectives of this project; specifically, the challenges that
might impede or limit the use of fault injection in contemporary digital I&C systems. The overall
utility of the methodology was assessed to provide information on the digital I&C PRA
assessment process. Also, the feasibility of fault injection by the digital I&C systems community
was assessed as part of the overall V&V effort.

2.9. References

[Barbosa 2005] Barbosa, R, J Vinter, P Folkesson, and J Karlsson. "Assembly-level
preinjection analysis for improving fault injection efficiency." 2005.

[Smidts 2004] C. Smidts, M. Li. Validation of a Methodology for Assessing Software
Quality. NUREG/CR-6848, Washington, D.C.: NRC, Office of Nuclear
Regulatory Research, 2004.

[Chillarege 2002] Chillarege, R., Goswami, K., Devarakonda, M. "Experiement Illustrating
Failure Acceleration and Error Propagation in Fault-Injection." IEEE
International Symposium on Software Reliability Engineering, 2002.

[Commission 2001] Commission, U.S. Nuclear Regulatory. Computer Codes. April 2011.
http://www.nrc.gov/about-nrc/regulatory/research/comp-codes.html
(accessed 2011).

[Sekhar 2008] Sekhar, M. Generating Fault Lists for Efficient Fault Injection into
Processor Based I&C Systems. Charlottesville, VA: University of Virginia,
2008.

29

3. DESCRIPTION OF BENCHMARK SYSTEM I AND RPS
CONFIGURATION

3.1. Introduction

The last Section of Volume 1 introduced by way of overview the architectural features of the
benchmark systems use in this study. This Section supplements the overview Section in
volume with additional information on the operation of Benchmark System I, in particular the
self-testing and fault tolerance features of the system. These features are noteworthy of
discussion because they are explicitly tested by the developed and implemented fault injection
methods.

3.2. Benchmark System I

Benchmark System I is a safety grade qualified digital I&C system specifically developed for
safety or high reliability functions in nuclear facilities. The benchmark system received from the
NRC for this study is a scaled version of a typical 4 division RPS. Due to non-disclosure and
proprietary agreements the make and model of the target system cannot be disclosed. The
salient features of the target system are its ability to be adaptable to plant-specific requirements,
with almost varying degrees of redundancy. Its scalability permits development of solutions for
a spectrum of safety-related tasks within the NPP systems. Typical applications include RPS
and Engineered Safety Features Actuation System (ESFAS) functions.

The benchmark systems used in this effort were testing platforms to exercise the methodology.
In that regard the benchmark systems represent the complexity of RPS processing and fault
tolerance from both a hardware and software perspective. Typical in-plant RPS digital I&C
systems are considerably more enhanced in their fault tolerance and diversity attributes than the
representative benchmark systems used in this study. Therefore, results of this study are
intended to be a reflection on the ability of the methodology to accommodate fault injection on
digital I&C systems, and not be construed as a result on the performance and suitability of the
benchmark systems for RPS applications.

3.2.1. Architecture and System Description of Benchmark System I

3.2.1.1. Overview

Figure 3-1 shows the architecture of the Benchmark System I. The system is comprised of 4
separate processors each acting as a processing channels or division for the RPS application.
Data exchange via fiber-optic bus systems distributes information to each processing channel
such as sensor values, fault messages, and process parameter messages. The Bus protocol
for the data exchange network is an IEC standard supervisory control and data acquisition
(SCADA) protocol which will be referred to as X-bus. The inter-channel X-bus network is
usually configured as a point-to-point topology, but can be configured as a linear bus or ring
topologies. In our configuration, it was configured as a point-to-point. Communication between
channels on X-bus is deterministically upper bounded by the synchronous circulating token
nature of the X-bus protocol, meaning there is an upper bound for message delivery between
processing channels. However, the benchmark system as a whole is not clock synchronized
among the processing channels; processing channels operate independently and
asynchronously from each other in their execution of a task. The Runtime operating system run
time environment (RTE) operates as a deterministic static scheduler for application tasks with
several prioritized rates groups. All processing within a rate group is bounded by the cycle time
of the rate group. Because of the repetitive cyclic nature of the processing, the execution time
skew between processing channels is bounded.

30

Figure 3-1 Benchmark System I architecture

Each channel typically has its own I/O. This includes multiple modules of digital input, output,
analog input, and analog output. Fault masking features for the I/O sub-systems include
detection of invalid signals due to known failure modes to improve the availability of the safety
I&C functions. These fault masking features of the system include majority voting schemes
(typically 2-out-of-4 for binary signals and 2nd minimum/2nd maximum selection for analog
signals).

3.2.1.2. Software

The Benchmark System I software is comprised of (1) off-line software development and (2) on-
line software to support task reliable execution and fault tolerance capability. The off-line code
development environment designs application from a function diagram editor. Function
Diagrams are built by selecting and connecting the appropriate function block modules available
from a function block library. For each processing module the application software code is
compiled and auto generated from this specification (function diagram modules) and then linked
to the RTE system software resulting in a set of real-time tasks for the application.

The interface between application functions (function diagram modules) and the system
software is generated by the software development code generator tool. It automatically

31

creates the call and data interface to the function diagram modules and describes the I/O and
communication activities which have to be performed by the processing module.

The design of the processing cycle is one of the key preconditions for ensuring deterministic
system behavior by maintaining strictly cyclic operation of each processor in a distributed I&C
system independently of the status of the plant process. Each processor module runs three
tasks being scheduled by RTE on the basis of absolute task priorities:

Priority 1 (highest) – Cycle task: The cycle task operates with a predefined, constant cycle
time. It handles all communication via messages, the input and output signals, and the cyclic
processing of the application functions. Having the highest priority of all three tasks, it ensures
that the cyclic operation of the application functions is always completed within the specified
cycle time.

Priority 2 – Service task: The service task processes service commands received from the
Service Unit. When no service commands are pending it is suspended. It is reactivated by the
cycle task each time a new service message has been received. After processing of the service
message the service task is suspended again. There are two types of service requests which
can be received from the service unit:

Type 1: Such service requests are fulfilled without interruption cyclic processing, such
as reading and acknowledgement of system messages, tracing of signal data, on-line
modification of operation parameters.

Type 2: Requests for diagnostic data for fault diagnosis of the CPU or the performance
of tests which require the processor to be in the special operation modes TEST or
DIAGNOSIS.

Priority 3 (lowest) – Self-test task: The self-test task has the lowest priority of all tasks and is
only processed when the service task and the cycle task are not active. The self-test task
continuously performs tests of all relevant hardware components on the processor board (RAM-
test, ROM-checksums, watchdog-test, etc.). This endless loop of tests consumes all “idle” time
of the processor.

Through above separation of functionality approach, the interactions between application,
runtime executive, and system services level becomes more structured compared to a
combination of all the functionality within a single task.

3.2.1.3. Fault Tolerance and Self-Testing Features

The fault tolerance features of the target system are both application independent and
application dependent. Depending on the degree of redundancy needed for an application, the
user can configure the system as an n out of m voting scheme. Where n is the number of
channels that are in agreement with all other channels, and m are the total number of channels
in the system. In addition to these application dependent fault tolerance features, the system
executes a number of application independent fault detection mechanisms, such as runtime
diagnostics, self-tests in the background of the RTE and at start up to detect latent faults in the
system.

The basic self-monitoring and self-test features of Benchmark System I are:

 Hardware is tested using extensive self-tests and is monitored (at start-up as well as

cyclically)

32

 The processing modules and the I/O modules monitor the elapsed execution time of
their cyclic programs and signal an excessive computation time.

 An independent hardware watchdog monitors cyclic operation of every processor signals

a failure independently from the monitored processor.

 Hardware circuitry, independent from the microprocessor and its software, controls the

shutdown of the outputs in case of failure.

 Processing modules and I/O modules observe the communication between

communication members and check the integrity and validity of received data.

 In case failures are detected, the communication processor marks affected messages

and signals as faulty which can be used by application level error detection mechanisms
to enforce fail-safe operation.

Figure 3-2 shows the typical end-to-end data processing with respect to the tolerance and self-
testing functions that are engineered in Benchmark System I. To begin with, data inputs from
the plant are acquired the input processing modules. The Input/Output modules are typically
mapped to a processing module on a one to one basis. The input module performs a number of
diagnostics and self-tests to ensure the integrity of the incoming data. The self-tests are
partially implemented by the firmware (FW) executed in the modules CPU, and partially by the
support hardware onboard the I/O modules, independent from CPU. All self-tests are executed
in cyclically manner, and at start-up.

33

F
ig

u
re

 3
-2

B

en
ch

m
ar

k
 S

ys
te

m
 I

 p
ro

ce
ss

in
g

34

When an internal failure is detected by self-tests affecting the I/O module, the module enters
error operation/status mode during which all outputs are switched off (presumed fail-safe state).
When an external fault is detected (such as overload or short circuit or open circuit) by the I/O
module, the module continues operation but indicates the signals affected by the fault and
marks them with the ERROR status. This ERROR status flag can be used by the application
software in the processing module to exclude the affected signal from further processing.

Referring to Figure 3-2, the next step of data processing occurs at the processing module. The
processing module executes the application software, in the case the RPS software. The
processor self-tests are comprised of two parts. The first set of self-tests are executed once
during every boot-up sequence, and the second set of self-tests are cyclical -processed
repeatedly during normal operation of the processor module. The cyclic self-tests are
performed in background mode in the RTE. The cyclic self-tests are executed repeatedly during
the cyclic processing as an RTE task with the lowest priority. Thus, the RTE schedules the
cyclic self-tests only if no other task with higher priority is pending (like application tasks and
service commands). If the cyclic self-test detects an error, it activates the exception-handler
and passes error information to it. The exception-handler then executes a reset or shutdown of
the processor module.

In addition to the onboard self-tests, the processor modules are equipped with an independent
hardware watchdog timer. The monitoring time of the hardware watchdog is defined by the
cycle time of the runtime environment. This time is typically set to (RTE cycle time) + 50ms, but
can be changed according to the application requirements. The hardware watchdog must be
re-triggered by the RTE system software running on the processor before the countdown time
expires. If the software fails to do so, a timeout error is assumed and the hardwired WDT signal
goes to “low”. This hardware signal is used to signal a processor module failure, and can be
used to switch off the I/O modules’ power supply to ensure fail-safe behavior of the outputs.

Intra channel communication between processors is performed cyclically with a fixed
communication cycle time Tcom. The fixed communication cycle time is bounded by the token
rotation time of the X-bus protocol and is the same for all processing modules in the system. X-
bus messages are sent once every communication cycle. The receiver of an X-bus message
performs a series of checks on communication message, these include message header check,
message age, cyclic redundancy check (CRC), destination and address checks, frame checks.
These checks are described below.

Message Header Check The message header check process checks the following for every
message:

 sender ID and address
 receiver ID and address
 message ID
 message type
 message length
 frame check

This information is checked based on the configuration data generated by the code-generator.

Message Age Monitoring The message age is monitored by the RTE cycle counter, which is
included by the sender in every sent message. In case one message does not arrive in time,
the values of the message of the previous cycle are allowed to be reused. If for two consecutive
communication cycles no new and valid message has been received in time, the data included
in the message are marked with the ERROR-status.

35

Data Message CRC Every data message is checked with a 16 bit Commite' Consultatif
International de Telegraphique et Telephonique (CCITT) CRC. The sending processor
calculates this CRC and appends it to the message packet. The receiving processor
recalculates the CRC for the received message data and compares the two CRCs.

If one of the above listed checks fails, the affected data are marked with the ERROR-status. An
error message is issued and sent to the monitor service-unit. These checks are performed by
the RTE on processing modules.

The importance of these self-tests, diagnostics, error detection mechanisms, and fault tolerance
features with respect to fault injection are that they define the core defenses of the benchmark
system with respect to expected fault classes. This can be best illustrated by Figure 3-3, where
each error detection mechanism defines a barrier to error propagation. It is at (or near) the error
detection mechanisms where fault injection tests should be applied to the processing functions
of Benchmark System I. Errors that are properly detected and mitigated at each stage of the
processing pipeline are said to be covered errors. Those that are not properly detected or
mitigated are candidates for uncovered or improperly mitigated errors.

36

F
ig

u
re

 3
-3

B

en
ch

m
ar

k
 S

ys
te

m
 I

fa
u

lt
 t

o
le

ra
n

t
fe

at
u

re
s

O
ut

pu
t

Pr
oc

es
si

ng

Lo
ca

l E
rr

or

D
et

ec
tio

n
an

d
Se

lf
te

st
s

In
pu

t
Pr

oc
es

si
ng

Lo
ca

l E
rr

or

D
et

ec
tio

n
an

d
Se

lf
te

st
s

Co
nt

ro
l

Pr
oc

es
si

ng

Lo
ca

l E
rr

or

D
et

ec
tio

n
an

d
Se

lf
te

st
s

Co
m

m
Pr

oc
es

si
ng

Lo
ca

l E
rr

or

D
et

ec
tio

n
an

d
Se

lf
te

st
s

In
pu

ts

Si
gn

al
ed

 e
rr

or
 s

ta
tu

s
an

d
co

nt
ro

l
Si

gn
al

ed
 e

rr
or

 s
ta

tu
s

an
d

co
nt

ro
l

Si
gn

al
ed

 e
rr

or
 s

ta
tu

s
an

d
co

nt
ro

l
Si

gn
al

ed
 e

rr
or

 s
ta

tu
s

an
d

co
nt

ro
l

Fa
il

sa
fe

ou

tp
ut

s

Te
st

 L
oc

at
io

ns
 fo

r
Fa

ul
t I

nj
ec

tio
n

37

3.2.1.4. Monitoring Interface

External communication to non-safety monitoring stations for purposes of monitoring the
operation of the application (e.g. RPS) is facilitated by a special interface called the Monitor
Interface. The Monitor Interface (MI) is responsible for gathering system level diagnostic health
messages, application level messages from the Benchmark I System and forwarding this
information to plant and operator monitoring stations. Referring to Figure 3-2 and Figure 3-3,
each stage of processing is associated with a collection of error detection mechanisms. Any
detected error at any stage of processing results in a mitigation response, and a set of error
messages for that error condition are sent to the monitor interface module which in turn
forwards the messages to an operator work station. In addition, the Monitor Interface serves as
boundary between the safety functions onboard Benchmark System I and the non-safety
interface functions that reside outside Benchmark System I. The MI and the messaging
protocol is designed to be non-interfering with respect to the safety functions operating on
Benchmark System I.

3.2.1.5. RPS Configuration for Benchmark System I

The RPS software development environment for Benchmark System I starts with the
specification of an I&C system comprising function diagrams and hardware diagrams and is
created interactively using a function block editor. This tool performs a series of consistency
and plausibility checks on the diagrams created. This type of software compositional process
typically reduces the possibilities of error in the plant-specific I&C specification. The concept
behind the engineering of I&C functions with these function block code generator systems is
based on the graphical "interconnection" of function blocks to produce I&C functions in the form
of function diagrams. A graphical specification language is used for this which results in the
following:

 A defined set of libraries containing standardized (project-independent) function blocks

with specified and tested functionality.

 Implementation of the intended I&C functions by means of interconnection of these

blocks (generation of function diagrams).

 The block functions can be controlled through specific parameter settings

(parameterization). The function block diagrams are a standard in the nuclear I&C
industry.

The software development provides a number of engineering functions in support of the overall
process of creating, testing and verifying the operational functionality of the developed I&C
code, including:

 Specification of I&C functions and hardware topology,
 Verification of the system specification
 Automatic code generation from I&C system representation
 Verification of generated code
 Validation of I&C functions in a simulation environment
 Compilation and linking of the software for the target system
 Loading the software onto the target system
 Testing the I&C functions on the target system
 Support for Diagnostics and system configuration

38

Using the software development and testing environment of Benchmark System I, the RPS
configuration for Benchmark System I was configured as a two out of four voting system for
three monitored reactor process signals. These signals were hot leg pressure, coolant flow, and
steam generator pressure. This means that if any two channels indicate that any of the
measured sensor variables from the reactor are out of safety range, the Trip Logic will initiate a
shutdown command and signal to the reactor to shut down. If a channel becomes faulty and it
is detected as so, Benchmark I System gracefully degrades to a two out of three voting scheme
to allow continued operation in a limited capacity while maintenance and service can perform
off-line diagnostics and repair of the failed channel. Figure 3-4 shows the basic processing with
respect to two of the measured RPS signals.

Figure 3-4 RPS configuration for Benchmark System I

X‐Bus X‐bus

Analog
In FSFA

2.Max

2.Max

2.Max

=

=

=

=

2 out of
4

2 out of
4

2 out of
4

2 out of
4

1 4

4

4

4

4

4

4

4

1
2.Max

>=
2

OR

LabView
Function

Coolant Flow
Trip

Channel A ‐Coolant Flow

Channel B – Coolant Flow

Channel C – Coolant Flow

Channel D – Coolant Flow

Channel A Trip

Channel B Trip

Channel C Trip

Channel D Trip

Analog
In FSFA

2.Max

2.Max

2.Max

=

=

=

=

2 out of
4

2 out of
4

2 out of
4

2 out of
4

1 4

4

4

4

4

4

4

4

1
2.Max

>=
2

OR

LabView
Function

Hot leg Pressure
Trip

Channel A – Hot Leg
Pressure

Channel B – Hot leg
Pressure

Channel C – Hot Leg
Pressure

Channel D – Hot Leg
Pressure

Channel A Trip

Channel B Trip

Channel C Trip

Channel D Trip

Digital
Outputs

39

Each channel gathers four redundant reactor sensor variables for each of the monitored
processes: hot leg pressure and coolant flow. These values are acquired by the analog input
modules converted to digital signal representation, and are distributed to all other channels (e.g.
channels A, B, C, and D) by X-bus. The sensor values are preprocessed by a 2nd min/max
selection function to bound the influence of any outlier sensor values. The 2nd max takes the
second highest value recorded from the group of sensor readings. The 2nd min takes the second
lowest reading from a group of sensors.

The output of the 2nd min/max function is then provided to a set point comparison function where
the conditioned sensor values are compared to maximum and minimum set points for the safe
operation of the reactor vessel with respect to the process variable. The output of the set point
function is a Boolean – Reactor trip or no-trip. The outputs of the set point functions are then
sent to the two out four comparator/voter block. If two or more trip indications have been noted,
the two out of four function issues a trip signal. The channel trips are sent to the Labview where
they are monitored. If two or more channel trips are indicated then the RPS will initiate a trip to
the reactor. In a real in-plant RPS, the channel trip signals of the safety I&C functions are
distributed to an additional voting process, which consists of the two computers each running as
master/checker pair.

The Benchmark I System in this research did not have this additional 2nd min/max fault
tolerance capability. Instead this functionality was emulated in Labview with a simple threshold
OR gate.

41

4. IDENTIFICATION AND SELECTION OF FAULT INJECTION
TECHNIQUES FOR BENCHMARK SYSTEM I

4.1. Introduction

This Section describes identification and selection of fault injection techniques for Benchmark
System I. The research and development process for this task is as follows

 Identify from Section 5 of Volume I appropriate fault injection techniques for Benchmark

System I.

 Determine the feasibility of implementing the identified fault injection given based on
time, effort, and vendor support required to implement the technique.

 Select the appropriate fault injection techniques.

4.2. Identification of Fault Injection Methods for Benchmark System I

The previous Section noted in Figure 3-3 the indication points where fault injection should be
considered with respect to Benchmark System I. These points included input processing (both
analog and digital), the processor unit, X-bus communication module, and the output processing
module (digital). Each of these modules instrument a number of self-tests and error detection
functions to support high levels of fault detection and tolerance.

4.2.1. Input and Output Processing Modules

4.2.1.1. Overview

The input processing modules for Benchmark System I consist of (1) analog input acquisition
module, and (2) a digital input acquisition input module. The analog input modules acquire
analog process signals and convert them into a numerical format that can be processed by the
processing module. With an analog input module, the signals of up to eight input channels in
the case of differential measurement or up to sixteen input channels in the case of
measurements with reference to ground can be acquired.

The process signals are applied to the front connector of the analog module. Signal processing
of the acquired analog signals are accomplished by an onboard micro-controller. The analog
process signals are multiplexed to the input of a programmable amplifier where they are
amplified before being inputted to the A/D converter. The A/D converter samples the analog
signals and converts the signals to digital representation. The binary output values of this
analog-to-digital converter are transmitted to a signal buffer and stored there.

The onboard micro-controller of the analog input processing module coordinates acquisitions of
the A/D circuitry, the storage of the digitized signals, and the requests for the digitized inputs
values from the processing module. In addition to these processing functions, the micro-
controller runs self-tests to determine if errors occurred during the signal conversion process.

The digital input module is considerably simpler in design than analog processing module. The
digital input modules serve for the acquisition of 32 binary process signals with signal levels of
24 VDC. The input circuits of the S430 and the S431 suppress interferences and convert the
input signals into the internal signal level (5VDC) of the module. The acquired signals can then
be read by the processing module via the backplane bus. An onboard microcontroller controls

42

the process of storing the digital values in a temporary input buffer, and then coordinating the
transfer to the processing module.

The digital output module is used in the benchmark system for the output of control commands
to actuators, motors, pumps, etc. The outputs are divided into two electrically isolated sections,
each of which has two channel groups and each of these has eight outputs. The supply voltage
is conducted separately for each range. When the Module receives a "output inhibit” command
from the processing module, then the outputs are set to zero. The digital output module uses a
similar micro-controller as the input processing modules to coordinate data processing actions
between the digital output processing module and processing module. As such, the same fault
injection method findings that were indicated for the input processing modules hold for the
digital output processing module.

4.2.1.2. Identifying and Selecting Fault Injection Techniques for the Input/Output
Processing Modules

A number of key processing functions are involved in the input/output processing, as follows:

 Multiplexing of the analog input signals
 A/D conversion process of analog signals
 Coordination of the A/D conversion by the microcontroller
 Storage of the digitized signals
 Transfer of the digitized signals to the processing module
 Self-tests
 Transfer of digital output commands to the digital output processing module.

Faults can occur at each of these input and output processing functions. The key component in
all I/O modules is the onboard micro-controller. It is responsible for coordinating the actions of
the signal conversions, signals processing, data transfer, and self-tests. Therefore, the micro-
controller in all I/O modules were identified as a component for fault injection.

The analog input processing module has no user accessible ports (e.g. serial or Ethernet) that
are desired to allow access to the operations of the micro-controller and a control path for fault
injection. The same is true for both the digital input and output processing module. The lack of
user accessible input port on all modules rules out fault injection techniques like software
implemented fault injection (SWIFI), which require a port to interface to the fault injection
exception handlers that execute on the target processor.

The next alternative examined was joint test action group (JTAG) boundary scan fault injection.
JTAG boundary scan is an Institute of Electrical and Electronics Engineers (IEEE) testing
standard that allows the boundary of a chip (e.g. the pins) to be tested for faults. JTAG fault
injection involves invoking the JTAG serial port of device and loading corruption values into the
boundary registers of the device. There was no reference of JTAG test ports in the user
manuals; however what appeared to be JTAG test ports were noted on both boards. W vendor
was questioned about these ports, the vendor stated that the ports were proprietary test ports
for which they could not share information.

Another option considered was on-chip debugger (OCD) or in-circuit emulator (ICE) machine
based fault injection. With ICE machine fault injection the micro-controller is removed from the
IC socket on the circuit board and replace with a CPU pod that has the same processor as the
removed micro-controller. The CPU pod is controlled by an interactive debugger that resides on
a host machine. With the interactive debugger and the CPU pod it is possible to perform fault
injection in a similar manner as was done on the digital feedwater control system (DFWCS)

43

reported in Section 7 of Volume 1. The microcontroller used onboard the input and output
processing modules did not have full OCD support. However, ICE machine tools were available
for the micro-controller but they were beyond are allocated budgetary costs.

Unfortunately, the fault injection techniques identified for the input/output processing module
could not be realized by the research effort due to (1) inability to gain access to vendor sensitive
information, or (2) time and cost constraints of implementing ICE based fault injection.
Nonetheless, the techniques that were identified can be investigated by the vendors for
suitability and feasibility. To partially compensate for lack of true fault injection capability at the
input processing module level, the digitized input values from the analog processing module
were intended to be corrupted as they are received by the processor module. These fault
corruptions would only emulate faults that occur during storage and transfer of the digitize
signals from the input processing module to the processor module.

In addition, through the UNIFI fault injection tool the input signals to the benchmark system can
be corrupted with various environmental disturbance functions such as Gaussian noise and loss
of signal.

4.2.2. Processing Modules

The processing module in Benchmark System I is an x86 32 bit CPU. It is responsible for
executing the application code for the RPS functions. The processing module is available in two
variants: an AMD processor and a Pentium processor. The key functions of the processing
module are as follows:

 Scheduling and executing all system start up self-tests
 Executing all application I&C functions
 Coordinating data transfer to and from all input and output processing modules
 Interfacing to the X-bus inter-processor communications module
 Executing cyclic self-testing

The processing modules are the heart of the benchmark system and, as such, considerable
attention was directed toward identifying appropriate fault injection techniques. Section 3
describes the fault tolerance, software, and self-testing capabilities of the benchmark system.
Many of these features rely on the capabilities of the processor module to operate effectively.

4.2.2.1. Identifying and Selecting Fault Injection Techniques for the Processing
Modules

An effective fault injector must to be able to emulate various fault models or fault classes so that
the assessor can test the fault tolerance mechanisms under the effect of various types of faults
a digital I&C system may be subject to over its operational life. The ability to accommodate
various fault models or fault classes using the same fault injection environment is a valuable
feature. Furthermore, the ability to use several different fault injection techniques from a single
environment aids in the overall usability of fault injection from one system to another.

The survey results in Section 5 of Volume 1 and knowledge of the benchmark system for
processor based fault injection were used to identify several fault injection techniques that could
be successful on Benchmark System I. These techniques were selected based on the following
criteria:

44

 Applicability to the benchmark system – Techniques can be accommodated by the
benchmark system as it is configured.

 Controllability – Techniques that allow precise control over the attributes of fault model

parameters; time, value and location.

 Support for a variety of fault models – The faults models listed in Figure 1-6 of Section 1

serve as the fault model objective for fault injection. These fault classes include: (1)
hardware based faults including transient and permanent faults, (2) interaction faults
including communication faults and configuration faults, and (3) development-based
faults including faults in software I&C based functions and operating system-based
functions. Techniques that can maximally support these fault classes are favored.

 Support for Precise Fault Activation - This essential feature is related to the

requirements of the FARM model. Being able to precisely control the time, location, and
duration of when a fault is to be injected improves the controllability of the fault injection
process, and thus improves the repeatability of the fault injection experiments.

Based on the above criteria, three candidate fault injection techniques for Benchmark System I
were identified:

 JTAG-based fault Injection
 ICE machine-based fault injection
 SWIFI-based fault injection

Each of these techniques has its advantages and limitations; the aim was to use several of
these techniques jointly in a complementary fashion to maximize the reachability and
effectiveness of the fault injection studies. Each of these techniques are discussed in the
following sections.

4.3. IEEE 1149.1 JTAG-based Fault Injection

Most current integrated circuits have external input and output pins linked together in a set
called the Boundary Scan Chain (BSC). The Joint Test Action Group (JTAG) was designed to
be able to access BSC by means of a virtual register (Boundary Register) connected to its input
and output pins. It is possible to alter the contents of BSC and hence alter the current signals
on the pin-outs by serially shifting in data into the Boundary Register. At the same time, bits
from the Boundary Register are serially shifted out to the output pin of the JTAG controller.
Because of the common occurrence of a JTAG port on the current processors and IC devices,
there has been fairly extensive work done on attempting to perform fault injections via this
technique.

One of the first works on this issue claimed that the IEEE 1149.1 (JTAG) standard, when used
as a standalone technique by using the BSC architecture, cannot handle the requirements for a
successful fault injection campaign and would require additional logic and functionality for
satisfying performance requirements and accessibility of internal components [Santos 2003].

However, at around the same time, researchers at Chalmers University of Technology (CUT)
have shown that Scan Chain Implemented Fault Injection (SCIFI) performed by accessing built
in logic specified by IEEE 1149.1 can be used for dependability validation of embedded
computer systems and improves the controllability, reachability and observability of the system
over standard hardware fault injection techniques [Folkesson 2003]. Moreover, CUT has shown

45

that the SCIFI technique provides significantly faster performance than software-implemented
fault injection.

Since then, researchers have performed validation of various systems by performing fault
injections based on accessing the capabilities of JTAG interface. The tests were performed
either by connecting the fault injector to a backplane of the system [Chakraborty 2007], or by
creating a switch module for accessing all of the components [VanTreuren 2007].
Unfortunately, both of these fault injection campaigns required additional hardware to be
introduced into the system to perform the fault injections. This problem was solved in [Pignol
2007] where an off-the-shelf JTAG was used in conjunction with software running on a host
computer. The fault injection campaign was successful, but it was noted that real-time
operation of the software was problematic and could lead to significant overhead. In addition,
the experiments utilized intrusive software running on the target system. Most recent solutions
for performing JTAG fault injections employ an FPGA-based fault injector that was programmed
to perform experiments with a predefined set of faults [Portela-Garcia 2007]. This solution was
unobtrusive as it did not require any additional hardware on the target system and the
performance was not degraded by including a host computer as the driver. However,
preprogramming an FPGA with the fault injection sequence deemed this solution to be specific
to one campaign. Also, performance in fault injection with target real-time systems could not be
established.

To summarize this review of JTAG fault injection systems:

Advantages:

 It has been shown that it is possible to perform successful fault injection campaigns by

using the functionality provided by a JTAG on-chip device.

 Can provide a means for injecting faults internal to integrated circuits, processors,
FPGAs and application specific integrated circuits (ASICs) when other techniques are
difficult to implement.

 Usually provides good controllability and observability.

Disadvantages:

 Fault injection is limited to locations that can be reached by the boundary scan registers.

 Requires external hardware be designed or purchased to access the Test Access Port
(TAP) of the device.

 The device under test is temporarily taken out of operational mode and put into test
mode while fault injection is active.

The attraction of JTAG fault injection is that it complements other fault injection methods (such
as (ICE-based Fault Injection or OCD-based fault injection) by providing a diverse method that
reaches different portions of the internal IC under test. In addition, since most processors and
complex IC devices have a JTAG port, it provides a means to gain access to the IC for fault
injection when other means are not possible. This is particularly true for devices like FPGAs
that are principally hardware devices and usually do not have a software component.

46

For these reasons, the design and implementation of JTAG fault injection module was used for
the UNIFI fault injection environment, which is described latter. The JTAG fault injector could be
used late in the project and therefore it could not be the principle means of fault injection.

4.4. ICE-based Fault Injection

Previous experiences with ICE-based fault injection in the DFWCS fault injection study provided
mixed results. ICE-based fault injection provides a ready-made solution for integrating fault
injection into a digital I&C system, however it was shown that it is less than optimal for injecting
faults into real-time systems. The time delays for halting and resuming the processor to insert a
fault into the processor or memory of the target system can be significant (10’s of milliseconds
or greater). OCD fault injection solutions are far better for minimizing time delays associated
with fault injection, however, OCD solutions require that the target processor have built in OCD
hardware functions to support fault injection. Unfortunately, in the case of Benchmark System I,
this was not the case. Both variants of the processor modules did not support OCD functionality
due to obsolescence issues (i.e., the modules were designed in the mid 1990s). Most
processors designed and marketed after ~2000 have OCD support of some type. For this
reason the OCD based fault injection on Benchmark System I could not be explored. In order to
ensure fault injection capability on the processors of Benchmark System I, it was decided that
ICE-based fault injection would be the principle fault injection technique even though it may not
be optimal.

Recall from Volume 1, an ICE machine is a tool used by designers of embedded systems to
debug embedded software. Debugging embedded system software is particularly challenging
because embedded systems usually lack suitable user-interface devices such as keyboards and
displays. Under such circumstances, ICE machines provide a `window' into the system through
which the designer can exercise a good deal of control of the embedded system at a very low
level (e.g. assembly code, and signals). In-circuit emulators usually have a CPU pod that plugs
directly into the socket where a CPU chip is inserted. There is interface circuitry that provides a
connection between an ICE machine and a terminal computer. This terminal can be used to run
an interactive user interface application through which a designer can monitor the embedded
system being designed.

All ICE machines use a graphic user interface (GUI)-based debugger command tool to control
the ICE machine (e.g., performing functions like halting and resuming the processor and altering
the contents registers and memory). For fault injection the GUI based debugger command tool
is not appropriate for automation purposes. Instead, the use of command script files, which
contain a sequence of shell commands that when used in sequence allow the basic steps of
fault injection to be executed in a serial manner. A script file is a sequence of commands and
command arguments that the ICE machine uses to perform its debugging functions. This is a
key capability in the realization of fault injection using the ICE machine. These script files enable
automatic fault injection.

Based on previous experiences with ICE based fault injection it was decided early on to work
with the selected vendor of the ICE machine to address performance issues experienced in the
DFWCS fault injection study. The principle concerns were twofold:

 Reducing the time delay impact of an injected fault
 Supporting pre-fault injection Analysis

Initial and ongoing discussions with the vendor suggested that time delays associated with fault
injections into registers and memory would be no more than 10ms, and usually less. While this
value is relatively large compared to the cycle time of the application (e.g. 10ms out of 100ms),

47

due to the non-synchronized operation of Benchmark System I, this time was considered
acceptable. Breakpoint initiated fault injections have been stated to be on the same order of
magnitude.

As discussed in Volume 1 and detailed in later Sections of this volume, a technique called pre-
fault injection analysis was developed to maximize error acceleration and reduce no-response
faults. To effectively implement the technique on a real target system, the pre-injection analysis
algorithms needed extracted traces of executing code to determine when to inject a fault for
maximizing the error propagation potential. Therefore, the ability to extract traces from the
operating Benchmark System I by the ICE machine was needed. The vendor stated that trace
collection capability was possible, but was limited to 5 to 10ms worth of program execution data.
While extracting a full trace (1 cycle time or 100ms) was preferable, it was decided that some
trace data was better than no trace data.

Based on these preliminary investigations and findings, it was concluded that an ICE-based
fault injector for the benchmark system could be implemented.

4.5. Software Implemented Fault Injection (SWIFI)

SWIFI encompasses techniques that inject faults through software executed on the target
system.

In run-time injection, faults are injected while the target system executes its application or
workload. This requires a mechanism that i) stops the execution of the workload, ii) invokes a
fault injection routine or Interrupt Service Routine (ISR), and iii) restarts the workload. Thus,
run-time injection can incur a significant run-time overhead if the implementation of the fault
injection method is not optimized. Software-implemented fault injection (SWIFI) relies on the
assumption that the effects of real hardware faults can be emulated either by manipulating the
state of the target system registers and memory via run-time injection, or by modifying the target
workload through pre run-time injection. This assumption usually holds true for transient faults,
but for permanent faults it presents some difficulty due to the repeated invocation of the fault
injection exception handler every time a register or memory location is referenced.

The research interest in SWIFI type fault injection was centered on the enhanced performance it
can provide compared to ICE-based fault injection. SWIFI type fault injections can execute
processor register and memory fault injections in a few milliseconds or less. With appropriate
internal processor support for breakpoint registers SWIFI can trap on user variables, operands,
instructions, and control flow conditions, which is a desirable feature for precision fault control.

One example of SWIFI based fault injection is Xception [ref], which injects faults through an ISR
executing in kernel mode. The ISR is typically added to the Operating System Software as a
build or patch. The fault injection ISR typically is loaded with a fault list from a host. The ISR
therefore must have an available dedicated external port on the target system to use for
communication to the host. The fault injection ISR can be triggered by the following CPU
events:

 op-code fetch form a specified address,
 operand load from a specified address,
 operand store to a specified address, and
 a specified time passed since start-up.

Using these triggers it is possible to emulate both permanent and transient faults.

48

The disadvantage to SWIFI is that it requires modifying the system software or adding software
to the target system (e.g. in the way of a low level Interrupt Service Routine). This can be
challenging if the complete details of the system software are not known, particularly with
respect to implementing the ISR so that it is properly nested in the processor interrupt chain. In
addition, a “free” serial or Ethernet port must be available on the target system to communicate
with the fault injection host computer. In the case of Benchmark System I, there is a user
defined serial port available. The manuals did not clearly define how to link this serial port from
the operating system.

To effectively design, develop and implement a SWIFI type fault injector requires that the
vendor supply information about the details of the system software so that the ISR can be
integrated into the operating system properly and so that it can communicate with the host fault
injection controller computer. Citing the proprietary basis of this information, the vendor would
not release the information. Without assistance from the vendor, SWIFI-based fault injection for
Benchmark System I was not used. However, SWIFI-based fault injection may be a good fault
injection technique for Benchmark System I the vendor may want to pursue. As indicated in
Volume 1 Section 5, there are number of academic tools and a few commercial tools that
support SWIFI style fault injection (Xception, generic object oriented fault injection (GOOFI), and
UNIFI) that may be of interest to the vendor.

4.6. X-bus Communication Module

The X-bus communication module provides communication connectivity between the
processing modules in the Benchmarks System. The RPS application sends input signal
information and channel alarm status information over the X-bus to the distributed processing
modules. Therefore, these X-bus interactions between processing modules are critical to the
fault tolerance and fail safe capabilities of the engineered I&C functions and the benchmark
system. X-bus communication represents the class of interaction faults discussed in the fault
model taxonomy shown in Figure 1-7.

For execution of the X-bus protocol and firmware, the X-bus communication module is equipped
with a 16-bit microcontroller. The communication module is a piggyback module for the main
processing module. It is used in combination with the main processor as the basic module to
form communication processors for the benchmark system. Special purpose communication
software executes on the processing module and the communications module to facilitate
transfer of the data from the processing module to the communication module through dual port
memory. X-bus messages onboard the processing module are scheduled on a cyclic basis to
be transferred to the communications processor through the dual port memory.

4.7. Identifying and Selecting Fault Injection Techniques for the X-
bus Communication Modules

The X-bus communication protocol is an IEC standard protocol for connecting distributed
embedded systems in process control and automation applications. As such, it has a detailed
open standard to reference upon. Reviewing the detailed design of the X-bus communication
module suggested several complementary methods for injecting faults or failures into the X-bus
communication network. The first concept investigated was using JTAG fault injection to inject
faults into the main 16-bit microcontroller. For similar reasons as stated before, the details of
the JTAG scan chain of the communication processor were not available to use. Due to the
generation age of the processor family, neither OCD-based fault injection nor ICE-based fault
injection solutions were feasible.

49

Since X-bus protocol is an open IEC standard, it was decided that building an X-bus protocol
and message corruption injector that would intercept and corrupt messages/control tokens as
they communicated between processor modules could prove to be useful. The problem with
this approach is that it is limited to corruptions in the X-bus protocol as it is on the wire. Faults
that occur internal to the X-bus communication module could not be represented very well or at
all. Nonetheless, it was determined that the exercise of designing and using an X-bus fault
injector would provide useful information to the digital I&C community on such fault injection
techniques. Later Sections discuss the X-bus fault injector.

4.8. Summary of Fault Injection Techniques for Benchmark System I

Table 4-1 presents suggested physical based fault injection for Benchmark System I. These
recommendations are presented from the view of the technical staff of the vendor or an
independent assessor who has technical expertise and knowledge equivalent to the vendor.
Thus, Table 4-1 reflects what is possible given sufficient technical information about the system.

The most prevalent and accessible fault injection technique for Benchmark System I is JTAG or
SCIFI fault injection. It was assumed that the microcontrollers on the input and output
processing modules, the CPU on the computational processor, and the CPU on the X-bus
communication processor have accessible JTAG scan chains. ICE-based fault injection is an
option on the computational processor module and the Ethernet communication processor, but
with the aforementioned caveats of time delays when conducting a fault injection. SWIFI is
another fault injection option for the processor module, but requires adding a special purpose
exception handler to the system software. SWIFI, ICE-based fault injection and SCIFI provide
the least amount of investment in terms of time and resources in that order.

Communication or interaction faults likely would be best represented by two different fault
injection methods. The first would be a fault injection technique like SCIFI to introduce faults
into the communication CPU of the X-bus processing module. The second fault injection
technique is an interceptor or jammer module that corrupts various bit fields in the X-bus
protocol as it being transmitted over the network. The fields that are bolded represent
techniques that were planned to be implement based on the level of information about the
system.

50

T
ab

le
 4

-1

F
au

lt
 in

je
ct

io
n

 t
ec

h
n

iq
u

es
 f

o
r

B
en

ch
m

ar
k

S
ys

te
m

 I.

M
o

d
u

le

S
u

g
g

es
te

d
 P

h
ys

ic
al

-b
a

se
d

 F
au

lt
 In

je
ct

io
n

 T
ec

h
n

iq
u

es

F
o

r
B

en
ch

m
ar

k
S

ys
te

m
 I

JT
A

G
 o

r
S

C
IF

I
IC

E

M
ac

h
in

e-
b

as
ed

F

au
lt

 In
je

ct
io

n

C
o

m
m

u
n

ic
at

io
n

P

ro
ce

ss
o

r
F

au
lt

 In
je

ct
io

n

P
in

 L
ev

el

F
au

lt
 In

je
ct

io
n

S

W
IF

I
O

C
D

-b
as

ed

F
au

lt
 In

je
ct

io
n

In
pu

t A
na

lo
g

an
d

D
ig

ita
l

R
ec

om
m

en
de

d
fo

r
m

ic
ro

co
nt

ro
lle

rs

If
IC

E
 m

ac
hi

ne
 is

av

ai
la

bl
e

in

m
ar

ke
t

N
/A

If

JT
A

G
 is

 n
ot

av

ai
la

bl
e

P
os

si
bl

e,
 b

ut

re
qu

ire
s

a
te

st

po
rt

N

ot
 s

up
po

rt
ed

O
ut

pu
t D

ig
ita

l
R

ec
om

m
en

de
d

fo
r

m
ic

ro
co

nt
ro

lle
rs

If
IC

E
 m

ac
hi

ne
 is

av

ai
la

bl
e

in

m
ar

ke
t

N
/A

If

JT
A

G
 is

 n
ot

av

ai
la

bl
e

P
os

si
bl

e,
 b

ut

re
qu

ire
s

a
te

st

po
rt

N

ot
 s

up
po

rt
ed

C
om

pu
ta

tio
na

l
P

ro
ce

ss
or

R
ec

om
m

en
de

d
fo

r
m

ai
n

pr
oc

es
so

r
an

d
su

pp
or

t I
C

s

A
s

al
te

rn
at

iv
e

to

JT
A

G

N
/A

N

ot

re
co

m
m

en
d

ed

If
pr

op
er

ly

in
te

gr
at

ed
 in

to

op
er

at
in

g
sy

st
em

N
/A

X
-b

us

C
om

m
un

ic
at

io
n

P
ro

ce
ss

or

If
 s

up
po

rt
ed

A

s
al

te
rn

at
iv

e
to

JT

A
G

P
re

fe
rr

ed
 fo

r
em

ul
at

in
g

tr
an

sm
is

si
on

er

ro
rs

N
ot

re

co
m

m
en

d
ed

If
pr

op
er

ly

in
te

gr
at

ed
 in

to

op
er

at
in

g
sy

st
em

N
/A

E
th

er
ne

t
C

om
m

un
ic

at
io

n
P

ro
ce

ss
or

R
ec

om
m

en
de

d
fo

r
m

ai
n

pr
oc

es
so

r
an

d
su

pp
or

t I
C

s

A
s

al
te

rn
at

iv
e

to

JT
A

G

N
/A

N

ot

re
co

m
m

en
d

ed

If
pr

op
er

ly

in
te

gr
at

ed
 in

to

op
er

at
in

g
sy

st
em

N
/A

51

4.9. Development of Fault Injection Techniques for Benchmark
System I

Based on the findings above, three fault injection techniques were selected to further develop
for Benchmark System I. These techniques were (1) ICE based fault injection for the main
processing module, (2) X-bus fault injector for the X-bus communication protocol, and (3)
JTAG/SCIFI fault injection. The third technique, JTAG/SCIFI, was developed but ultimately not
used on Benchmark System I due to inability to acquire JTAG test port information on the
various modules of the benchmark system. The objective of this task was to develop a set of
fault injectors to emulate the fault models presented in Section 1. The development of each
technique is discussed in the next section.

4.10. Development of the ICE-based Fault Injector

This section describes the development and implementation of the ICE-based fault injector for
the main processing module of Benchmark System I. Specifically, the development of the fault
injector for corrupting register and memory operations of the RPS software and system software
as it executes onboard the processing module is described.

4.10.1. Background: In-Circuit Emulators

In-circuit emulators are tools used by designers of embedded systems to test the
implementation of a design. The tool provides a “window” into the hardware and software
operations of an embedded processing system by allowing the designer to view and/or modify
processor and system execution states (instructions, registers, and memory locations) to
support validation of the embedded system design.

An ICE is one of the oldest embedded debugging tools, and is still widely used in the embedded
systems industry in cases where CPUs do not support OCDs. It is the only tool that substitutes
its own internal processor for the one in the target system. Using one of a number of hardware
monitoring and control functions for the target CPU, the emulator can monitor everything that
goes on in the on-board CPU, giving the user complete visibility into the target system code
operation. In a sense, the emulator is a bridge between the target system and the
hardware/software development environment, giving the designer both an interactive terminal
for peering deeply into the target system operation and a rich set of debugging resources.

An ICE machine’s most fundamental resource is target access: the ability to examine and
change the contents of registers, memory, and I/O. However, since the ICE replaces the target
CPU, it generally does not need additional hardware or special software to be added or modified
to the target system. This makes the ICE machine an attractive fault injection option for digital
I&C systems because modifications to system hardware and software during V&V activities are
usually discouraged. Breakpoint capability is another important resource useful to fault injection
realization. The capability provides the ability to stop a program at precise locations or
conditions (e.g., "stop just before executing line 51").

There is an important distinction between breakpoints used by software code debuggers and
breakpoints used by ICE machines. Software breakpoints work by replacing the destination
instruction with a software interrupt, or trap instruction. Clearly, it is impossible to monitor code
in ROM or electrically erased programmable read-only memory (EEPROM) with software
breakpoints. On the other hand, ICE machines generally offer a number of hardware
breakpoints, which use the ICE machine internal hardware to compare the break condition

52

against the observed execution stream. Hardware breakpoints work in RAM or ROM/flash, or
even unused regions of the processor address space.

Complex breakpoint conditions are another feature of ICE machines that enhance fault injection
capability. A typical condition might be: "break if the program writes 0x1234 to the variable
buffer, but only if function ‘get data()’ is called first." Some software-only debuggers (like the
one included with Visual C++) offer similar power, but interpret the program at a very slow pace
while watching for the trigger condition. Emulators implement complex breakpoints in hardware
and, therefore, are considerably faster as compared to software based debugging tools.

Real-time trace is an important ICE machine feature that is very useful for fault injection. Trace
functions capture a snapshot of the executing code to a very large memory array, called the
trace buffer, at nearly full speed. Depending on the buffer size and the speed of the CPU, it
saves hundreds of thousands of machine cycles, displaying the addresses, the instructions, and
transferred data. The emulator and its supporting software translates raw machine cycles to
assembly code or even high level language statements for viewing, drawing on target source
files and the link map for assistance.

Generally, emulators use no target resources. The do not use stack space, memory, or affect
the code execution speed. This “relatively” non-intrusive aspect is critical for dealing with real-
time systems.

While all of the above are most favorable for debugging target system software, there are
practical realities of using ICE machines for fault injection on an embedded system or digital I&C
system. First, contemporary embedded system CPU speeds continue to increase, and as such
these increasing CPU speeds create profound difficulties for the electrical signal connections
between the ICE pod and the ICE machine host computer. For example, the machine cycle in a
CPU running at 200MHz lasts 5ns. At these speeds, even an 18-inch cable between the target
and the ICE starts to act as a complex electrical circuit rather than a simple wire. One solution
vendors have used is to shrink the emulator, putting all or most of the unit nearer the target CPU
socket. The popular OCD features present in many contemporary CPUs are a direct response
to this problem. The microelectronics industry and the IEEE recognized this problem and
established the IEEE Nexus On-Chip Debugger standard.

Another issue to contend with is the impact of time delay associated with modifying the contents
of memory or registers during real-time operation. While 10’s of milliseconds or 100’s of
milliseconds for read-modify-write operations on registers are not a problem for designers, this
amount time can be overly intrusive to sensitive error detection mechanisms onboard the target
system. All measures should be taken to reduce this time delay overhead as much as possible
by using “backdoor” Application Programmer Interface (API) functions to bypass graphical
interface features of the debugger and working with the ICE machine vendor to come up with
innovative solutions.

Another aspect of ICE machine challenges is connectivity to the target system. Most ICE
machine emulators physically replace the target processors CPU. In commercial based digital
I&C systems, connection strategies more be more difficult with a soldered-in surface-mounted
CPU. Some emulators come with an adapter that clips over the surface-mount processor, tri-
stating the device core, and replacing it with the emulator's own CPU. In other cases, the
emulator vendor provides adapters that can be soldered in place of the target CPU. As chip
sizes and lead pitches shrink, the range of connection approaches will be typically limited and in
some cases not feasible.

53

Connecting the ICE machine is sometimes difficult. Physical features of the target system and
CPU placement can get in the way of some adapters, so planning for ICE insertion into the
target system is something that should be done very early in the evaluation process.

4.10.2. Use of ICE Machines for Fault Emulation

As discussed above, an ICE machine can fulfill most of the requirements for realizing fault
injection experiments with the noted concerns. This section describes how an ICE machine can
be used to meet the four requirements of fault injection experimentation.

Emulation of fault models: Naturally occurring faults can be emulated by introducing into the
affected structures time-controlled value errors such as registers or memory locations.
Depending on the duration of the applied value error, the persistence of each fault model can be
realistically reproduced. For example, a transient fault can be emulated by introducing a value
error on a single bit by inverting it once at a random point of time during the execution of a
workload. This can be achieved by halting execution at a random point in time, reading out the
value in the location to be faulted, writing back a faulty value and resuming execution.

Precise fault activations: A permanent fault can be modeled by repeatedly forcing the value
of a bit to a predetermined value each time it gets altered by the system (e.g. after each write
operation). Such a value error can be introduced into the system using an ICE and triggering it
each time a specified memory location is accessed. This can be realized using a breakpoint,
which is a commonly available feature in most ICE machines. In-circuit emulators thus fulfill the
need for precise fault activation to achieve emulation of realistic faults.

Controllability and observability: Using an ICE machine, it is possible to realize control of the
various functions required to realize a complete fault injection experiment. That is, in addition to
the ability to introduce a value error, system-level controls such as restart and monitoring of
debug signals can be achieved using various features offered by common ICE machines.
Similarly most ICE machines provide trace collection capabilities, which can be used to monitor
and observe the propagation of a fault as an error in the system after a fault injection. This can
then be compared to a ‘golden’ or fault free trace to identify difficulties of the target system in
the handling of the fault.

Experiment control and automation: Most ICE machines provide a command line interface
with simple scripting capabilities. These are the main features used to realize the scheduling of
experiment control steps and for automation of large fault injection campaigns. This feature is
an essential component to ensure that statistically significant results are obtained.

4.10.3. Realization of the ICE-based fault Injector

A prototype implementation of an in-circuit emulator-based fault injector was designed using the
HiTex DProbe P5 In-Circuit Emulator, manufactured by Hitex International Development
Systems. Referring to Figure 4–1 below, the HiTex DProbe in-circuit emulator hardware
consists of a pod that plugs into the socket of an Intel Pentium I CPU socket of a processing
module and an interface circuitry box that interfaces the pod to the host machine through a
Ethernet port. Figure 4–2 is a photograph of the actual set up on the benchmark system.

54

Figure 4-1 ICE-based fault injection for Benchmark System I

The CPU of the target system is removed, and the ICE-pod is plugged directly into the CPU
socket of the benchmark system. This pod provides an interface to the host computer that will
control execution of the target under test. When connected to the host computer, execution of
the target CPU can be controlled at a very low level. For example, the target CPU can be reset,
and its execution halted and resumed using commands issued from the host. While in a halted
state it is possible to read and write the contents of the memory and general purpose registers
in the target environment.

Benchmark
System I

Processor on
Extender Board

Pentium
CPU

ICE
Machine
Pod

NI PXI‐1033
controller

I/O
Interface

Box

Hitex Interface Cable

NI PXI DAQ
Interface Cable

I/O
Backplane

ICE‐Host PC/
UNIFI fault Injection
Environment

Analog and
Digital
Signals

Fault Injector Control
and Status Flags

55

Figure 4-2 ICE machine pod inserted into the Benchmark System

Referring to Figure 4-1, the ICE machine pod is connected to a separate computer (the UNIFI
host), which hosts the interactive debugger tools for applying fault injection to the target system.
The interactive debugger tools are a suite of software tools called HiTOP that are provided by
Hitex. The interface between the ICE machine pod and host computer is connected through a
direct Ethernet connection. All communication between the host computer and the target
system takes place through this interface. HiTOP offers the following key commands:

 set breakpoints,
 examine and modify variables,
 display and modify structures according to their type,
 follow any branch-list or data-trees,
 analyze high level language (HLL) expressions dynamically, and
 display detailed information on all program objects.

Since HiTOP has been tailored to work with other software tools, interfacing HiTOP into the fault
injection environment is possible through a LabVIEW interface.

More importantly, HiTOP includes a macro scripting language, HiSCRIPT, which allows the user
to repeatedly execute user-determined command sequences which is important for automating
fault injection. Automating the injection process by using scripts built out of low-level commands
is the best way to reduce the time delay overhead associated with ICE based fault injection.
Having this scripting capability is also useful to interface with the fault injection environment that
automates the entire fault injection experiment (reset, monitoring, data acquisition, etc.) so that
long fault injection campaigns can be realized without user intervention.

56

Once the ICE machine pod interface and the target system have been powered up, the HiTOP
application can be initiated on the host. It will give a disassembled view of the memory around
the location that the program counter register points to on the target system. When halted, the
disassembled view of the code running on the target machine can be viewed on the host
machine. As shown in Figure 4–3, the memory locations immediately following the location
currently pointed to by the instruction pointer are displayed in the window, together with the
binary code of the instruction at that location and its corresponding disassembled mnemonic
assembly code.

57

F
ig

u
re

 4
-3

H

iT
O

P
 v

ie
w

 o
f

th
e

ta
rg

et
 s

o
ft

w
ar

e
ex

ec
u

ti
n

g
 o

n
 t

h
e

B
en

ch
m

ar
k

S
ys

te
m

58

An additional level of control provided by the HiTOP emulator is allowing external signals to
trigger the ICE control pod for specific actions and to receive status information from the ICE
pod. These external signals are used to facilitate enhanced control and automation of the fault
injection process.

As mentioned earlier, an important consideration when using any fault injection process is to
ensure that the time delay intrusion of the ICE when it attempts to corrupt a register or memory
location does not falsely trip watchdog timers built into the system. For example, if the halt-
read-modify-write-resume process of injecting a fault can introduce a delay that can be caught
by an on-board fault detection capability (e.g., a watchdog timer), then this in turn could reset
the system as a precautionary measure after identifying the delay in the CPU execution cycle.
This situation is an artifact of the intrusion introduced by the fault injector. This artifact must be
avoided by minimizing the overhead of the injection process. Automating the injection process
overhead by using scripts built out of low-level commands is necessary to reduce the
occurrence of this artifact.

As part of this effort, a few performance trials of typical low level fault injection commands were
executed to emulate various fault models. To emulate transient bit-flip and multiple bit-flip
models, the value in the location of the register or memory must to be read out, and a random
bit in the value must be selected and inverted before it is written back. This called the read-
modify-write transient fault model. The read-modify-write fault model typically uses a breakpoint
to trigger on a memory or register access. A simpler transient model is the write-resume model.
It was observed that a halt or break-write-resume operation could be faster. Therefore, instead
of a halt or break-read-modify-write-resume operation, the ‘read and modify’ operation in the
read-modify-write injection step was eliminated and a random value was written into the location
to emulate a transient fault (a halt-write-resume operation).

The next fault model of interest is the permanent fault model. The permanent fault model is an
extension of the two transient fault models. The difference is that the breakpoint or halt occurs
each time the register or memory resource is active (being used). This can incur significant time
delays or performance penalties if the resource is used often. As such, the use of the
permanent fault model was limited to judiciously chosen memory accesses. Some preliminary
performance measurements of the ICE-based fault injector were taken during development to
gauge the ability to support the various fault models. These measurements are listed in
Table 4–2.

Table 4-2 Performance delay times for ICE-based fault injection of a few models.

Fault Model Type
Halt Read-Modify-

Write
Halt Write-Resume Watchdog Tripped

Transient: Single bit ~ 20 to >100 ms ~ 10-15ms Only on HRMW

Transient: Multi-bit ~ 20to > 100 ms ~ 10-15ms Only on HRMW

Permanent: single bit 150ms 50ms to 150ms Frequently

4.11. X-bus Fault Injector

4.11.1. Introduction

The motivation for this work was to create an X-bus fault injector that would be able to corrupt
specific bits of the transmitted data stream. At first, it was necessary to gather better knowledge
of the X-bus network traffic patterns at the bit level so that a successful fault injecting device

59

could be designed. This was achieved by understanding the transmission specifications based
on the information in the X-bus manual provided by the vendor, reviewing the IEC
specifications, and by capturing and observing traffic on the benchmark system with the help of
a logic analyzer that was connected to an X-bus interface present on the actual nuclear digital
I&C protection system. Observance of the X-bus communication traffic was imperative in the
process of designing the fault injector because it greatly enhanced the understanding of the bit
level data transmission characteristics. After complete investigation of the X-bus data message
delivery system, the scope of this work was extended to cover fault injections into the data
message packets and tokens that were being transmitted over the network. This type of fault
injection was performed in a manner different than the original fault injection in order to alter the
contents of the Data Message, rather than simply corrupting the transmission. The X-bus
protocol both data message delivery system and token management are discussed in the
following section.

4.11.2. X-bus Data Message Delivery System

X-bus is a standard IEC fieldbus specification intended to provide communication for industrial
processing applications. It can offer deterministic bounds on the latency of delivery for high-
priority messages. As a result, it can be used in applications having real-time communication
constraints. X-bus is also robust with mechanisms specified to handle various fault conditions.
As a result, it may be considered for applications requiring highly reliable communication. The
X-bus response to fault conditions requires time and this time should be considered when
evaluating the potential real-time response characteristics of the network in the presence of
faults [Tovar 1999].

The X-bus data link layer provides a hybrid medium access control mechanism that includes
both centralized and decentralized control. Decentralized medium access control is
implemented through a token passing mechanism that establishes which of the multiple master
stations will control the data link during each time interval. While a specific master station
controls the data link it imposes centralized master-slave control to send data on the link and
request that data be sent to it over the link [Gil 1997].

4.11.3. X-bus Token Management

The X-bus Token passing mechanism requires each master station to maintain a list of master
stations (LMS) containing the addresses of all master stations sharing the data link. A master
station’s own address in the LMS is identified as this station (TS). The predecessor station in
the ring is identified as the previous station (PS), and the successor station in the ring is
identified as the next station (NS). Each TS receives the token from its PS and passes the
token to its NS. Each master station determines the LMS, its PS, and its NS addresses using a
dynamic configuration algorithm. The order of master stations in the logical ring is in ascending
order of addresses with the highest master station NS pointing to the lowest master station to
complete the logical token ring.

The master station that owns the token controls the data link until it passes the token to the next
station. During the time that TS holds the token, it can send out different types of messages
besides Tokens that X-bus DP supports. These types include No Data (NDD), Fixed Data
(FDD), and Variable Length Data (VLDD). Messages of types FDD and VLDD are used for
transferring data between stations, NDD message is used for discovering stations that might
have been inserted into the logical ring or for reinserting stations that were removed due to
some problems. However, when TS obtains the token, it is guaranteed to be able to send out
only one high priority message. Only if time permits can the TS send out other messages with
lower priorities. This time is computed by calculating the difference between the predefined
expected time to pass a token around the ring (Ring Time) and the time that it actually took

60

since the TS last owned the token (Ring Rotation Time). If this time is greater than the time it
takes to send one message, the TS can send out additional messages that might be in its
queue. This includes the discovery message (NDD). Therefore, the presence of faults on the
link could cause tightness in the scheduling of messages and could significantly delay
reinsertion of X-bus stations.

The TS passes the token to NS using a particular data link protocol data unit (DLPDU)
composed of a start delimiter byte to identify the DLPDU as a token followed by destination and
source address bytes. The next master station detects the DLPDU as a token with its
destination address and a source address corresponding to its PS. If the token header byte, the
destination address byte, and the source address byte are all correct, then the receiving master
station accepts ownership of the token and assumes control of the data link. The sequence in
Figure 4-4 depicts the Token passing mechanism between several masters.

Any problems with the received Token DLPDU will prevent the NS from taking ownership of the
Token. The master station passing the Token listens to data link traffic after it has attempted to
pass the Token. If it does not detect any bus activity within specific time duration, it will then
make another attempt to pass the Token. The time-out duration is called Slot Time (Tsl), and it
is a parameter established for the particular X-bus implementation based upon the physical
characteristics of the network system.

Figure 4-4 Illustration of token passing mechanism in a multi-master system

After making a second attempt to send the Token, the master station again monitors the data
link traffic. A successful Token transfer will be recognized if the new master produces data link
traffic within Tsl. If gain the TS attempting to pass the Token does not detect any bust activity

61

within the slot time, it will make its third attempt to pass the Token to the NS in its LMS. If the
third attempt is unsuccessful, TS tries to transmit the Token to NS one last time.

After the last attempt to send the Token, the master station again monitors the data link traffic.
A successful Token transfer will be recognized if the new master produces data link traffic within
the slot time. If the master station passing the Token again does not detect any bust activity
within the time slot, it will repeat this Token passing approach with the next sequential master
station in its LMS. Thus, the master attempting to pass the Token, the current TS, assumes that
the NS in its LMS is no longer available so the current TS attempts to pass the Token to the NS
of its NS.

If the master station cannot pass the Token to the next station in the LMS, it will continue this
process around the ring until it is either successful or until the next master on the list is itself. If
it reaches the point of sending the Token to itself, it assumes that it is the only master on the
data link. Figure 4-5 illustrates the process of attempting to pass a corrupted Token on the
network.

62

F
ig

u
re

 4
-5

C

o
rr

u
p

ti
o

n
 o

f
to

ke
n

 w
h

en
 M

as
te

r
1

 a
tt

em
p

ts
 t

o
 p

as
s

to
ke

n
 t

o
 M

as
te

r
2

63

The Token passing control nature of X-bus practically eliminates any possibility of an automatic
immediate check for transmitting any other message than a token because at the time that TS
holds the token, only it can transmit on the link. Therefore, if a data message was corrupted or
not delivered, it can be only announced to TS when a station the message was intended will be
in possession of the token. However, if the receiving station has already several high priority
messages in its queue, it might not be able to announce to TS that the message TS transmitted
was corrupted for at least another ring rotation. This could pose quite significant time delays in
transmitting and receiving important data information between stations and could lead to failures
in real-time safety-critical systems due to the late delivery of crucial information.

The first efforts at X-bus fault injection focused on disrupting the functionality of X-bus by
corrupting tokens and observing the recoverability of the network and the target system. The
main goal was to measure the following timeouts incurred by corrupting a Token:

Time delay represented by Tsl after corrupted Token.

Time required to reinsert an NS into the logical ring after it was excluded due to the inability to
recognize corrupted tokens, thus being unable to take ownership of the logical ring.

After further investigation of the X-bus data message delivery system, the scope of this work
was extended to cover fault injections into the data messages (VLDDs) that were being
transmitted over the benchmark system X-bus network. This type of fault injection was
performed in a manner different than the token fault injection in order to alter the contents of the
data message, rather than simply corrupting the transmission.

4.11.4. X-bus Fault Injection

X-bus is inherently a time-triggered, asynchronous network bus. This means that the devices
on the network do not have constant clock synchronization between each other. Rather, the
bus functions on the basis of providing synchronization timeouts, with the start bit of each
message serving as the synchronization element. The synchronization period is produced by a
long sequence of logic level high (bit meaning “1’s”) that can be observed on the network. The
beginning of a transmission of any message is therefore specified by a low voltage (bit meaning
“0’s”), inserted by the transmitting station. When the devices on the network observe this bit,
they synchronize their clocks in order to correctly receive transmissions originating from the
station that currently holds the token.

The main building block of any X-bus transmission is the 11 bit X-bus Transmission Packet
(PTP) illustrated in Figure 4-6. PTP consists of the following bit sequence:

 Start bit (bit value 0)
 Eight data bits carrying the information
 Even parity bit
 Stop bit (bit value 1)

64

Figure 4-6 X-bus transmission packet (PTP)

The Start and Stop bits are intended for synchronization purposes, while the Parity bit is a
simple check over the eight data bits for an uneven number of bit upsets. Each X-bus message
consists of a predefined number of PTPs used to accomplish successful communication
between stations. The structure of all message types (Token, NDD, FDD, VLDD) are very
similar. The first PTP, called the Start Delimiter, carries the Header information that determines
what type of message is being transmitted. The last PTP of each transmission, the End
Delimiter, carries a constant that indicates the end of a transmission to the receiving stations.
Each message also contains PTPs that hold the information pertaining to the source and
destination addresses, which is necessary for proper network communication in multi-station
systems. Additionally, data messages contain PTPs carrying information about their length, as
well as the actual data that is transmitted. The data payload is usually spread over many PTPs
to provide the ability to handle transmission of larger amounts of information. The proper
deciphering of the data information is performed at higher data link levels of X-bus functionality.
One physical constraint of the X-bus fault injector was the capability to only affect and corrupt bit
values of 1 and pull them down to a bit value of 0. This limitation was given by the physical
access to the X-bus network signals.

To achieve the purpose of the X-bus fault injector to execute deterministic fault injection the
design had to be based on pattern matching of the Start Delimiter. This was necessary to
properly identify the type of a transmission to execute the correct fault injection type. Without
this feature a situation could occur where a data message would be corrupted as if it was a
token and vice versa. In order to correctly identify the X-bus traffic, the fault injector would
remain idle and observe the X-bus signals during the X-bus synchronization period and adjust
its internal clock at the occurrence of the first start bit, and subsequently at the start bit of each
PTP to attain maximum possible precision.

The required information for executing Token fault injections was obtained after determining the
first few bits of the first PTP (the Start Delimiter) when it was possible to correctly identify the
message type and corrupt specific bits if necessary. Data Message corruptions were performed
differently, altering the PTPs specifying the length of the transmission, but the fault injection idea
was the same as with Token:

 Observe the network traffic
 Compare obtained data to a predefined constant
 Inject interference to X-bus signals at a specific bi

4.11.5. X-bus Requirements

A set of requirements to achieve correctness of the implementation of the X-bus fault injection
module was developed after identifying a successful implementation of the X-bus fault injection
system. The design had to be minimalistic, but at the same time provide high performances so
that the proper functionality could be accomplished in real-time. The following are the set of
design requirements for the X-bus fault injector:

65

 Design must be able to perform both types of fault injections without further alterations

 Ability to synchronize with the X-bus signal

 Pattern matching mechanism for recognizing different message types

 Corruption signal must interfere with X-bus signals at an exact instance

 Corruption cannot affect any other bits than the desired ones

 Functionality for performing fault injections either manually or automatically

 Ability to perform multiple consecutive fault injections, as well as an infinite fault injection

(the system keeps executing fault injections until stopped by an input)

 Implemented in Very High Speed Integrated Circuit Hardware Description Language

(VHDL) on an Altera FPGA board

 FPGA design clocked at high frequency

 Final product must include capability to be controlled from an external interface for

integration into automated fault injection system

4.11.6. X-bus Fault Injection Architecture

The basic architecture of the X-bus fault injector is shown in Figure 4–7. At the core of the heart
of the fault injector is the FPGA based controller that performs all the X-bus traffic observations
including the timing analysis of the protocol and determining the precise time when to inject a
fault to corrupt a token or a message. Referring to figure 4–7, the differential signal of the X-bus
is converted by a differential receiver to a single-ended bit-stream. Custom digital hardware in
the receiver observes this bit-stream to detect the token start delimiter byte. The detection of
the token start delimiter byte immediately following a synchronization period indicates that a
token is being transmitted on the bus.

The FPGA block in figure 4–7 generates a control output at the times when fault injection should
be applied to the X-bus. The control can be asserted only after the eighth data bit of a token
start delimiter has been received. The actual start time and duration of this control signal can
be adjusted. An additional setting determines how many sequential tokens will trigger the X-bus
fault injector circuit. The control signal is applied to the fault injection circuit that applies
corruption to the X-bus while the control signal is asserted. X-bus signals are captured by a
logic analyzer also connected to observe the data stream from the differential receiver. Analysis
of this data visually through the logic analyzer signal display can be tedious, so software was
written to convert the signal waveforms to a more convenient form for analysis.

66

Profibus

Receiver
Logic

Analyzer
Observed
Signal

Traffic
Analysis
Software

Custom
Hardware

(FPGA)

Interference
Circuit Corrupt

FPGA custom logic detects
received bit patterns in real time and

generates control for timing and
application of X‐bus fault injection

Corrupt

Figure 4-7 X-bus fault injector

The analysis software processes data exported from the logic analyzer. It merges the data into
one long bit stream that is then partitioned based on the synchronization intervals. The start
delimiter byte for each message is then recognized to place each sequence into one of these
categories:

 Token, No Data (NDD),
 Fixed Data (FDD), or
 Variable Length Data (VLDD).

After the message is categorized, the remaining characters are decoded according to the X-bus
specifications for each DLPDU field.

Finally, all data is written into a text file in a readable form to support observation and analysis of
the X-bus traffic. The data input to the software is exported from the logic analyzer running in
“repetitive” mode to acquire multiple sequential data frames. A simple batch script was written
to copy the exported data text files to a workstation over an Ethernet link. The analysis software
runs on the workstation to produce a text file description of the actual X-bus traffic. The text file
presents each DLPDU sequentially in the form: identification, data fields according to the
DPLDU type, and synchronization time. The text file presents all of the DLPDUs in the capture
window.

4.11.7. FPGA Implementation of the X-bus Controller

The main challenge in implementing the X-bus fault injection design based on the requirements
specified in the previous sections was to achieve correct synchronization with the X-bus
transmissions, and correctly identify each detected bit. Unfortunately, the exact width of each
bit is never exact; therefore it was important to resynchronize with the start bit of every observed
PTP in order for the FPGA to remain tightly synchronized with the X-bus bit-stream to correctly
identify each bit value. This was accomplished by clocking the FPGA design at a fairly high
frequency (50 MHz) and by implementing several hardware counters inside the design. Based
on the known baud rate of this specific X-bus implementation, the approximate duration of a
single bit present on the network was determined to be 650 ns, which is significantly slower than
the clock cycle of the implemented hardware counters (20 ns). By using the speed counters, it

67

was ensured that the design clocking would never drift far enough to misinterpret any of the 11
PTP bits.

Additionally, the network traffic bit-stream was sampled in the approximate “middle” of each bit
(around 320 ns, depicted in Figure 4–8) which eliminated possible problems such as a small
clock drift of sampling the current bit during its setup time, which could cause an incorrect
identification of the X-bus network traffic.

Figure 4-8 Sampling of the X-bus traffic by the FPGA

After it was determined how to correctly sample and detect the X-bus network traffic by the fault
injector, the token fault injector design was implemented by incorporating a state machine for
achieving correct functionality. Figure 4–9 shows the FPGA implementation of the FPGA fault
injector.

68

F
ig

u
re

 4
-9

B

lo
ck

 d
ia

g
ra

m
 r

ep
re

se
n

ta
ti

o
n

 o
f

th
e

F
P

G
A

 X
-b

u
s

fa
u

lt
 in

je
ct

io
n

 m
o

d
u

le

69

The following list describes the function of each stage of the state machine as well as the inputs
and outputs of the FPGA fault injection module:

Inputs
 ProfiView – Pin; signal coming from the X-bus network

 Arm – Button that activates the fault injection

 Clock50 – 50 MHz clock internal clock

 BitWidthMod – Switch buttons; input value for the duration of the jamming signal

 BitOffset – Switch buttons; input value adjust a delay of the jamming signal

 Traps – Switch buttons; input value specifies then number of fault injections to be

performed

 TokenData – Switch button; selects between Token and Data Message corruption

Outputs

 Jam – Pin; Jamming signal
 OpState – LEDs; visual observation of the current state, used for debugging
 Fired – LED; visual observation of a finished fault injection

State Machine
ARMING

 State in which the fault injector is initialized and is waiting for an input to begin fault

injection.

 When all signals are initialized, the state machine advances to next state.

SYNCWAIT

 The fault injector is observing the X-bus traffic and waiting for the synchronization period
that is by X-bus specifications identified to constitute of at least 32 consecutive high
voltage bits; this value is observed by a counter; if the value reaches a specific constant
the control is passed to the next state.

HEADERWAIT

 While the synchronization delay in X-bus is precisely specified, it can be adjusted for a
specific X-bus network; therefore, this state continues to observe the traffic on the
network and waits until it detects a first bit value of 0 that would signify the first start bit of
a Start Delimiter of a transmitted message.

 Upon detection of the 0 bit value, the state machine advances to the next state.

70

BYTECAPTURESTART

 This state verifies that the detected bit was in fact an actual low voltage bit and
eliminates the possibility of a glitch in the network by counting to the middle of the
current bit and sampling the traffic again, as described earlier.

 If the first detection of 0 was just a glitch and the currently sampled value is 1, the control

is returned to the SYNCWAIT state and the fault injector waits for the duration of a
synchronization period again.

 If the sampling confirms that the bit value was indeed 0, the system waits for a full

duration of one bit and then transfers control to the next state, which executes the
pattern matching mechanism.

BYCAPTURE

 The current state captures the next 8 bits representing the data field of the start delimiter

(SD) PTP and stores them into a temporary register.

 When the 8th bit is captured, the value of the temporary register is compared to the

constant value representing SD of Token (0xDC).

 If the values are different, the control is returned back to the SYNCWAIT state, as the

current DLPDU on the network is not a Token.

 If the values match, the control is transferred to the next state.

JAMIT

 This state outputs a corrupting signal to the X-bus network traffic and causes an

interference on the bus, thus driving the voltage low, inherently changing the bit values
of the transmitted message; the counter holding the number of performed fault injections
is increased. It was necessary to allow for the possibility of altering the precise position
and duration of the jamming signal by accepting an input from the push switches on the
board to achieve the exact position and length necessary for executing proper
interference to the circuit; this was determined by observation of the traffic with the help
of a Logic Analyzer.

 If the number of performed fault injections reach the desired value, the system moves

into its last state; otherwise the control is returned to the SYNCWAIT state.

FIRE

 This state negates the jamming signal and reinitializes the system for the next fault
injection.

To extend the capabilities of the fault injection system to allow for performing Data Message
injections, some modifications had to be done to the state machine functionality:

71

Input Addition

 TokenData – Switch button; selects between Token and Data Message corruption.

State Machine - Data Message corruption
BYTECAPTURE

 After acquiring the whole data field, the value of the temporary register is compared not

only to the SD value of Token, but also the one of VLDD.

 If the value matches the Token constant, or if it does not match anything, the state

machine continues as described previously in the Token fault injection.

 If the value matches SD value of VLDD, the device has to then verify the next PTP,

which is accomplished in state HEADERWAIT_FRM1.

HEADERWAIT_FRM1 (added)

 Performs the same function as HEADERWAIT, but if successful, passes the control to

BYTECAPTURESTART_FRM1.

BYTECAPTURESTART_FRM1

 Performs the same function as BYTECAPTURE, but passes control to

BYTECAPTURE_FRM1.

BYTECAPTURE_FRM1

 Performs the same function as BYTECAPTURE, but compares only the first four

acquired bits, because at that point the system can determine whether or not the fault
injector is observing the expected Data Message traffic.

 If the traffic is correct, the control is transferred to JAMIT_FRM1 state; however, if

something is wrong and the acquired bits do not match the predefined constants, the
state is changes to SYNCWAIT to start over.

JAMIT_FRM1

 Performs a corruption of the X-bus network traffic as described in JAMIT state, but

corrupts the 6th and 7th bit of the data field instead of the parity and stop bit; this is due to
the nature of the Data Message fault injection.

 Instead of finishing up the fault injection and transferring control to the FIRE state, the

control is moved to the HEADERWAIT_FRM2 state because two consecutive PTPs
must be corrupted.

HEADERWAIT_FRM2

 Same function as HEADERWAIT_FRM1, but for the second PTP specifying the length;

transfers control to BYTECAPTURESTART_FRM2.

72

BYTECAPTURESTART_FRM2

 Same functionality as BYTECAPTURESTART_FRM1 state, but for the second LE PTP;
if successful, it transfers the control to the BYTECAPTURE_FRM2 state, otherwise the
fault injection has to be restarted by changing the state to SYNCWAIT.

BYTECAPTURE_FRM2

 Same functionality as BYTECAPTURE_FRM1 state, but for the second PTP; control is

transferred to the JAMIT_FRM2 state.

JAMIT_FRM2

 Combination of functionalities of JAMIT and JAMIT_FRM1 states.

 Outputs the interference signal into the X-bus wires during the 6th and 7th bit of the data

field; the count of performed fault injections is increased.

 If the requested number of fault injections is reached, the fault injection campaign is

finished and the control is transferred to the FIRE state; otherwise the control is
transferred back to the SYNCWAIT state.

4.11.8. Integration with an Automated Fault Injection System Environment

Building the standalone version of the X-bus fault injector is extremely important for the
purposes of testing the X-bus network and determining the responses of the real-time safety-
critical system under test. However, to fully utilize the capabilities of the designed fault injection
system, it had to be integrated into a complex Fault Injection Campaign Control Interface, a
central system that executes different types of fault injections performed by a number of various
fault injection systems at predefined times to stress the target system and achieve a robust fault
injection campaign.

Therefore, it was necessary to alter the designed system to include an option for an external
fault injection execution control. It was determined that the fault injections would be
differentiated by their duration, and set up by the central system. Fortunately, the required
alterations did not demand re-implementing the internal structure of the design, but only
including some additional logic and several inputs for accepting commands from the UNIFI fault
injection environment. These commands are:

Command Inputs

 TokenData – Changed from Switch button to Pin so that it can be driven by a signal

coming from the central system

 LV_start – Pin; signals the design to start fault injection

 LV_type – Pin; determines whether to perform a single fault injection or an infinite one

 KillSwitch – Pin; signals the design to stop infinite fault injection and to reinitialize itself

These commands allowed the designed X-bus fault injection system to become a completely
self-contained fault injector with the capability to be operated manually as well as remotely by
inputs received from an automated fault injection system.

73

4.12. JTAG Fault Injection Module

Most current integrated circuits have external input and output pins linked together in a set
called the Boundary Scan Chain (BSC). JTAG (IEEE 1149.1 standard) was designed to be able
to access BSC by means of a virtual register (Boundary Register) connected to its input and
output pins. It is possible to alter the contents of BSC and hence alter the current signals on the
pin-outs by serially shifting in data into the Boundary Register. At the same time, bits from the
Boundary Register are serially shifted out to the output pin of JTAG controller. Because of the
common occurrence of the JTAG port on current devices such as CPUs and FPGAs, there has
been fairly extensive work on attempting to perform fault injections via this technique. The most
sophisticated solutions for performing JTAG fault injections employ an FPGA as the fault
injector programmed to perform experiments with a predefined set of faults [Portela-Garcia
2007]. This solution is unobtrusive as it does not require any additional hardware on the target
system. Further, the performance is not degraded by including host computer processing in the
fault injection process.

To summarize the review of JTAG fault injection systems:

 Most of the solutions took advantage of implementing additional logic on the target
system; this solution is obtrusive and it is not always possible to alter target system
hardware.


 Systems that did not employ additional hardware were purpose-specific or CPU-specific;

it would be hard to port these types of fault injection systems to a new system.

 None of presented solutions sufficiently addressed the problem of performing fault
injections on real-time systems.

The approach taken in this research was to optimize the fault injection “scan-in” process. As a
test platform the JTAG fault injection ideas used the same FPGA development board as was
used for the X-bus fault injections to implement additional fault injection capability. The
boundary scan register of the Actel 42MX FPGA holds the values of bits on each input and
output line. By accessing the target JTAG interface a fault injection can be performed by
shifting data into the interface that subsequently disrupt the boundary scan register.

The implementation of the JTAG fault injection module is driven by the idea of inserting only a
few bits into the boundary scan register, instead of reading and writing the full 198 bit register
then altering it and shifting it back, as this would be time consuming. In addition, the duration of
an executed fault injection could trip one of the watchdog timers or violate the real-time
properties of the system under test.

The boundary scan register is implemented as a serial chain, thus by shifting one bit into the
target JTAG interface, the rest of the bits already located in the register are shifted as well. By
this process, a very short sequence of bits could be passed to the interface that would provide
modification of the required input and output pin values that are the targets of the fault injection.
Therefore, the desired corruption is achieved in a fraction of the time that a typical JTAG fault
injection technique would require.

4.12.1. Specifications

The JTAG interface is represented by a TAP and hardware logic that performs halting of the
system, setting up breakpoints, and manipulating the boundary scan register. The TAP
contains five pins: Test Data In (TDI), Test Data Out (TDO), Test Clock (TCK), Test Mode

74

Select (TMS) and Test Reset (TRST, active low). Since there is only one pin available for each
line, the protocol is inherently serial-like. The required actions are performed based on the
combinations of inputs TMS and TDI at each clock cycle. Implementation of the TAP controller
state machine is illustrated in Figure 4–10. Its functionality will be described in the following
paragraphs.

Figure 4-10 JTAG TAP controller test logic diagram

The JTAG implementation present on the Actel FPGA supports all mandatory IEEE 1149.1
instructions and consists of the TAP controller, a 4-bit instruction register, and two test registers.
One test register serves as a 1-bit bypass register for connecting TDI input straight to TDO
output for testing the correctness of connections within the internal components. The second
test register is a 198- bit Boundary Scan Register (BSR) that contains bit values of all digital
input and output signals inside the logic board. This register can be connected between TDI
and TDO and bit values can be shifted into BSR through TDI, while at the same time shifted out
and put on the TDO output. BSR is used for capturing data on the input signals, forcing fixed
values on the output signals and selecting the direction and drive characteristics. The names of
the inputs are described in a separate file [Actel 2009].

The Instruction register (IR) is a 4-bit register (without parity) that determines the function that is
being performed by the TAP controller. There are five functions supported by the Actel FPGA
TAP controller, but for the purposes of implementing a JTAG fault injection module only three of
these functions are required.

The first function that must be loaded into the IR is the SAMPLE/PRELOAD (0001) function. It
initializes BSR output cells before they can be connected to the boundary scan chain of the
FPGA. It is necessary that this function be invoked before performing the bit corruptions.
Otherwise, the output signals might be driven to a random state when scanning of the boundary
begins.

75

The BYPASS function simply connects TDI and TDO through a 1-bit bypass register. It avoids
connecting the 198-bit scan register and serves for checking the correctness of the connection
of certain components. It is not necessary for the actual fault injection, but it might be a useful
feature to be able to check for correctness of the internal connections before executing the
actual fault injection.

The function that actually enables the BSR and connects it between TDI and TDO is EXTEST
(0000). During each clock cycle that this function is present in the IR, the bit present on the TDI
input is shifted into the BSR and the lowest bit of the register is shifted out to the TDO output
pin. The operation of the TAP controller is based on a simple state machine, illustrated in
Figure 4–11.

Figure 4-11 JTAG TAP controller state machine

The state machine inputs are obtained from the TMS input port on the FPGA board and
determine progress through the graph. Once the graph has reached the states SHIFT IR or
SHIFT DR, the input from TDI is shifted into the IR or BSR, depending on the current state. By
this implementation a function code can be shifted into the IR for selecting the desired function,
or a bit can be shifted in the BSR for performing the desired corruption.

76

4.12.2. Implementation

The design of the JTAG fault injection module must follow the specifications of the TAP state
machine and execute the correct bit sequence in order to achieve the desired functionality of the
target JTAG interface. From an overview perspective, at first the state machine must be reset,
followed by inserting the PRELOAD/SAMPLE instruction into the IR for initialization of the BSR.

The next step is to insert the EXTEST instruction in order for the fault injection module to grant
access to the BSR. At this point the fault injection can be executed. The sequence must be
concluded by returning the TAP state machine to the Run–Test/Idle state.

As required, the JTAG fault injection module contains five signals for communication with the
target JTAG interface:

TDI Input signal from the target JTAG interface

TDO Output signal to target JTAG interface

TMS Output signal that operates the target JTAG TAP state machine

TCK Output clock signal driving the JTAG target interface

TRST Output signal that resets the JTAG interface; redundant as the same functionality

can be achieved with the TMS signal

Additionally, the JTAG fault injection module requires six signal lines to connect it to the main
FPGA control module, and one signal line that is connected directly to a button on the
development board, as follows:

CLK IN Input clock of the module.

START FI Input signal that initiates the fault injection.

BEATS FI Input value that specifies the number of clock cycles before the fault

injection is started.

DATA TO NIOS Output value to the FPGA control module representing the data that was
gathered by observing the signal values present on the output pin of the
target JTAG interface.

TRST Output signal that resets the JTAG interface; redundant as the same

functionality can be achieved with the TMS signal.

SENDING DATA Output signal to the main FPGA control module informing it that the fault
injection has been completed and that the output data is ready.

The block diagram representation of the implemented JTAG fault injection module is illustrated
in Figure 4–12. The representation contains all of the described signals, as well as additional
signals that were used for debugging purposes.

77

Figure 4-12 Block diagram representation of the JTAG fault injection module

The functionality of the fault injection module is based on a state machine that goes through
several states (Initialize, Reset, Preload, Extest, Write, Done). The module is set up and
counters are cleared during the Initialize state. When the JTAG fault injection module receives
a START FI=1 signal from the test interface module, it moves to the Reset state, which resets
the target JTAG interface so that fault injection can begin. This state is necessary for achieving
proper initial values of all signals and variables, especially for performing multiple subsequent
fault injections when the internal signals could still contain residual data. During the Preload
and Extest states, the interface follows a sequence that guides it through the state machine of
the host TAP controller by outputting the appropriate TMS bit signals.

At first, the system must reach the state SHIFT IR, after which the proper sequence
representing the PRELOAD/SAMPLE instruction is output to TDO and shifted into the IR of the
TAP controller. The sequence then continues to return to the Run Test/Idle state, after which it
is directed back to the SHIFT IR, where the sequence for the EXTEST function is shifted into
the IR. Afterwards, the sequence reaches the idle state again.

At this point, the target JTAG interface is set up to receive the transmission from the developed
JTAG fault injection module. Therefore, the TMS signal guides the TAP state machine to reach
the SHIFT DR state. During this state, the bit value presented on the TDO output signal is
shifted into the BSR, while at the same time an output bit from the BSR is placed onto the TDI
input signal. The interface remains in this state for the number of clock cycles represented by
the number of bits contained in the corruption sequence.

The proper sequencing and synchronization of each step is achieved by utilizing internal
counters implemented within the JTAG fault injection module. One counter is used for
propagating through the states by selecting the proper value for the TMS signal, while a
different counter is used for counting the number of bits remaining to be inserted into the IR or
BSR. Each counter also serves as an index for selecting the current TDO and TMS output bit
values transmitted to the target JTAG interface.

78

4.13. References

[Actel 2007] Actel. Actel 42mx36 BSDL File. 2009 .
http://www.actel.com/documents/bsdl/42mx36_cqfp208.bsd (accessed
2010).

[VanTreuren 2007] B.G. VanTreuren, A. Ley. "Jtag System Test in a Microtca World." IEEE
International Test Conference. ITC'07, October 2007. 10-10.

[Tovar 1999] E. Tovar, F. Vasques. "Real-time Fieldbus Communications Using
Profibus Networks." IEEE Transactions on Industrial Electronics 46
(1999): 1241-1251.

[Santos 2003] L. Santos, M.Z. Rela. "Constraints on the Use of Boundary-Scan for Fault
Injection." In Lecture Notes on Computer Science, 39-55.
Berlin/Heidelberg: Springer, 2003.

[Portela-Garcia 2007] M. Portela-Garcia, L.-O. Celia, M. Garcia-Valderas, L. Entrena. "A Rapid
Fault Injection Approach for Measuring Seu Sensitivity in Complex
Processors." 13th IEEE International On-Line Testing Symposium.
IOLTS'07, July 2007. 101-106.

[Folkesoon 2003] P. Folkesson, J. Aidemark, J. Vinter. Assessment and Application of
Scan-Chain Implemented Fault Injection. Technical Report, Goteborg,
Sweden: Chalmers University of Technology, 2003.

[Gil 1997] P. Gil, J.C. Baraza, D. Gil, J. Serrano. "High Speed Fault Injector for
Safety Validation of Industrial Machinery." 8th European Workshop on
Dependable Computing. Goteborg, Sweden: Chalmers University of
Technology, 1997.

[Pignol 2007] Pignol, M. "Methodology and Tools Developed for Validation of Cots-
Based Fault-Tolerant Space-Craft Supercomputers." 13th IEEE
International On-Line Testing Symposium. IOLTS'07, July 2007. 85-92.

[Chakraborty 2007] T.J. Chakraborty, C. Chen-Huan, B.G. Van Treuren. "A Practical
Approach to Comprehensive System Test and Debug Using Boundary
Scan Based Test Architecture." IEEE International Test Conference.
ITC'07, 2007. 1-10.

79

5. DEVELOPMENT OF THE UVA PLATFORM INDEPENDENT FAULT
INJECTION ENVIRONMENT

5.1. Introduction

As described in Section 5 of Volume 1, fault injection can be used at various abstraction levels
depending on the information available about the system and at which stage of the design
process the method is applied. Fault injection techniques can be divided into simulation-based
and physical techniques depending on whether faults are injected into a model of a system, or
into an actual physical system or prototype. The advantage of simulation-based fault injection is
that it can be used early in the development process before the actual system is available,
which facilitates early discovery of design deficiencies. Physical fault injection is important since
it allows the actual implementation of the system to be tested.

While fault injection as a dependability assessment method has been applied to many systems
over the past 30 years, the effort described in this report is relevant and notable for several
reasons. First, the methods and techniques UVA developed were specifically designed to be
applicable to a variety of digital I&C system technologies. Second, the benchmark I&C system
used in this study was not designed or developed with fault injection in mind; therefore, the
system presents the same challenge an independent assessor would encounter if employing a
fault injection methodology on a comparable digital I&C system.

Most fault injection tools have been developed with a specific fault injection technique in mind
targeting a specific system, and using a custom-designed user interface. Extending such tools
with new fault injection techniques, or porting the tool to new target systems is usually a
cumbersome and time-consuming process. Since one of the objectives in this research was to
apply fault injection to digital I&C systems of the type found in NPPs, the need for a flexible and
portable fault injection environment is a requirement for efficient application of the UVA fault
injection based dependability assessment methodology. Most importantly, the work on
researching and developing appropriate fault injection techniques and environments for digital
I&C systems produces a body of work that the NRC and the nuclear industry can use to
establish a basis for the development and standardization of fault injection methods. The work
presented in this Section has as its aim to explore, develop and prototype such tools to provide
a better understanding of how physical fault injection can be effectively and efficiently deployed
to contemporary digital I&C systems.

5.2. Motivation and Background

Recent tools have addressed the issues of extension and portability to different target systems,
but none to digital I&C systems. The GOOFI tool [Aidemark 2001] is the most advanced
portable fault injection environment found in the fault injection survey (Section 5 of Volume 1).
GOOFI is designed to be adaptable to various target systems and different fault injection
techniques and is highly portable between different host platforms since it relies on the Java
programming language and a SQL compatible database. The most recent version of the
GOOFI framework supports four different techniques for fault injection. They are 1) software
implemented fault injection, 2) scan-chain implemented fault injection, 3) fault injection via two
on-chip debug interfaces known as background debug mode (BDM) and Nexus (a recently
introduced standard interface), and 4) NFTAPE [Stott 2000], a University of Illinois fault injection
tool that relies on available lightweight fault injectors, triggers, monitors and other components
to facilitate porting the tool to new target systems as well as adapting it for different fault
injection techniques. The Xception tool [Kanawati 1995(b)] is implemented using a modular
design, and has recently been extended to include different types of fault injection techniques.

80

While these tools embody significant fault injection and analysis capabilities (in particular
GOOFI), they are not optimally designed for industrial-based digital I&C systems. In particular
they are (1) inadequate with regard to the interface needs of industrial I/O digital and analog
signals that are used by the digital I&C systems (e.g. 24 volt digital I/O signals), and (2) lack the
means to effectively and efficiently accomplish system integration tasks that are required for
automated fault injection. Based on integration experiences with the DFWCS (reported in
Section 7 of Volume 1), systems integration was a significant task in the overall work effort.

Reviewing the architectural characteristics of Benchmark System I and Benchmark System II, a
portable and flexible target independent fault injection environment for digital I&C systems was
a valuable asset in this exploratory research effort. Because this was an exploratory research
effort, it was recognized from the outset that having a fault injection environment that is flexible
and modular allows unexpected engineering problems that may be encountered to be resolved
without significant redesign. The Universal platform Independent Fault Injection (UNIFI) fault
injection environment was developed in this research. A major objective of the UNIFI
framework is to provide a user-friendly fault injection environment with a graphical user interface
and an underlying generic architecture that assists the user when adapting the tool to new
digital I&C target systems and new fault injection techniques.

5.3. Requirements for Platform Independent Fault Injection
Environment

As noted in previous Sections, the main purpose of a fault injection environment is to provide
the necessary functional environment to perform controllable, repeatable, and automated fault
injections in accordance with the fault injection methodology and the governing FARM model.
The necessary functional requirements are:

 Support for various types of fault models
 Support for operational profile generation
 Accurate control, timing and measurement
 Fault list generation
 Data acquisition and analysis of results.

In addition to the basic functional requirements for fault injection it was recognized that effective
fault injection environments must also be practical, adaptable to changing technology, and
supportable. Early in the development of the fault injection environment several development
goals were outlined for the fault injection environment to allow for technology transfer to a
variety of industries. These goals were:

Flexible to a Wide Variety of Applications – Digital I&C systems and supporting
communication networks are pervasive and varied in NPPs. The ability to adapt to different
systems via modular plug-ins and use of pre-defined libraries is a desirable attribute for
acceptance testing.

Easy to Use and Familiar to the Engineering Test Culture – Testing and fault injection
environments for which the engineering community is unacquainted have little chance of
technology transition beyond the academic and research world. Therefore, adopting a standard
or an open source model that is widely used by the engineering community is needed if fault
injection is to be used by the nuclear Industry.

Modular – There must be support for a variety of modules that are most often used in
configuring target systems to fault injection test environments. These modules include functions

81

such as signal interfaces, file operations, sequencing of event triggers, timing triggers, data
recording, and data filtering.

Managed Under Configuration Controls – The price paid for automated fault injection and
test environments is large amounts of diverse data. Therefore, a means to manage the data
and establish test configurations, assign relational operators, and retrieve data according to its
relational properties are all requirements for effective management of fault injection. Especially,
the ability to repeat and reproduce the effects of fault injections result by reloading the
environmental and fault injection conditions onto the fault injector controller to allow “interesting”
results to be confirmed with further testing.

Support a Variety of Fault Injection Techniques – Digital I&C platforms of different make and
type may require different fault injection techniques depending on the technology used, the
accessibility of system software, and the type of faults that are germane to the system. A fault
injection environment that allows a “plug-in” template application to accommodate different fault
injection methods is an appropriate feature to aid the user in configuring and using the fault
injection environment for their specific needs.

Due to the complex nature of fault injection and the need for tight coordination of processes that
are used in automated fault injection testing (e.g. I/O interfaces to the target system, data
acquisition from the target system, initialization and program loading on the target computer,
error logging, etc), a cross platform toolset that currently provides support for instrumentation of
digital embedded systems would be the most effective path to ensure portability to different
digital I&C systems. To achieve the above goals, the National InstrumentsTM LabVIEW
[Corporation 2011] tool was selected as the basic toolset for the UNIFI environment. The
intrinsic cross-platform capability of LabVIEW allows for a generic architecture comprised of
components to perform the aforementioned tasks. Switching between different target systems
involves modest effort, which is primarily focused on I/O issues. Because different systems and
technologies may use a variety of fault injection techniques that vary between target system
chip architectures, some customization is necessary, but the flexible nature of UNIFI and the
LabVIEW interface reduces the amount of time from conception to implementation.

LabVIEW is a program development application, much like various embedded programing
languages like C, C++, or JAVA development systems. However, LabVIEW is different from
most development systems in one important respect. Other program development systems use
text-based languages to create lines of code; LabVIEW uses a graphical programming language
(G) to create programs in block diagram form. LabVIEW uses terminology, icons, and ideas
familiar to scientists and engineers and relies on graphical symbols rather than textual language
to describe programming actions. LabVIEW has extensive libraries of functions and subroutines
for most programming tasks. More importantly, LabVIEW includes libraries of functions and
development tools designed specifically for instrument control, data measurement, and
acquisition. LabVIEW programs are called virtual instruments (VIs) because their appearance
and operation emulate actual instruments. They are analogous to functions from conventional
language programs. These VIs have both a function interface and a source code equivalent,
and accept parameters from higher-level VIs.

With these features, LabVIEW promotes and adheres to the concept of modular programming
or function block programming, which is widely used in digital I&C programming environments.
An application is divided into a series of tasks, which can be further subdivided until a
complicated application becomes a series of modest subtasks. A virtual instrument (VI) is built
to accomplish each subtask and then these Vis are combined with VIs on another block diagram
to accomplish the larger task. Because each sub-VI can be executed by itself apart from the
rest of the application debugging is much easier. Furthermore, many low-level sub-VIs often

82

perform tasks common to several applications, so that a specialized set of sub-VIs can
developed for future applications.

In summary, the feature rich graphical programming nature of LabVIEW, its extensive libraries
of digital, analog, file I/O, signal processing, measurement modules and its broad platform
support meet the fault injection requirements listed above. In addition, LabVIEW support for a
variety of analog and digital input and output hardware system provides widespread connectivity
to embedded digital I&C systems.

5.4. Overview of UNIFI

The objectives of UNIFI are to provide 1) a user-friendly fault injection environment, and 2)
support for adaptation to new target systems and new fault injection techniques. To achieve the
first goal, the UNIFI graphical user interface has been designed to be more or less self-
explaining such that fault injection experiments with different fault injection plug-ins are carried
out in a consistent manner.

The second objective is achieved by providing a plug-in-based framework. New techniques and
target systems are added through the UNIFI-LabVIEW plug-in interface. A major advantage of
this architecture is that a new plug-in can be added to UNIFI without the need of a regression
test since the old system will not be affected by bugs in the added plug-in. UNIFI does not have
to be recompiled when a new plug-in is added and the new plug-in will automatically be found
when UNIFI is restarted in the LabVIEW environment.

Figure 5-1 shows the UNIFI tool with different plug-ins and how UNIFI interfaces with a target
system and target system software development environment. In the UNIFI framework, the
various fault injection plug-ins, the database that stores information, and results from the
experiment are located within the host computer as shown in Figure 5–1.

The operational profile generator module takes a special pre-processed input file from the
TRACE thermo-hydraulic simulation tool that provides all of the sensor data that the target
system would acquire in its operational setting. This includes sensor data for nominal, off-
nominal, and accident scenarios.

The experiment set up and control plug-in function selects fault injector(s), configures the fault
injectors, and initializes the UNIFI tool for a fault injection campaign.

The fault list generation plug-in module generates a fault list that is parameterized with fault
models of interest, locations of fault injection on the target system, type of fault injection, and
when the fault is injected. This fault list is then loaded into a file for the experiment control plug-
in to access during a fault injection campaign. The inputs to the fault list generation plug-in
module are dependent on the type of fault injection selected. Typically for processor based fault
injection the map files from the target system compile and link process are used as the inputs.
For JTAG fault injection the boundary scan registers map from the IC vendor are used. For
communication-based fault injection, the control and data packet structure of the communication
messages is used to identify where and when to corrupt message traffic.

83

Figure 5-1 UNIFI fault injection environment

The real time data monitoring and collection module interfaces to the target systems diagnostics
and error monitoring server to collect error messages and error logs after the fault is injected
into the target system. These error logs and timing files are stored in a database that allows the
error log to be correlated with the experiment control information such as the type of fault that
was injected, the operational profile conditions, time the fault was injected, where the fault was
injected, etc. This allows experiments to be reproduced consistently if needed. In addition, the
outputs and feedback loops of the target system are sampled by LabVIEW to get a complete
time response of the target system for each fault injection experiment.

The fault injection engine plug-in module allows different types of fault injection techniques to
the adapted to the UNIFI tool. At this phase of research plug-in modules have been developed
for ICE based fault injection of a Pentium Processor (Benchmark System I), the X-bus fault
injector for corrupting message and control traffic on the Benchmark System I.

Switching between different target systems involves minimal effort, which is primarily focused on
fault injection plug-ins, data monitoring, and the I/O subsystems. Because UNIFI does not
support all target system chip architectures, some customization (e.g. designing a new plug-in
module) may be necessary. However, the flexible nature of the UNIFI tool reduces the amount
of time from conception to implementation.
Fault injection requires the joining together of several processes and coordinating these tasks to
achieve the overall goal of automated fault injection. An example is the coordination of
processes required for configuration, fault injection set-up, fault injection campaign
management, and data acquisition and monitoring. With UNIFI, generic templates have been

Error Logs

I/O DAQ
System

Target System
Software

Development

Experiment Set up and
Fault Injection Control

Operational Profile
Generator –TRACE

Interface

Real Time Data
Monitoring

Fault List generation
and selection

Fault Injection
Plug‐in

Target System

Fault
Injector

Plug in Templates

Code and Data
Map Information

Link and
Download

Fault
injection

Sensor
Inputs
and
Outputs

Data

Acq

LabVIEW

84

designed for important processes to assist the user in adapting the UNIFI tool to their target
system.

5.5. Configuring the UNIFI Tool to a Target System

The configuration phase of UNIFI involves adapting the UNIFI tool to the target system. UNIFI
uses LabVIEW building block structures in the graphical user interface to aid the user in the
definition and adaptation of UNIFI to a particular target system. There are three steps to
adapting a new system to UNIFI.

(1) Interface the digital I&C system to UNIFI through the I/O interface plug-in.

(2) Describe the characteristics of the target system to UNIFI. This typically involves

enumerating the processors used in the system, and defining the programmer’s
processor model to UNIFI.

(3) Select and configure the fault injection modules to be used on the target system.

(4) After these steps have been completed the target system will be in a controlled test

environment. It is important to note that additional tasks are required to set up and
conduct a fault injection campaign.

5.5.1. Step 1: Configuring the I/O Interface Module

The configuration phase is for adapting the UNIFI to the target system. The I/O Interface
module provides the building blocks to connect UNIFI to the Target system. The I/O Interface
module can be generalized as consisting of three functional components in UNIFI (shown in
Figure 5–2).

Figure 5-2 Functional representation of the I/O interface module

The I/O interface module or template is a collection of LabView block diagrams that provide a
software/hardware interface between UNIFI and the target I&C system. As shown in Figure 5-2,
the module performs two functions. First, it converts the sensor and signal data from the
operational profiler tool into digital and analog signals, which are fed into the target system test
system. Second, it collects and logs response data such as trip alarms, failure event flags,

85

feedback signals from the benchmark I&C system. These signals and events are recorded
using the recording functions in the measurement and recording plug-in. These tasks are
accomplished using a special library of VI functional blocks provided by the LabView vendor,
National InstrumentsTM. By using these functional I/O blocks it is possible to interface with a
wide variety of digital I&C systems through the types of digital and analog signals typical of a
plant environment.

With UNIFI the National InstrumentsTM PXI-1033 data acquisition system was used to provide a
physical interface between UNIFI and the target benchmark systems. Figure 5–2 shows the
physical connections between UNIFI host computer and the PXI-1033 data acquisition system
and the target digital I&C system. The PXI-1033 performs the typical D/A and A/D conversion
functions, variable signal sampling, as well as the industrial digital input and output conversions
(see Figure 5–3). The UNIFI environment does not require the XI-1033 data acquisition system;
consequently, the end-user can employ their particular data acquisition system. The only
requirement with UNIFI is that data acquisition systems must have a LabView VI interface. This
is because in UNIFI there is a tight coupling between the hardware (PXI-1033 DAQ boards) and
I/O function block modules (I/O data acquisition VI modules) in LabVIEW.

Since LabVIEW monitors all signals coming in and out of the D/A and A/D boards, UNIFI
provides a non-intrusive means of observing sensor and feedback signals. There are also built-
in safeguards that prevent accidental system damage (e.g. exceeding signal voltage levels).
The sampling rate of the I/O data can be varied to match or oversample the sampling rate of the
digital I&C system under test to ensure no loss of data and accurate operational environment.

5.5.2. Step 2: Configuring UNIFI for a Specific Processor Type

In UNIFI the information about the target processor is independent of the target application. For
a target system, a list of processors is downloaded to the UNIFI database. More than one
processor type can be downloaded into UNIFI for a given target system, thereby allowing a
family of processors to be defined for a given target system. For a given processor plug-in, a
textual description of the target processor registers are downloaded into the plug-in database
table when the database is created for the first time. The processor information is grouped and
defined by: <location>, <CPU name>, <register type>; <register name>; < read access>; <write
access>.

Location refers to where the processor is in the target system, and what its function is. For
instance, the same processor may be used for different functions in target system, in one case it
might be a computational processor, and in another case it might be an I/O processor.

CPU name specifies the make and model of the processor (e.g. Intel Pentium II).

Register Type refers to how the register or resource is labeled in the processor architecture.
Types are typically user, hidden, privileged, memory mapped I/O, etc.

86

F
ig

u
re

 5
-3

U

N
IF

I p
h

ys
ic

al
 in

te
rf

ac
es

 t
o

 t
h

e
ta

rg
et

 s
ys

te
m

87

Register name refers to the mnemonic name of the register (e.g. R1, EDX, etc.).

Read access and write access refer to read and write accessibility of the registers during
normal operation.

Information about where the code and data segments of the application are located in memory
is defined in the target system linker file and map file. The memory map file contains
information about the different memory segments used by the target application (e.g., at which
address interval the program code is located). The linker file and map file also contain
information about memory addresses and names of data variables in the target application. The
fault list generation and selection plug-in uses this information together with the target system
memory layout map to produce a structured view of the processor, I/O, and memory resources
on the target system that can be used in a fault injection campaign.

By using all of this processor-specific information stored in the plug-in database together with
the memory map, the UNIFI GUI presents all of the necessary information to execute a fault
injection campaign.

5.5.3. Step 3: Configuring and Selecting a Fault Injector

The final step in configuring UNIFI for a target system is to select and interface an appropriate
fault injection technique for the target system. As noted in Volume 1 Section 5, there are many
different fault injection techniques one could use on a digital I&C system. Therefore, the fault
injection environment must provide necessary functions and an API to allow the end-user to
efficiently interface a fault injection technique into UNIFI. Experience with integrating fault
injectors into digital I&C systems indicates that a generic template can be designed to assist the
user in this task. The plug-in template has been designed with necessary modules to aid the
user in the design of the interface.

Figure 5–4 shows the basic interface used in UNIFI. The modules in Figure 5-4 are available as
LabView functions. These modules typically are file open, file close, file return, string to array,
call function, and return function. Referring to Figure 5–4, the modules enclosed by the dashed
line frame are functions typically used in the fault injector API. The command script function
takes ASCII commands from the UNIFI interface and converts them to fault injector specific
commands. The fault list is the target specific fault list for the selected fault injector. The fault
injector API function provides the appropriate signaling interface, command interface, return
status, buffering functions with respect to the fault injector API.

88

Figure 5-4 UNIFI interface for fault injection

UNIFI uses basic decision tree data structures in the graphical user interface to aid the user in
defining a fault injection campaign during the set-up phase. From the GUI commands and click
boxes, locations to observe and inject faults in can be selected. The user must create these
tree structures in the configuration phase by providing information about the target processor
(e.g. accessible registers) and the target application (e.g. where the application is located in
memory).

5.6. Set up of Fault Injection Campaigns

The set-up phase is used for setting up fault injection campaigns and generally involves three
steps in UNIFI. In the first step, the user enters data about the campaign in the campaign setup
tab in the master controller window (see Figure 5–5). Then, specific information about where
and when faults should be injected are defined in the fault injection setup tab. Finally, the
registers and memory positions the user wants to observe are defined in the observation setup
tab.

89

F
ig

u
re

 5
-5

S

cr
ee

n
sh

o
t

o
f

M
as

te
r

C
o

n
tr

o
lle

r
w

in
d

o
w

90

From the menus in the GUI, fault injection campaigns can be configured by starting the
corresponding plug-in for a chosen target system and fault injection technique. The campaign
name, the number of experiments in the campaign, and the time-out value for the experiments
must also be entered. A fault injection experiment can be terminated when a time-out value has
been reached, an error has been detected or the execution of the workload ends, whichever
comes first. The workload may consist of a program that either terminates or is executed as a
cyclical task.

A fault injection campaign requires a reference run (fault-free run). A reference run from an
earlier campaign can be reused by pressing the ‘Select’ button to the right of ‘Use Saved PC’
Trace. The user can select a reference run from a campaign using the same workload and
settings as the one being configured. When the campaign is saved, the program counter (PC)
trace (the values of the program counter logged during the execution of the reference run) and
logged registers from the old reference will be copied to a new reference experiment belonging
to the new campaign. It should be noted that the PC trace function requires some form of real
time trace extraction from the running target system. This is usually accomplished by using an
ICE machine or interactive debugger tool.

In some cases, target I&C systems that employ older processors do not support interactive
debugger tools or the use of interactive debugger compilers. In these cases, the PC trace
function can be used to store error log information from the target system. In these instances,
the target system error log buffer space is cleared before a fault injection, and a clean error log
file is created before the fault injection campaign begins. These reference fault free error log
files are used to compare against error logs where fault injection occurred.

The user can choose between three fault injection modes:

Normal User-selected memory is saved after each control loop and user selected

registers are saved at the end of the execution.

Normal and Trace The program flow is saved in addition to the Normal mode.

Detailed The program flow and user-selected registers and memory locations are

saved after each executed instruction.

At present, only the normal mode has been implemented and tested. It should be noted that a
significant amount of data is stored and transferred with Trace mode and Detailed mode, thus
they have the potential to impact real time performance of the target system.

The user may also choose a pre-injection analysis to improve the efficiency and maximize the
error acceleration of the fault injection experiment. The user can also choose whether to inject
single or multiple bit-flip faults. Pre-injection analysis and error acceleration are discussed in
detail in Section 8.

5.7. Fault Injection Set Up

The fault injection set up tool is used to create the detailed fault lists for the fault injector.
Figure 5–6 shows the process for generating a fault list in UNIFI. As shown, there are two basic
modules to the fault injection set up tool: a front end GUI for defining the fault injection
parameters, and a backend parser module to parse the map files from the target system
compiler. The fault injection set up tool was designed with two separate modules to enhance
portability between digital I&C platforms.

91

The front end GUI is the high level interface that contains the relatively established fault
injection parameters that are used on most digital I&C systems. These include type of fault,
fault mask, memory locations, etc. Occasionally, some modifications may be necessary to the
front end GUI for particular target processor. In these cases, the GUI is easily modified due to
its Java based designed. The open source free-ware Net-Beans Java creation tool was used to
create the front end GUI.

The back-end module is specific to the target system native object code and map file format that
is generated from the compiler. This information nearly always changes from one digital I&C
system to the next.

Figure 5-6 Process for generating a fault list using UNIFI

5.8. UNIFI Master Fault Injection Controller and Observation GUI

The master fault injection controller (see Figure 5–7) is where fault injection campaigns are
initiated and executed, and the target system responses are monitored. The “master” controller
takes information from the other fault campaign and fault injection set up GUIs to provide the
necessary information to execute a fault injection campaign. The Master GUI provides the
following functionality:

 Target system controls - Controls the noise levels on the sensor inputs, censor time of

the fault injection experiment, and start and stop of fault injection experiment.

92

 Target system input and output monitoring – Graphical display of the monitored digital
outputs and inputs, analog sensor inputs, and recording.

 Fault list selection – Select a generated fault list file from a directory of fault lists.

 Fault injector status information – Provides health status on the fault injector, progress

on the fault injection campaigns, and when a fault is injected.

 Operational profile data files – Selects an operational profile file from a directory of

generated profiles.

Figure 5-7 Screenshot from single fault injection trial performed by UNIFI master GUI

93

In addition to these basic functions, the Master GUI provides timers and trigger functions to
assist the user in coordinating the sequencing of processes to conduct a fault injection trial. File
manipulation functions like file open and file close are used to read and write system response
data and error logs from the target system.

5.9. Configuring the Benchmark System for Fault Injection

The modular and function block nature of UNIFI allows various system integration and
configuration tasks to be executed in an incremental manner allowing testing of each integration
task. This development effort consisted of two separate tasks. The first task was configuring
the benchmark system for the RPS mode of operation. The second task was integrating the
benchmark system into UNIFI environment to ready the system for fault injection.

5.9.1. Benchmark System Test Configurations

The benchmark system was organized in two different configurations to implement the RPS
application described in Section 3. The first configuration shown in Figure 5–8 was suggested
by the vendor. The second configuration shown in Figure 5–9 was implemented to more
accurately reflect the distributed nature of a four processor RPS configuration. Both
configurations are described in the following sections.

Figure 5-8 Configuration 1 of Benchmark System I

SLLM SLLM SLLM SLLM

PRO
C

CO
M

M

PRO
C

PRO
C

SC

RS485 X‐bus cable

Optical X‐bus
connectors

A
na In

A
na In

D
IG

 In

D
ig In

D
IG

 out Sensors and
Actuation signals

To Labview PXI

To Monitor
Unit‐ Ethernet

ICE Machine
Probe

D
IG

 out

I/O signals

Channel A
Channel
B, C, D

94

Figure 5-9 Configuration 2 of Benchmark System I

5.9.1.1. Benchmark System I Configuration 1

In configuration 1, the RPS channel A processor is isolated from the other channel processor by
a split component rack. The split component rack is supplied by independent power on the left
and right side. RPS Channel A has a communication processor that distributes the channel A
input sensor signals to channels B, C, and D by X-bus.

RPS channel A has its own set of analog inputs for the coolant flow, SG pressure, and Hot leg
Pressure process variables. These inputs operate on a 4-20ma current loop, which is typical for
NPP I&C systems. There is one analog signal for each process variable for a total of three
analog inputs. Digital inputs were not used in this configuration.

The digital outputs for RPS channel A are the trip signals for each monitored process variable
(i.e., coolant flow, hot leg pressure, and steam generator pressure) resulting in three digital
outputs. The digital output signals are 24V. The digital outputs and analog inputs are mapped
to the channel A processor control. In the event channel A becomes faulty and is detectable,
the outputs of both I/O modules are disengaged.

On the right side of the split rack, a single processing module emulates RPS channels B, C, and
D. Analog inputs were mapped to each of the emulated channels resulting in three analog
inputs for each channel for a total of nine analog signals under B/C/D processor control. Digital
outputs were mapped in similar fashion as channel A. Each emulated channel produces three
digital trip alarms - one for each monitored process variable. There are nine trip alarm digital
signals for channels B, C, and D.

In addition, a communication processor that interfaces to the service monitor unit was located in
the right side of the rack. This communication processor receives error messages from the
benchmark system and, under certain operating modes, allows service messages to be
commanded to the benchmark system. The service monitor allows observation of the
benchmark system under test. Monitoring involves observing the benchmark system on the
basis of the consistency of the observed behavior with the expected behavior of the system (or

Sensors
Actuation signals
To/From Labview

SLLM SLLM SLLM SLLM

PRO
C‐A

PRO

C‐C

PRO
C‐B

PRO
C‐D

SC

SBG3

SBG4

RS485 X‐bus cable

Optical X‐bus
connectors

A
na In

A
na In

A
na In

D
IG

 O
ut

D
IG

 O
ut

D
IG

 out

Sensors
Actuation signals
To/From Labview

To Monitor
Unit

ICE Machine
Probe

Channel A

Channel B

Channel C Channel D

95

module). Typical information that can be observed by the service monitor is fault and failure
messages, signal values, tracing events, and signals.

Another important function of the service monitor is related to the operational control of the
benchmark system. In certain operating modes (parameterization or test mode) it is possible to
modify certain parameters in the RPS function blocks, change operating modes, set the values
of signals and messages, read/write from memory, and read data from the I/O modules.

As shown in the Figure 5–8, the channel A processor was the target for fault injection by ICE
based fault injection. X-bus bus fault injection is not shown, but was applied on each leg of the
RS485 X-bus cable.

5.9.1.2. Benchmark System I Configuration 2

In configuration 2 (see Figure 5-9), the RPS application is distributed over two component racks
in the benchmark system chassis. The reason for this configuration option is that each channel
of the RPS has its own processing module and its own separate X-bus communication channel
– much like a conventional four-channel RPS. Sub-rack 1 contains the components for RPS
channel A. The processing module for channel A executes the function diagrams for channel A.

The Channel A analog inputs are forwarded to channel A from the channel B analog input
module. The reason for this is that the test platform did not have a third analog input card to
use with channel A. The same is true for the digital output module of channel A. As in
configuration 1, the channel A analog inputs are the same three monitored process variable of
the RPS – coolant flow, hot leg pressure, and steam generator pressure.

The second sub-rack is a split component rack. The left side contains the processors for
channels B and C. The analog inputs and digital outputs for channels B and C are under control
of processor B. Each channel receives independent analog signals for each of the monitored
process variables. The right side of the split rack contains the processor for channel D, the
analog input and digital output modules for channel D, and the communication processor for the
service monitor.

The X-bus communication network is mapped as follows. Channel A is networked to Channel
B, Channel C is networked to Channel D, and Channel B and C are connected together to form
a complete network. Normally, a full point to point network topology would be used in a RPS
configuration, however, there were not enough X-bus SLLM connection modules to achieve a
point to point configuration.

5.10. Integrating the Benchmark System into the UNIFI Environment

The integration of the benchmark system into the UNIFI fault injection environment was aided
significantly by the input and output data acquisition function modules of the LabView libraries.
The integration is shown in Figure 5-10.

96

F
ig

u
re

 5
-1

0
In

te
g

ra
ti

n
g

 t
h

e
fa

u
lt

 in
je

ct
o

rs
 in

to
 B

en
ch

m
ar

k
 S

ys
te

m
 I

97

A significant reduction in manpower effort was required as compared to the integration effort for
the DFWCS described in Section 7 of Volume 1.

There are two principle tasks associated with the integration effort:

 Connecting and configuring the analog and digital signals between the Benchmark

system and UNIFI.

 Integrating the fault injectors into the UNIFI environment.

5.10.1. Integrating the UNIFI I/O data acquisition system to the Benchmark
System

The UNIFI I/O Interface module or template is a collection of LabView block diagrams that
provide a software/hardware interface between UNIFI and the target I&C system. Referring to
Figure 5–11, the benchmark system I/O backplane, which consists of an array of Phenix block
connectors, is wired to the National InstrumentsTM PXI data acquisition signal connection
breakout boxes. These breakout boxes form the connection between the benchmark system
and the data acquisition modules in the PXI-1033 controller. The signal wiring conforms to the
benchmark system interface standard as shown in the digital output example box in the figure.

98

F
ig

u
re

 5
-1

1
In

te
g

ra
ti

n
g

 U
N

IF
I/L

ab
V

ie
w

 e
n

vi
ro

n
m

en
t

in
to

 B
en

ch
m

ar
k

S
ys

te
m

 I

99

Analog input signals are connected to the SCC-68 module, digital input and output signals are
connected to SCB-100 module. Both of the breakout boxes are connected to PXI-1033
controller by a wiring harness.

The PXI-1033 controller chassis contains A/D, D/A, and signal conversion boards to interface all
I/O signals entering and exiting the benchmark system. The PXI-1033 controller chassis is
connected to the UNIFI host computer by a PXI express connection to a PXI port on the host
computer. The LabView design environment recognizes the PXI-1033 and loads the drivers for
the PXI-1033 chassis onto the host machine so Labview can recognize the controller.

Control and configuration of the data acquisition cards in the PXI-chassis is accomplished
through the LabView interface and libraries. All of the data acquisition, control and
measurement of the signals are accomplished by UNIFI LabView function blocks.

Analog input signals (sent to the benchmark system) are generated from the TRACE
operational profile generator tool (described in the next Section) and placed into a profile file.
LabView reads this file and converts the sensor and signal data from the operational profile into
digital and analog signals, which are fed into the target system test system by the PXI-1033
controller.

Response data from the benchmark system (digital outputs) is collected, time-stamped, and
logged. The response data includes trip alarms, failure event flags, feedback signals from the
Benchmark I&C system. These signals and events are recorded using the recording functions
in the measurement and recording plug-in. These tasks are accomplished using the special
library of VI functional blocks provided by LabView.

Since LabVIEW monitors all signals coming in and out of the D/A and A/D cards of the PXI-1033
controller, UNIFI provides a non-intrusive means of observing sensor and feedback signals.

5.10.2. Integrating Fault Injectors into UNIFI

The fault injectors described in Section 4 were integrated into UNIFI using the standard plug-in
module shown in Figure 5–4 in Section 5.5.3. The interaction between the ICE based fault
injector and UNIFI is handled through simple file I/O operations using the fault injector plug in
module. The HiTek DProbeP5 ICE has the capability of being triggered by events based on file-
write operations. As such, the UNIFI fault injector plug-in module performs a file write at specific
time intervals to initiate fault injection (e.g. memory register corruption). Corruption is performed
when the fault injection time point is reached, and at that time a “File Write =1” operation is
performed. The HiTOP fault injector is triggered by this event. This allows HiTOP (debugging
software that interfaces with the ICE machine) and UNIFI/LabView to run simultaneously and
asynchronously. The fault injection experiment termination is also executed according to an
external file write operation when the TRACE based operational file reaches the end.

The HiTOP ICE-based fault injector user interface is passed to the fault list from the fault list
generator. This script contains the fault list data (e.g. register, memory, process variables, fault
mask, triggers, etc) and instructions for triggering the injections. Once executed, the script will
run through all scheduled injections automatically. An example script is shown in Figure 5–12.
On Benchmark System I, a user can run approximately 200 to 500 processor-based injections
each day.

The X-bus fault injector relies on a file-read operation to start the process as well as to end it.
Since the file I/O code is reusable there is no additional overhead to perform this operation. A
simple text file containing Boolean values that control the apparatus’ digital switches (e.g. start,

100

continuous token corruption, end, etc.) handles the start and termination of the X-bus fault
injector process.

Figure 5-12 ICE machine fault injection control script

5.11. Fault Injection Process for Benchmark System I: Operational
Perspective

Referring to Figure 5–13, the process for conducting a fault injection campaign for the
benchmark system starts by opening UNIFI in the LabView environment. Using the pull down
GUIs, (see Figure 5–5) the user sets up the campaign parameters for the experiments to be run.
The user then starts the campaign process by enabling the “run” button on the Master controller
GUI (see Figure 5–7).

 // Memory level fault
injection

> WAIT TRIGGER T1 // Wait for
signal

> CHANGE DS:0x0000 = 0xFF // Corrupt
location

 // Register level fault
injection

> WAIT TRIGGER T2 // Wait for
signal

> DISABLE NMI

> HALT

 // Bit flip in EAX
register

> CHANGE EAX = EAX XOR $MASK

> GO

> ENABLE NMI

101

F
ig

u
re

 5
-1

3
F

au
lt

 in
je

ct
io

n
 o

p
er

at
io

n
 f

o
r

B
en

ch
m

ar
k

S
ys

te
m

 I

H
iT

O
P

St
ar

t S
cr

ip
t

W
ai

t

Fa
u

lt

In
je

ct
io

n

T
ri

gg
er

?

In
je

ct
 F

au
lt

En
d

 o
f s

cr
ip

t?

En
d

 o
f

ca
m

p
ai

gn

Ye
s

N
o

Ye
s

N
o

Sy
st

em
 O

n

In
it

ia
l S

ys
te

m

R
es

et

Ta
rg

et
 S

ys
te

m

SM
S

St
ar

t

R
P

S
A

p
p

li
ca

ti
on

SM
S

St
op

Sy
st

em

St
an

d
b

y

Sy
st

em
 R

es
et

La
bV

IE
W

O
p

en
 V

I

Se
t f

au
lt

ca

m
p

ai
gn

p

ar
am

et
er

s

St
ar

t V
I

In
it

ia
l S

ta
rt

 o
f

SM
S

Se
rv

er

In
it

ia
te

 S
ys

te
m

R

es
et

St
op

 S
M

S
Se

rv
er

St
ar

t S
M

S
Se

rv
er

Ex
p

er
im

en
t

Se
le

ct
or

R
ea

d
 P

ro
fi

b
u

s
Co

n
tr

ol
 F

il
e

En
d

 o
f F

il
e?

En
d

 o
f

Ca
m

p
ai

gn

R
ea

d
 T

R
A

CE

D
at

a
Fi

le

En
d

 o
f F

il
e?

X‐
Bu

s
CP

U
‐b

as
ed

H
W

 R
es

et

T
ri

gg
er

H
W

 R
es

et

T
ri

gg
er

102

The master controller begins by initializing the parameters for the fault injection campaign. To
collect error log data from the benchmark system, a TCP/IP connection socket is established to
the SMS service monitor unit of the benchmark system.

The next step in the sequence is a reset initiated to the benchmark system to ensure that the
system is in an error free state. UNIFI receives status information back from the benchmark
system to ensure the boot-up was successful and the system is in cyclic normal operational
mode. An additional step is necessary to properly establish a TCP/IP socket to the SMS server,
after which the SMS server is stopped and started again.

Once these steps have been completed the UNIFI master controller enables sensor inputs to
benchmark system and supplies the sensor inputs from the TRACE based operational profile
data file. Once the benchmark system is running and the inputs are applied, the RPS test bed
is fully operational.

The RPS system takes analog signals in and returns digital alarms indicating that signals have
either exceeded the upper bound or have fallen short of the lower bound. These rules are
defined by the RPS code running on each of the four processors. Since the data logging
capabilities of the RPS are used, the only user interaction is the starting of the TCP/IP clients
necessary to perform the system resets and logging of data in separate data files. Once the
benchmark system is operating with proper sensor inputs, the steps to automatically inject faults
into the benchmark system are initiated by UNIFI.

The next step is to initiate the fault injection campaign process. Three choices are possible, a
processor-based fault injection, an X-bus based fault injection, or an external I/O based fault
injection. The fault injection process is initiated by invoking the HiTOP fault command script
described in the previous section. The script initializes the ICE-based fault injector, reads the
fault list, and then executes the fault list.

This fault injections occur at the processor-level. To activate an X-bus fault injection, the
process is similar. The X-bus fault injector relies on a file-read operation to start the process as
well as end it. Since the file I/O code is reusable, there is no additional overhead to perform this
operation. A simple text file containing Boolean values that control the apparatus digital
switches (e.g. start, continuous token corruption, end, etc.) controls the start and termination of
the X-bus fault injector process.

I/O-based corruption is performed by either adding noise to the incoming signals (via data
acquisition hardware) or replacing the signal values with desired values. In this way, permanent
faults occurring at the signal-level may be simulated.

After these steps are completed, fault injection campaigns can be executed without any further
human interaction. In a 4 month period, 8,000 processor-based injections or over 10,000
network-based injections running the campaigns on intermittent basis can be performed.

103

5.12. References

[Corporation 2011] Corporation, National Instruments. NI LabVIEW Technical Resources:
Getting Started, Support, and Downloads. 2010.
www.ni.com/labview/technical-resources/ (accessed 2010).

[Stott 2000] D.T. Stott, B. Floering, D. Burke, Z. Kalbarczyk, R.K. Iyer. "Nftape: A
Framework for Assessing Dependability in Distributed Systems with
Lightweight Fault Injectors." IEEE, 2000. IEEE International Computer
Performance and Dependability Symposium (IPDS 2000).

[Kanawati 1005(b)] G. Kanawati, N. Kanawati, J. Abraham. "FERRARI: A Flexible Software-
Based Fault and Error Injection System." IEEE Transactions Computers,
1995(b).

[Aidemark 2001] J. Aidemark, J. Vinter, P. Folkesson, J. Karlsson. "GOOFI: Generic
Object-Oriented Fault Injection Tool." IEEE/IFIP International Conference
on Dependable Systems and Networks. Goteborg, Sweden: IEEE, 2001.
83-88.

105

6. TRACE-BASED OPERATIONAL PROFILE GENERATION TOOL

6.1. Introduction

An operational profile (OP) is a quantitative representation of how a system will be used within
its use environment [Musa 1998]. It is a model of how users interact and use the system,
specifically the occurrence probabilities of the system and user modes over a range of
operations. Traditionally, it is used to generate test cases and to direct testing to the most used
functions thus increasing the potential for improved reliability with respect to the use
environment. Determining the OP of the non-trivial system is a challenging part of dependability
assessment in general [Shukla 2004].

Another often used term that is used interchangeably with Operational Profiles is the Workload
of a system. While the terms are similar, they are not exactly the same. A workload is a set of
tasks or functions and their respective activation input space that reflects the processing
capacity and demand on an embedded digital system. These tasks are typically application
specific, real-time in nature. The workload on the system can vary depending on the
configuration of the system, or its operating state. Thus, a workload is sub-set of an operational
profile.

6.2. Operational Profiles for Real-Time Systems

Most digital I&C systems such as Benchmark System I and Benchmark System II are reactive
real-time systems. A reactive system is characterized by its ongoing interaction with its
environment, continuously accepting requests from the environment and continuously producing
results [Wieringa 2003]. In reactive systems, correctness or safeness of the reactive system is
related to its behavior over time as it interacts with its environment. Unlike, functional
computations, which compute a value upon termination, reactive programs usually, do not
terminate. Digital I&C systems that are real-time and reactive operate on a deterministic time-
triggered basis. The software that runs on the target computer consists of a set of concurrent
tasks all governed by a real-time kernel. Each task is represented as a finite sequence of
events with respect to the operating system task scheduling. Tasks are scheduled on cyclical
basis.

The difference between an OP for general purpose computing and a real-time OP is that
general purpose OPs typically represent many customer or user domains, while real-time OPs
are specific to a particular application (user) and its environment. In this effort, an operational
profile is defined in the context of its application specific nature (i.e., the RPS).

Real time operational profiles to be used in fault injection experiments must be selected to be
representative of the system under various modes of operation and configuration. Digital I&C
system configurations may invoke different hardware and software modules in response to real
time demands, and it is important that the fault injection assessment include sufficient
combinations of these modules to ensure a thorough evaluation of their behavior in the
presence of faults.

6.3. Characterization of Real-time Operational Profile for Fault
Injection

The first step in characterizing an operational profile is to establish a use profile the digital I&C
system uses according to its various operational modes. As shown in Table 6–1, a typical
digital I&C system used in a safety critical plant application has at least four defined operating

106

modes. These modes are (1) initialization mode, (2) normal mode, (3) test mode, and (4)
parameter change mode.

Table 6-1 Example composition of an operational profile for Benchmark System I.

Mode
Sub-System Activity

Time
Interval Processors

Fault
Tolerance

I/O
Communication
s

Service Unit
Interface

Initialization

Diagnostic
test
patterns,
configuratio
n checks,
com checks.

May be
temporarily
disabled or
diminished
during
testing

Diagnostic
checks,
Connectivity
.
I/O
disengaged

Protocol
initialization,
diagnostics,
and
connectivity.

Diagnostics,
connectivity
checks, com
checks.

2-3 minutes

Normal

Safety
Function or
control law
operational.
Various of
modes of
operation
depending
on plant
configuratio
n

Full system
error and
fault
detection.

Acquisition
of plant
specific
Inputs for
the safety
functions or
control laws.
Outputs
signals are
sent to the
plant
interfaces.

Data and
health status
traffic is passed
between
operational
units.

System
health and
performance
messages
are sent to
the operator
service and
monitoring
station

10 -18
months

Test mode

Special
Diagnostic
routines,
and run-
time
monitors are
available to
run
concurrently
with safety
and control
law
functions

May invoke
special
diagnostics
to enhance
the
detection,
and
isolation of
a fault

Plant
specific
Inputs,
output(s)
may be
disengaged.

Data and
health status
traffic is passed
between
operational
units

Special
diagnostic
messages
are sent to
the operator
and
monitoring
station

As needed
for testing
(~24 hours -
48 hours)

Parameter
Change

Ability to re-
calibrate
plant
parameters
in the safety
function and
control laws.

Should
have full
system
error and
fault
detection.

Plant
specific
Inputs and
outputs,
possibly
special test
inputs to
validate the
parameter
change

Data and
health status
traffic is passed
between
operational
units

System
health and
performance
messages
are sent to
the operator
service and
monitoring
station

Plant
dependent
(~8 hours)

In the initialization mode, diagnostic self-tests and health checks are executed before the
system is transitioned to the normal operating mode. During this phase, the digital system does

107

not receive inputs from the nuclear power plant system. The average initialization time duration
is around 2-3 minutes. A system initialization would most likely occur after plant outages or
after a reactor shutdown event.

During normal operation, the digital I&C system monitors or controls the plant system to ensure
safe and reliable operation for the prescribed safety envelope. The normal operating mode is
the mode where the safety functions or control algorithms would be required to execute. The
functional modes for normal mode operation are application dependent, but they always relate
to the operating state of the plant. For instance, at an NPP the reactor could be operating in
normal power mode, transitional mode, start-up mode, low-power mode, or manual mode. The
functional modes within the safety functions or control algorithm would be a part of the
operational profile make-up.

Another mode often seen is the test mode. The test mode allows for a part (or all) of the digital
I&C system to be placed in a special mode where operational aspects of the system can be
measured for surveillance monitoring purposes. In this mode the safety functions may be
executing, but the actuation outputs of the digital I&C may be disengaged. Special monitoring
diagnostics are usually invoked to monitor the performance of various sub-systems, error
reports, and trends. Test mode operation usually occurs as part of a planned outage, during an
unplanned outage event, and during scheduled surveillances.

The parameter change mode allows specific parameter changes to the control or safety function
software. This mode of operation may occur during normal operating conditions where the
controller must be tuned or calibrated to compensate for slow dynamic changes occurring within
the plant. Like the test mode, this mode of operation is fairly infrequent as compared to the
normal operating mode. A parameter change is usually a planned action by the operating staff.

After the operational modes have been identified and characterized, the next step is to define
how the operational modes will be used in the testing environment. Since workload and the
input stimulus to the system in various modes of operation can have significant impact on the
estimation of parameters such as coverage [Folkesson 1999], it is important to represent the
operation of the system accurately. In this research effort the primary concern was how the
normal operating mode of the benchmark systems interact with the reactor plant model under
nominal and accident-based or transient-based conditions. Another, important factor was how
the testing operational profile could differ from real system operational profile data. The testing
profile could be a subset of the real operational profile data, or derived from real data.

In all cases, differences between the testing operational profile and the real operational profile
should be noted, if possible. To realize a highly representative set of inputs for the RPS
application, the researchers had two choices: collect data from existing plant operations as was
done in [Smidts 2011], or use high fidelity simulation-based plant data from TRACE
[Commission 2011].

Context is important in fault injection. For a fault injection assessment methodology, the
operational profiles must represent the input conditions and system interactions that can occur
not only during nominal operations, but also in off-nominal operations and, more importantly,
during “accident” event scenarios. Gathering real plant profile data across all of these domains
of operations is a challenging task. Not all plants in operation have experienced accident
events. Also, data may be limited due to proprietary sensitivities.

The use of high fidelity NPP simulator tools to generate nominal, off-nominal, and accident
event profiles is a promising means to provide a diverse and representative set of operational
profiles for the benchmark systems. Again, the use of NPP simulator tools for OP generation
should be gauged on the fidelity of the data the tools produce, and if possible, how the data

108

from the tools compare with existing plant data. The challenges in this approach are (1)
determining how to integrate thermo-hydraulic modeling tools like TRACE [Commission 2011]
into the fault injection environment to act as the operational profile generator for the target
system; and (2) how to coordinate the selection of the operational profiles with the fault injection
process. At present, the methodology developed in the research provides guidance on how to
use an operational profile for fault injection, but does not provide detailed guidance on the
various means to realize an operational profile. The next sections describe the development
and implementation of the TRACE NPP simulator as an operational profile generator for fault
injection studies.

6.4. TRACE Modeling Tool

TRACE is a high-fidelity simulator developed for the NRC that is capable of solving complex
fluid dynamics and heat transfer problems in components typical of a nuclear power plant (e.g.,
pipes, valves, boilers, and pumps). TRACE models are developed to represent reactor systems
and thus are able to capture important interactions between the various systems within a plant.
It is generally used by the NRC to assess plant designs and investigate possible accident
scenarios such as Loss of Coolant Accidents (LOCAs) in pressurized light-water reactors
(PWRs) and boiling light-water reactors (BWRs).

Models used in TRACE include multidimensional two-phase flow, non-equilibrium thermo-
dynamics, generalized heat transfer, re-flood, level tracking, and reactor kinetics. Automatic
steady-state and dump/restart capabilities are also provided. TRACE takes a component-based
approach to modeling a reactor system. Each physical piece of equipment in a flow loop can be
represented as some type of component, and each component can be further nodalized into
some number of physical volumes (also called cells) over which the energy, momentum, heat
conduction, and kinetics equations are averaged.

There are three major phases in a full TRACE calculation – input processing, initialization, and
the solution itself. Input processing is the first stage of a calculation. At this point, TRACE
reads in the input model and checks to make sure that the data is properly formatted and that all
the information required for the calculation is present.

Once the model has passed input processing, it is initialized to ready it for the solution
procedure. During initialization, the code performs the necessary bookkeeping functions to
ensure that data is managed properly during the actual solution. Once all the input data has
been processed, and the calculation has been initialized, the code proceeds to the actual
solution procedure.

The solution is advanced forward in time in small increments (called time-steps). The time-
steps are variable depending on the steady state or fast transient nature of the dynamics of the
simulation. That is, the time-steps are unchanging if the simulation is a relatively steady state
operation. If a transient or any other plant model event occurs, then the time-steps resolve
down to lower time scales to capture the fast dynamics of the plant.

The calculation ends when any one of the following three conditions are met — the user-
specified transient end time is reached, a steady-state is declared (only during steady-state
runs), or some fatal error in the calculation takes place.

6.5. Big Picture View of TOP Modeling Tool

The TOP modeling tool is co-resident with the UNIFI fault injection environment. TOP normally
operates as a separate set of programs from LabView and passes its operational profile data

109

sets to UNIFI/LabView environment. Figure 6–1 shows a schematic view of how TOP
generates open loop operational profiles for the UNIFI fault injection environment.

Figure 6-1 TRACE-based operational profile generation tool

There are two modes of operation for the TOP tool. The first is open loop mode where
operational profiles are generated for the target system for each type of operational profile or
test case of interest. The operational profile data for a specific test case or basis event is then
repeatedly used for a set of fault injection campaigns. Changing the operational profile or test
case or obtaining a new set of process variables only entails rerunning the TRACE simulation to
collect a new set of data. For an actuation system like the RPS, the open loop mode of
operation is usually preferred. In this mode of operation, the primary concern is with the trip/no-
trip response of the system.

The second mode of operation is closed loop. In the closed loop mode of operation the
response of the target digital I&C system is fed back to the TRACE simulation model to see how
the failure response of the digital I&C system affects the overall plant response. In this way, the
plant dynamics and interactions of plant systems become part of the fault injection testing
process. Closed loop operation is favored for digital I&C systems where continual process
control or interactions occur such as feedwater control or turbine control. The closed loop mode
of operation is considerably more complex than the open loop mode. For one, the TRACE
simulation tool must be able to run in real time with the digital I&C system which is typically
50ms to 100ms per control cycle. Second, the integration of digital I&C system responses back
to the simulated plant model requires close synchronization and coordination of processes.
Presently, the closed loop mode of operation is under development and testing. The concept

Error Logs

I/O DAQ
System

Target System
Software

Development

Experiment Set up
and Fault Injection

Operational Profile
Generator –TRACE

Real Time Data
Monitoring

Fault List
generation and

Fault Injection
Plug‐in

 Target System

Fault Injector

Plug in Templates

Code and Data
Map Information

Link and
Download

Fault
injection

Sensor
Inputs
and
Outputs

Data

Acq

TRACE

modeling
 tool

SNAP

ATP

Data
conversion

and
marshaling

110

has been demonstrated in the lab, however, it has not been used beyond proof of concept for
this research effort.

Referring to Figure 6–1, in the first step the user inputs plant model information into TRACE.
TRACE is then run as described above to produce a set of output files. The data sets
generated by a TRACE simulation include pressures, flow rates, temperatures, etc., for the
various modeled components. Not all the data generated by the TRACE simulation will be
needed by the benchmark system under test.

Figure 6-2 SNAP plant representation

The next step is data identification. During data identification the data sets are located using a
TRACE GUI model editor (SNAP) developed by the NRC that is able to graphically represent
and edit a TRACE input model. This allows one to visually identify a particular plant component
and its data set. Figure 6–2 shows the SNAP representation of the plant model. Note the
various components of the plant are shown in the SNAP graphical representation.

During data identification, the plant model used during data collection is loaded into SNAP.
Importing the TRACE model generates a visual representation of the model structures. This
provides those not familiar with the TRACE structure naming conventions to identify the
components of the model that correspond to the sensor data that will be fed into the digital I&C
system. The names of the structures, identified by unique identifiers, are recorded for use
during data extraction.

The third step involves extracting the data sets from the TRACE/SNAP data sets. The unique
IDs identified in the previous step are used to extract the data sets from the raw data file using a
tool called AptPlot. The AptPlot tool is a freely available data manipulation tool. Figure 6–3
shows a screen shot of AptPlot. AptPlot includes functionality that allows raw TRACE data files
to be imported. While AptPlot includes functionality to manipulate the imported data, such as
generating data plots and various statistical functions, for this purpose it is merely used to
extract the data sets of interest out of the raw data file using the names gathered during data
identification. The extracted data is exported to an ASCII text file.

Vessel

Hot leg

Pump

111

F
ig

u
re

 6
-3

A

p
tP

lo
t

to
o

l

112

The file is reformatted (by transposing) to represent a vector of sensor readings as shown in
Figure 6–4. Each row represents a collection of sensor readings for one time instance.

Figure 6-4 Configuring the Trace AptPlot output file

The last step in the operational profile generation process is configuring the data so that it can
be executed in the UNIFI fault injection environment, combining different TRACE runs to
compose a operational profile, and converting the process variables from TRACE into voltage
representations for the digital I&C system. These steps are carried out by a series of Excel
workbooks and programs. These steps are described in the next section.

6.5.1. Data Marshaling for Operational Profile Generation

Thus far, existing software tools have been used in the process of profile generation. However,
the data files created by AptPlot are not ready for use in fault injection. The final step in the
operational profile generation process is to convert the files for use in UNIFI. This step is
performed by custom software tool using Excel spreadsheets and data conversion programs
written in C. The user opens the Excel spreadsheets and is presented with a series of
workbooks to convert the data to operational profile format for the target digital I&C system.
This process performs the following functions:

(1) Read data from AtpPlot
(2) Combine steady-state with transient data
(3) Interpolate data over a constant time step
(4) Convert data from real-world units to sensor readings
(5) Instrument the data
(6) Format and output the data to a file

AptPlot Output
AptPlot Outputtime0 set0elem0

time1 set0elem1
time2 set0elem2
...
timeX set0elemM

time0 set1elem0
time1 set1elem1
time2 set1elem2
...
timeX set1elemM

time0 set2elem0
time1 set2elem1
time2 set2elem2
...
timeX set2elemM

set0elem0 set1elem0 set2elem0 ... setNelem0
set0elem1 set1elem1 set2elem1 ... setNelem1
...
set0elemM set1elemM set2elemM ... setNelemM

113

During step 1 the software reads all of the data into a file. For the experiments in this research
both steady-state plant data and transient plant data were combined based on the reactor
event. In this case the reactor event was a LOCA. For this type of profile, TRACE executions
are run in two stages. First, the plant is simulated until it reaches a steady-state. A large set of
steady state process variables are then recorded from TRACE. Second, the simulation is
resumed with a transient scenario that represents a possible accident or event. For the fault
injection experiments, the operational profile must contain portions of data from both executions.

Step 2 combines the steady state and the transient data. This step is illustrated in Figure 6–5.

Figure 6-5 Combining the steady and transient output runs for a complete profile

Step 3 interpolates the data over a constant time step. TRACE time steps are not constant; the
time step size varies depending on the dynamics of the plant model and the initial conditions.
The LabView data I/O modules must send sensor data to the digital I&C system at regular time
step intervals as would occur in a real plant environment. In order to provide regular sensor
sampling intervals the TOP software interpolates the data over a constant time step, typically
50ms, to provide a constant delta time between data points and a resolution that is accurate of
sampled sensor data. A program called time-step.c takes the data file from AptPlot and
interpolates the time-steps to produce a constant set of sample points. The output of this
process is a text ASCII file where each row is a constant time step set of sensor values.

In Step 4 real-world units are converted to electrical units. TRACE and SNAP provide results in
physical units such as Pa, m3/s, etc. The digital I&C system expects data values to be coming
from plant sensors where voltage and current represent sensor outputs. The scaling is
accomplished using linear scaling.

1. Steady-state
analysis

Restart simulation with
the steady state results
as the initial conditions

Steady-state Transient

2. Event, e.g. large
break LOCA

• Combined data provides
– Ramp-up period for the I&C system
– Fault injection window can include the period before the event occurs

TransientCombinedSteady-state

*

* Amount of time is a software parameter

114

During step 5, additional information is added to the plant data that is later used to time the fault
injections. Because the point in the data events at which the accident events occur is known, it
is possible to time the injection of faults to coincide with those events. A countdown index is
added to the data file so that UNIFI/LabView can read that countdown. When the countdown
reaches zero, UNIFI is notified of this event by a file write operation. UNIFI then commands the
fault injector to inject the fault. The countdown index file can be varied to inject the fault at the
start of the event, before the event, after the event, or during steady state operation.

In Step 6, the marshaled data is written to a text file in a format that is easily read by LabView.
Figure 6–6 is a screenshot of the Excel workbook tool used for generating the operational
profiles. Starting in the leftmost column is the sample time of the measured process value. This
value represents how often the digital I&C system acquires the plant data for the RPS I&C
function. In this case, it is every 50ms. The next column represents the countdown index to
inform the fault injection process of when to inject the fault relative to the plant dynamics. As
stated previously, this value can be adjusted to start the fault injection point at various places
relative to the dynamics of the plant. The remaining columns are values of the process
variables from the TRACE plant model generated by AptPlot. In this figure, the values are still
in physical units and have not been converted to voltage representation. The graph figures on
the right show the transient dynamics of a LOCA event starting a time “0”. The plant dynamics
previous to time zero are steady state, but are not shown in the graphs.

6.6. Conclusions

The wide range of uses of digital I&C systems in NPP operations illustrates that digital I&C
systems are not just characterized by their internal form and function, but also by their
interaction context with the environment in which they operate.

The high-fidelity data created by TRACE provides several benefits for operational profile
generation. TRACE models are capable of modeling different types of nuclear power plants.
Therefore, it is possible to conduct fault injection tests on a wide range of power plant
configurations and RPS combinations. Using a simulator to generate plant data provides the
possibility to simulate accident scenarios that, for obvious reasons, would be difficult to test in a
fully hardware-in-the-loop plant test. Generating Operational Profiles from the TOP tool
provides highly representative plant data that is needed for fault injection based testing. The
type and variety of operational profiles that could be generated by TOP are significant. The
user can choose from many types of plant or component failures in the TRACE library that are
expected to trigger a response from the digital RPS system. By integrating real digital I&C
systems into exiting plant modeling tools, a significant step forward toward the integrated
assessment of plant and digital I&C interactions has been demonstrated.

While all of the fault injection work completed to date used TOP in open-loop mode, the
engineering and interface details of using TRACE in closed loop mode where the actual digital
I&C system under fault injection test sends its response data back to the TRACE plant model
has been conceptualized. Completion of this effort will allow actual digital system failure
responses to propagate back to the plant model where one could see how the failure mode
affects the operation or mitigation response of the plant. UVA intends to continue developing
TOP to this end to be used in a “full system/plant context”.

115

F
ig

u
re

 6
-6

E

xc
el

 s
cr

ee
n

sh
o

t
u

se
d

 t
o

 g
en

er
at

e
th

e
o

p
er

at
io

n
al

 p
ro

fi
le

ts
te

p
co

un
td

ow
n

co
re

_p
ow

er
co

ol
an

t_
flo

w
pz

r_
pr

es
su

re
pz

r_
le

ve
l

ho
t_

le
g_

pr
es

sg
_p

re
ss

ur
e

0
-4

0
25

68
00

00
00

15
.0

84
05

3
15

00
84

85
0.

35
77

15
04

95
20

63
50

80
7

0.
05

-3
9

25
68

00
00

00
15

.0
84

05
3

15
00

84
85

0.
35

77
15

04
95

20
63

50
80

7
0.

1
-3

8
25

68
00

00
00

15
.0

84
05

3
15

00
84

85
0.

35
77

15
04

95
20

63
50

80
7

0.
15

-3
7

25
68

00
00

00
15

.0
84

05
3

15
00

84
85

0.
35

77
15

04
95

20
63

50
80

7
0.

2
-3

6
25

68
00

00
00

15
.0

84
05

3
15

00
84

85
0.

35
77

15
04

95
20

63
50

80
7

0.
25

-3
5

25
68

00
00

00
15

.0
84

05
3

15
00

84
85

0.
35

77
15

04
95

20
63

50
80

7
0.

3
-3

4
25

68
00

00
00

15
.0

84
05

3
15

00
84

85
0.

35
77

15
04

95
20

63
50

80
7

0.
35

-3
3

25
68

00
00

00
15

.0
84

05
3

15
00

84
85

0.
35

77
15

04
95

20
63

50
80

7
0.

4
-3

2
25

68
00

00
00

15
.0

84
05

3
15

00
84

85
0.

35
77

15
04

95
20

63
50

80
7

0.
45

-3
1

25
68

00
00

00
15

.0
84

05
3

15
00

84
85

0.
35

77
15

04
95

20
63

50
80

7
0.

5
-3

0
25

68
00

00
00

15
.0

84
05

3
15

00
84

85
0.

35
77

15
04

95
20

63
50

80
7

0.
55

-2
9

25
68

00
00

00
15

.0
84

05
3

15
00

84
85

0.
35

77
15

04
95

20
63

50
80

7
0.

6
-2

8
25

68
00

00
00

15
.0

84
05

3
15

00
84

85
0.

35
77

15
04

95
20

63
50

80
7

0.
65

-2
7

25
68

00
00

00
15

.0
84

05
3

15
00

84
85

0.
35

77
15

04
95

20
63

50
80

7
0.

7
-2

6
25

68
00

00
00

15
.0

84
05

3
15

00
84

85
0.

35
77

15
04

95
20

63
50

80
7

0.
75

-2
5

25
68

00
00

00
15

.0
84

05
3

15
00

84
85

0.
35

77
15

04
95

20
63

50
80

7
0.

8
-2

4
25

68
00

00
00

15
.0

84
05

3
15

00
84

85
0.

35
77

15
04

95
20

63
50

80
7

0.
85

-2
3

25
68

00
00

00
15

.0
84

05
3

15
00

84
85

0.
35

77
15

04
95

20
63

50
80

7
0.

9
-2

2
25

68
00

00
00

15
.0

84
05

3
15

00
84

85
0.

35
77

15
04

95
20

63
50

80
7

0.
95

-2
1

25
68

00
00

00
15

.0
84

05
3

15
00

84
85

0.
35

77
15

04
95

20
63

50
80

7
1

-2
0

25
68

00
00

00
15

.0
84

05
3

15
00

84
85

0.
35

77
15

04
95

20
63

50
80

7
1.

05
-1

9
25

68
00

00
00

15
.0

84
05

3
15

00
84

85
0.

35
77

15
04

95
20

63
50

80
7

1.
1

-1
8

25
68

00
00

00
15

.0
84

05
3

15
00

84
85

0.
35

77
15

04
95

20
63

50
80

7
1.

15
-1

7
25

68
00

00
00

15
.0

84
05

3
15

00
84

85
0.

35
77

15
04

95
20

63
50

80
7

1.
2

-1
6

25
68

00
00

00
15

.0
84

05
3

15
00

84
85

0.
35

77
15

04
95

20
63

50
80

7
1.

25
-1

5
25

68
00

00
00

15
.0

84
05

3
15

00
84

85
0.

35
77

15
04

95
20

63
50

80
7

1.
3

-1
4

25
68

00
00

00
15

.0
84

05
3

15
00

84
85

0.
35

77
15

04
95

20
63

50
80

7
1.

35
-1

3
25

68
00

00
00

15
.0

84
05

3
15

00
84

85
0.

35
77

15
04

95
20

63
50

80
7

1.
4

-1
2

25
68

00
00

00
15

.0
84

05
3

15
00

84
85

0.
35

77
15

04
95

20
63

50
80

7
1.

45
-1

1
25

68
00

00
00

15
.0

84
05

3
15

00
84

85
0.

35
77

15
04

95
20

63
50

80
7

1.
5

-1
0

25
68

00
00

00
15

.0
84

05
3

15
00

84
85

0.
35

77
15

04
95

20
63

50
80

7
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

8.5
9

9.5
10

10.5
11

11.5
12

12.5
13

0

50
00

00
00

0

1E
+0

9

1.
5E

+0
9

2E
+0

9

2.
5E

+0
9

3E
+0

9

co
re

_p
ow

er

0
0.45

0.9
1.35

1.8
2.25

2.7
3.15

3.6
4.05

4.5
4.95

5.4
5.85

6.3
6.75

7.2
7.65

8.1
8.55

9
9.45

9.9
10.35

10.8
11.25

11.7
12.15

12.6

‐1
0‐505101520

co
ol

an
t_

flo
w

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8
8.5

9
9.5
10

10.5
11

11.5
12

12.5
13

0

20
00

00
0

40
00

00
0

60
00

00
0

80
00

00
0

10
00

00
00

12
00

00
00

14
00

00
00

16
00

00
00

pz
r_

pr
es

su
re

116

6.7. References

[Smidts 2011] C. Smidts, Y. Shi, M. Li, W. Kong, J. Dai. A Large Scale Validation of a

Methodology for Assessing Software Reliability. NUREG/CR-7042, U.S.
NRC, 2011.

[Commission 2011] Commission, U.S. Nuclear Regulatory. Computer Codes. April 2011.
http://www.nrc.gov/about-nrc/regulatory/research/comp-codes.html
(accessed 2011).

[Folkesson 1999] Folkesson, P, and J Karlsson. "Considering Workload Input Variations in
Error Coverage Estimation." 1999. 171-188.

[Musa 1998] Musa, J. Software Reliability Engineering. McGraw Hill, 1998.
[Shukla 2004] R. Shukla, D. Carrington, P. Strooper. "Systematic Operational Profile

Development for Software Components." Software Engineering
Conference, 11th Asia-Pacific. 2004. 528-537.

[Wieringa 2003] Wieringa, R.J. Design Methods for Reactive Systems, 1st ed. Morgan
Kaufman, 2003.

117

7. PRE-FAULT INJECTION ANALYSIS AND FAULT LIST
GENERATION METHODS

7.1. Introduction

The purpose of this task was to improve on existing techniques of pre-fault injection analysis by
performing dynamic and static code analysis of the application prior to fault injection. Fault
selection processes were refined through exploring and demonstrating methods designed to
improve the efficiency of fault injection experimentation on physical digital I&C systems. This
was achieved by performing analyses of program execution behavior at different levels.

Dynamic execution analysis of code was performed to select a window of opportunity to
maximize error propagation of injected faults. Static code analysis was used to determine
regions of code that could be deemed critical towards correct program execution. This research
was carried out in two parts.

The first part of this work (which was the majority of the work) was developing and proving the
efficacy of the pre-fault injection analysis methods in a system simulation environment before
transitioning to the benchmark system. The effectiveness of the methods was demonstrated in
a simulation environment by conducting fault injection experiments on simple applications in the
simulation environment. The second part of this effort was transitioning the pre-injection
analysis methods to the physical fault injection process so they could be applied to the
benchmark system.

7.2. Pre-fault Injection Analysis

7.2.1. Motivation

Taken together, the methods developed in this research allow a user unprecedented capability
to conduct efficient campaigns for different assessment purposes. For example, by generating
fault lists with respect to functions and function blocks the user can trace fault effects that are
specific to the failure of a specific function or function block. This section briefly discusses the
principle fault list generation capabilities.

Being a statistical-based experiment or testing process, fault injection testing may require a
large number of experiments to be conducted in order to warrant statistically significant results.
Thus, efficiency of the fault injection testing is important. As discussed in Section 5, the
coordination of a number of resources involved to effectively automate a fault injection
campaign take some amount of time. In addition to the automated fault injection setup, the time
required to perform a large number of experiments is non-trivial.

Each experiment involves initialization of the system (which includes reset and initialization of
the target I&C system), followed by application of an operational profile, the actual fault
injection, and then the monitoring of the system for a period of time after the fault injection. The
amount of time required to initialize the digital I&C hardware can be several minutes because of
the systematic nature of the diagnostics and self-tests that the system initiates at startup. The
total time required to perform all steps for one fault injection experiment is typically one to four
minutes on contemporary digital I&C systems. This limits the number of fault injection
experiments to ~300 – 1400 experiments per day. Therefore, ensuring that a large percentage
of fault injection outcomes result in producing a response from a system is very important for
estimating PRA model parameters and dependability metrics.

118

A typical I&C system will have significant memory space (tens to hundreds of megabytes are
not uncommon), and (relatively) long control cycle times (50ms to 200ms). With random fault
injection experiments (i.e., experiments with no regard to when and where a fault is injected), a
large fraction (up to 90%) of fault injection experiments may have no-response outcomes
[Sekhar 2009]. A large percentage of these no-response outcomes resulting from fault
injections are due to non-use of the corrupted data by the executing program. For example, a
randomly generated fault could be injected into a memory location that is not used by an
application, or could be injected into a processor register that is not in use by the application.
These instances in which the injected system would not respond to an injected fault do not
convey meaningful information about the fault tolerance capabilities of the system under test.
Since time has an associated cost value, if the efficiency of the fault injection campaign is low,
then the cost of the fault injection campaign is increased.

Therefore, it is important to minimize the number of no-response experiments so that fault
injection resources are maximally utilized towards more accurate estimation of the parameters
being evaluated. This is the motivation behind performing pre-injection analysis. Pre-injection
analysis is a method of analyzing a fault list to ensure it is efficient. That is, to determine the
locations and times for fault injection so that no-response fault injection experiments are
minimized and meaningful system responses are maximized. Pre-injection analysis essentially
means to determine the space-time dimension of the executing program with respect to its
hardware/software interactions. A state in an executing program will be active at a specific
location at a certain time. Here location means the use of the CPU and memory resources like
data and instruction registers, code and data memory segments, and I/O registers. Time means
the discrete clock time of the CPU. Knowing these dimensions of space-time ensures that the
injected fault will corrupt the data execution flow and thus have a high probability of inducing an
error.

Additionally, pre-injection analysis aids post analysis activities. For example, by ensuring that a
corrupt value is used in the execution of a function on one channel of a redundant multi-channel
system, the user knows that data used in the affected redundant channel is different from the
data stream in the separate, redundant channels. If the affected channel or other redundant
channels detect and mitigate the error, this indicates the error would not produce a significant
deviation in the program behavior. Thus, the user can deduce the target I&C system is not
sensitive to the error. By varying the value of the fault corruption it is possible to determine both
the sensitivity of the system to a particular fault value and the propagation thresholds of the
error. Secondly, injected errors that result in no responses even after pre-injection analysis may
suggest a long latency period for the fault. Since a user would expect faults to be detected, the
presence of no response would stimulate users to identify these faults for farther investigation.

The next section describes two pre-injection methods that were investigated, implemented and
evaluated during the course the course of this research.

7.2.2. Toward Efficient Fault Injection

In order to conduct efficient fault injection experiments, the system assessor must be provided
with adequate information to make informed decisions on fault injection experiments. This
availability of information is classified into the following three categories: 1) The tester is
provided with no information regarding the internal behavior of the system; 2) the tester is
provided with some information about the internal behavior of the system; and 3) the tester is
provided with all the information required to test the system.

When no information is available and fault injection testing must be performed, random fault
injection is the most feasible method of fault injection. When some information such as
execution traces or system logs is available, fault locations can be selected based on the

119

information from the execution traces and system logs. When all the information about a
system is available, such as source code or architectural information, fault injection experiments
can be carried out at the program information level (i.e., the symbolic content of the program).

The analysis described in this Section is focused on category (1) and (2) situations. The reason
category (1) and category (2) are significant is that very often source level code is not available
to the tester for proprietary concerns. More importantly, assembly level or binary level
representation is what actually executes on the processor, it is not an abstraction of machine
behavior – it is the machine behavior. For this reason, extracting fault lists at the
hardware/software interaction level is the appropriate and most representative place to extract
fault lists.

When a conservative approach is adopted to estimate the coverage of a fault tolerant system,
the estimate is based on those fault injection experiments that cause a system response. When
the efficiency of fault injection is low, as in random fault injection, more than the required
number of fault injection experiments must be conducted to estimate the coverage at a desired
confidence level. For example, if the efficiency of fault injection experimentation is 50%, only
half the fault injection experiments lead to a system response. Further, if the desired confidence
level in the coverage estimate requires 2000 fault injections with system responses, the actual
number of fault injection experiments that need to be conducted is 4000. Given that the time
taken to conduct each fault injection experiment can be significant, fault injection
experimentation can thus be very expensive and lead to wasting resources (funds, labor etc.) if
the faults do not cause a system response.

When pre-fault injection analysis is conducted, fault activation is ensured. Thus, the possibility
of obtaining system responses to the fault injection experiments is also higher. This improves
the efficiency of the fault injection campaign and thus fewer fault injection experiments need to
be conducted without compromising the statistical confidence intervals in the coverage
estimate.

7.3. Related Work on Pre-fault Injection Analysis

The INERTE® tool for fault injection is a NEXUS®-based tool for embedded systems [Yuste
2003]. In this technique, information from execution traces is used to determine memory
locations used by the application. Fault injection experiments are conducted on these
resources but at random instants of time [Yuste 2003]. This technique achieved only 12% fault
activation in the cited reference.

The work presented in this NUREG is closest to the fault list generation method used in the
GOOFI® tool [Vinter 2005; Barbosa 2005]. In the GOOFI technique, registers and memory
locations used by the application are obtained from the execution traces. The control loop
where the fault injection experiment is to be performed is also chosen. Fault injection
experiments are performed just before the resources (registers or memory locations) are
accessed. The results obtained by [Vinter 2005; Barbosa 2005] are very similar to the results
observed in the experimentation underlying this NUREG, that is, about 95% occurrence of no-
response faults when no pre-fault injection analysis is used, and a reduction of no-response by
about 45% when pre-fault injection analysis is used. Given that the application used in [Vinter
2005; Barbosa 2005] was very different than the application described in this report, using a
different processor instruction set, and development environment tends to validate observations
and findings that non-optimized fault injections in modern processors produce highly inefficient
fault injection experiment campaigns.

120

The dynamic analysis method described in this report is differentiated from other similar
schemes by the use of pre-determined times for injection of faults from execution traces. This
more accurate determination of time for injection of faults provides the analyst a much larger set
of faults that will be activated. This enables a higher degree of confidence in the estimates of
parameters being evaluated. Also, instead of injecting faults just before a read access, the
window allows the analyst to inject a fault over a period of time allowing for flexibility in fault
injection. This differentiates the UVA methods in this report from the GOOFI method described
above.

7.4. Pre- Fault Injection Analysis to Improve Fault Injection Efficiency

When faults are injected into randomly selected locations, they mostly result in no-responses
from the system. There are four possible reasons for this:

(1) The location where the fault is injected may not be used by the application.

(2) If a memory location is overwritten after a fault was injected, but before it is accessed,

the faulty value gets overwritten and the fault never propagates.

(3) The error value may propagate but is not detected by the system error detection

mechanisms and the output of the system does not deviate from expected service.

(4) The fault has a very long latency period.

Reason 3 implies that even though an injected fault may be absorbed by the system state, it
could lead to a no response fault injection experiment. This is illustrated in Figure 7–1. Set A
represents the set of all faults that are absorbed by the system state. These are activated
faults. Set B represents the set of all no response faults. The intersection of the two sets
represents the set of all faults that are activated, but do not cause a system response.

A = Set of all activated faults
B = Set of all no-response faults

A – (AB) = Set of all activated faults that result in a response

B – (AB) = Set of all faults that are not activated

Figure 7-1 Venn diagram representation of fault space

Activated
faults that

cause a
response

Activated
Faults

No-
Response

Faults

Faults that
are not
activated

Faults that are
activated but do not

cause response

Set B
Set A

121

If a fault injected into the system should produce a response, the fault should first be absorbed
by the system state, that is, it should be activated. Fault activation refers to the activation or
access of injected faults [Tsai 1999]. For a given application, the locations that are accessed
during execution for a specified input sequence can be represented as a finite subset of the fault
space. This subset may vary along all or any of the dimensions of the fault space depending
upon the application workload. This is because different executions of the application would
access different locations based on the applied inputs/workload. This is represented in
Figure 7–2.

Figure 7-2 Fault activation for different workloads

Fault activation cannot be guaranteed when faults are injected into random locations. In order
to increase the possibility of an injected fault affecting the system response, faults should be
injected into locations that have a high probability of being activated. The choice of such
locations requires careful analysis of the application from a static and dynamic point of view
prior to the experimentation.

Figure 7–3 illustrates two levels of pre-fault injection analysis. The first level determines the
faults that will be activated upon execution of the application, thereby increasing the chances of
obtaining a system response to the fault injection. These faults are a subset of the fault space.
The second level further analyzes these activated faults to obtain a list of faults that will cause a
failure of the system. This level represents the set of faults that are not covered by the system.
These faults are a subset of the activated faults apart from being a subset of the fault space.

Set of faults that can be
activated for both

workloads

Fault Space

Set of faults that
can be activated
for workload 1

Set of faults that
can be activated
for workload 2

122

Figure 7-3 Levels of analysis

The scope of pre-fault injection analysis presented in this Section is limited to improving the
number of activated faults that can be used by a fault injection process to find the covered and
uncovered faults in the system. Fault list generation by pre-fault injection analysis plays a
crucial role in the fault injection process. When random fault injection experiments are
performed, the number of experiments that need to be conducted to thoroughly test the system
can be enormous [Barbosa 2005]. However, by injecting faults into specific locations based on
the probability of activation, the faults that remain latent, or those that get overwritten, in the
fault list can be significantly reduced. Thus, the number of fault injection experiments that need
to be conducted to exhaustively test the system will be fewer.

7.4.1. Pre-fault Injection Analysis for Improving the Efficiency of Coverage
Estimation

Fault Coverage C is the conditional probability that a system detects and recovers; given the
existence of a fault. It is a measure of a systems’ ability to detect and recover from faults and
maintain operational status, or reach a fail-safe state bounded in time [Johnson 1989].

C = P [(proper handling of fault)|(occurrence of a fault є )] (7.1)

The random event described by the predicate ‘proper handling of fault – “occurrence of a fault є
τ” can be associated to a binary random variable Y, which assumes the value 1 when the
predicate is true and 0 when it is false. The variable  is then distributed like a Bernoulli
distribution with parameter C. From the definition of the Bernoulli variable, the parameter of the
distribution equals the mean of the variable. Thus,

123

C = E[] = 1. P( = 1) + 0. P( = 0) = P(= 1)

C = Σ P(= 1| F = f) P(F = f) (7.2)

f є 

The last expression is obtained by applying the theorem of total probability. F is a random
variable whose probability function is as given below, when a uniform fault distribution is
assumed.

P(F = f) = 1 for every (f є ) (7.3)

|  |

According to this assumption, every fault in the fault space is assigned equal relative
probabilities of occurrence. |τ| represents the cardinality of the fault space.

As mentioned earlier, pre-fault injection analysis can be used to improve the efficiency of fault
injection by reducing the number of fault injection experiments that must be conducted for
estimating the coverage at a desired confidence level. A conservative estimation of coverage is
based on those fault injection experiments that cause a system response. Based on single
sided confidence intervals, coverage is given by,

CL = (1 - )
1/N (7.4)

where ,

CL = Lower limit of coverage

 = Confidence or significance coefficient

N = Number of experiments

This equation can be re-written as,

 ܰ ൌ ୪୬ሺଵିሻ୪୬ሺ஼ಽሻ (7.5)

From equation (7.5) it can be seen that in order to achieve 90% confidence in a coverage
estimate of 0.99, 230 fault injection experiments that cause a system response must be
conducted. The efficiency of a fault injection campaign (∆) can be given by,

 ∆ ൌ ே௨௠௕௘௥ ௢௙ ௙௔௨௟௧ ௜௡௝௘௖௧௜௢௡ ௘௫௣௘௥௜௠௘௡௧௦ ௧௛௔௧ ௖௔௨௦௘ ௔ ௦௬௦௧௘௠ ௥௘௦௣௢௡௦௘்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௙௔௨௟௧ ௜௡௝௘௖௧௜௢௡ ௘௫௣௘௥௜௠௘௡௧௦ (7.6)

If 50% of the fault injection experiments result in no responses, then a total of 460 fault
injection experiments must be conducted to obtain 230 experiments with responses. This is

124

twice the number of fault injection experiments that need to be conducted. Such low levels of
efficiency are common when fault injection campaigns are conducted randomly. Table 7–1 lists
the number of fault injection experiments that must be performed with the coverage estimated
conservatively at 80% confidence when only 50% efficiency is achieved through fault injection.

Table 7-1 Number of fault injection experiments.

N
Number of

experiments
with

responses

C
Coverage

γ
Confidence

∆
Efficiency of

fault injection

N∆
Number of
experiment
s required

100 0.983 0.80 0.5 20
0

1000 0.9983 0.8 0.5 200
0

10,000 0.99983 0.8 0.5 20,000

100,000 0.999983 0.8 0.5 200,000

10
k

0.9(k-1)83 0.8 0.5 2 * 10

k

It can thus be seen that when fault injection efficiency is low, significantly more than the
required number of fault injection experiments must be performed. For example, if the fault
injection efficiency is 50% and each fault injection experiment requires three minutes to
complete (see Volume I Section 7), and a target coverage of 0.99983 is to be estimated at
80% confidence is desired, then the entire fault injection effort would take 60,000 minutes
which is approximately 42 days. With pre-fault injection analysis efficiency, a ∆
approaching 95% to 100%, the time is effectively reduced to 21 days to 24 days.

When pre-fault injection analysis is applied, faults are injected such that fault activation is
ensured, thereby increasing the possibility of obtaining system responses. This could improve
the efficiency of fault injection experiments (∆) significantly, thereby reducing the number of
fault injection experiments may be conducted to achieve the desired confidence in the
coverage estimated.

7.4.2. Dynamic Analysis-based Pre-fault injection analysis

The analysis conducted by observing running code is called dynamic analysis [Sekhar 2009].
Dynamic analysis is usually conducted with the help of execution information such as execution
traces. The inferences from this analysis are pertinent to the specific input sequence for which
the application execution is studied [Sekhar 2009]. The technique of dynamic analysis was
used to determine resources (registers and memory locations) that are used by the application
for the purpose of conducting efficient fault injection experiments. Fault lists were generated
based on this analysis and fault injection experiments were conducted to prove the
effectiveness of this method. This method is described schematically in the flow chart shown in
Figure 7–4.

125

Figure 7-4 Flow chart representing fault list generation using dynamic analysis

The first step in this process is the procurement of a fault free execution trace of the application
for the specific input sequence. The execution trace is a record of all instructions executed by
the application. Thus, it contains information on the registers and memory locations used during
program execution. Every instruction in the trace is parsed to extract the operands and classify
them as source or destination operands for that particular instruction. The source operands are
entered into a read array and the destination operands are entered into a write array.

Another array is maintained for each of the read and write arrays. This array stores the
instruction number when the corresponding resource in the read/write array is accessed. The
instruction number is a count of all the instructions that have been executed, with the first
instruction having an instruction number 0.

Further, a write_hash hash table is maintained that contains a record of all registers and
memory locations to which data has been written. The key to the hash table is the resource
itself and the value is the instruction number at which this resource was written. The read and
write arrays are cleared for every instruction that is parsed. The size of the write_hash table is
controlled to limit the size of the resulting fault list. The extraction of resources into the arrays is
shown in the Figure 7-5.

Start

Clear entry in hash table if write entry is
already present

Clear up hash table periodically to limit
window

Obtain instruction from trace

Extract the read and write resources from
the operands

Check if there are any matches

Generate Fault List

126

Figure 7-5 Populating the data structures with source and destination operands

Every resource in the read array is compared with the write_hash hash table to determine a
write to the resource. Provided the write access took place before the read access, this time
interval between the write access to a resource and the read access to the same resource is
referred to as a window of opportunity. The concept of window of opportunity is illustrated in
Figure 7–6.

Every instruction number within the window of opportunity is regarded as a "time" when a fault
can be injected into the resource. A fault injected into the resource when the program execution
reaches any of these instruction numbers, will be accessed at the read access instruction
number, which would be ahead in time. Thus, fault activation is ensured. Each of the time
instants in this window is translated into an individual fault injection experiment. The fault list
thus contains resources and the instruction numbers in the windows of opportunity.

Once the fault list has been generated for a particular resource, the value of the resource in the
write_hash table is replaced with the instruction number of the read access of the resource.
This is to prevent duplicate fault injection experiments on the fault list, when a second read
access is performed on the same resource. Also, if the current instruction number and least
value in the write_hash table are more than 20 instructions apart, the corresponding entry in the
hash table is eliminated. This will result in read accesses that do not have matches in the
write_hash table when the window is greater than 20 instructions. For such accesses, a window
of opportunity of 5 instructions was used. The fault list generation process is shown in
Figure 7–7.

127

Figure 7-6 Illustration of the window of opportunity

Figure 7-7 Generating the fault list

The presence of a window of opportunity allows the tester to inject faults at any time within this
interval. This allows variation and control of the fault injection process. A fault list generated by
this method contains faults that are ensured to be activated during fault injection.

Another important benefit of finding a “window of opportunity” is that every fault injected in the
window is equivalent. This allows the use of fault expansion techniques to be applied to the
data to increase the “virtual” number of fault injections thereby increasing the efficiency even
more. The concept of statistical fault equivalence is discussed in Appendix A of Volume 1. The
concept is briefly described here to show how pre-injection analysis supports statistical fault
equivalence estimation.

Insn.

Instruction

129 load [r3]
130 add r2, r2, r1 ←reg. r2 written
131 sub r3, r3, r4
132 mov r6, r7
133 sub r5, r3, r2 ←reg r2 is read

Window of opportunity

r2 is written to r2 is read

129 130 131 132 133

Time in terms of instruction numbers

134

Write hash
table entry

Write_hash

491 r1

r2 495

r6 500

r20 503

r25 509

r3 512

r6 512

Window of opportunity for
r6 is between instructions
500 to 512.

read read_inum

Instruction# Fault
Location

501 r6
502 r6
503 r6
504 r6
505 r6
506 r6
507 r6
508 r6
509 r6
510 r6

128

The error propagation window of opportunity specifies the window of time in which a specific
fault can be applied to a specific memory location to produce the same erroneous system
behavior. Figure 7–8 illustrates this concept. A fault injected into register r12 at the start of the
window will produce the same errors as a fault injected into r12 at the end of the window.

Figure 7-8 Error propagation window of opportunity

The start time, referred to as tb , for this window of opportunity specifies how early in time that a
fault, if injected, would either remain latent and not produce an error, or the earliest point in time
that the fault will produce an error but not be used by the system. The end time, referred to as
tf, is the last point in time at which the injected fault will produce the same type of erroneous
system behavior. If the fault is injected after tf or before tb then there is a possibility that the
fault will produce a different erroneous behavior.

The number of faults contained in the window of opportunity is infinite if one considers time as a
continuous variable. Digital systems, however, are designed based on the concept of discrete
time units. Thus, the number of faults contained in the window of opportunity is measured
based on this fundamental discrete unit of time. This discrete unit of time is derived from the
minimum time required for the system to reach the next system state. This fundamental time
unit is referred to as a system instruction clock cycle. In most cases, this discrete unit of time is
the inverse of the processor clock frequency. For example, most microprocessors have some
measure of pipelining and superscalar instruction issue that allows at least one instruction to be
executed per clock cycle. Under this assumption, the number of system clock cycles contained
in the window of opportunity is the number of equivalent faults for this particular fault injection
experiment. This quantification assumes that the fault occurrence is an independent event that
can occur at any time independent of the system clock. The effects of a fault occurrence event,
however, are observed and propagate through the system based on the system clock. Stating
this concept in mathematical terms yields:
௦ܥ ൌ ቔ௧೑ି௧್೎் ቕ (7.7)

where Cs is the number of equivalent faults, and Tc is the time period associated with one
system clock cycle for the system under test.

Understanding Fault Activation
…

r12 written  addi r12 ,r1, -16
lis r11,17200
stw r11,8(r1)

r12 read  lfd f0,0(r12)
r12 read  xoris r10, r12 ,512

stw r10,4(r1)
lfd f11,8(r1)

r12 written  addi r12 ,r1,16
…

for

Actual Trace of Executing Machine Code

Window for fault
injection in r12
to maximize
error
propagation

129

The payoff for determining the equivalent fault set in a window of opportunity is the fault
expansion factor for a given window of opportunity. The fault expansion factor is simply Cs.
From a fault injection experiment perspective, only one fault from each window of opportunity
must be sampled and injected into the target system. The response to this injected fault is
noted as covered or uncovered. By knowing that all faults are equivalent in a given window, the
faults can be grouped together as equivalent faults without having to inject all of them – only
one representative fault sample from a window of opportunity is needed. This has the effect of
“virtually” increasing the number of faults injected into the system, provided the fault expansion
factor Cs is greater than 1.

Several methods for pre-analyzing fault lists so that maximum error propagation and equivalent
fault sets can be achieved are presented in [Smith 1995]. Using the algorithms UVA developed
and reported in [Smith 1995], the instruction stream is analyzed to uncover potential “windows”
where faults will induce and propagate errors. As this increases the possibility of obtaining a
system response, the no-response fault injection experiments are reduced. With fewer no
response faults, efficiency of fault injection is thus increased.

7.4.3. Static Analysis for Pre-Fault Injection Analysis

Static analysis is the analysis of code prior to execution. While dynamic analysis is used to
determine the program behavior for a specific input sequence, static analysis can be used to
study program behaviors for different input sequences. Static analysis can be performed with
control flow and data flow graphs. Static analysis can be conducted on the disassembled binary
code or on the source code, if it is available. Typically, static analysis is performed on the
disassembled binary code as source code information is usually not available when fault
injection experimentation is performed by a third party tester.

The extent of static analysis that can be performed depends on the amount of information about
the program that is available. This is classified into the following two groups: i) binary code of
applications compiled without debugging information; and ii) binary code compiled with
debugging information. The research explored the use of a commercially available tool,
IDA Pro®, to determine areas in the code that can be identified as suitable candidates for fault
injection purposes.

IDA Pro® is a binary analysis/disassembler tool that supports many instruction set architectures
(Intel, Motorola, ARM, etc.) [Eagle 2008]. IDA Pro® is considered one of the best binary analysis
tools on the market. For that reason it is widely used in the security arena for security
vulnerability analysis of embedded systems. The tool disassembles binary code and allows the
binary code to be loaded at a desired offset in the memory. IDA Pro® can identify symbolic
information if the binary code has been compiled for debugging purposes. This allows IDA Pro®
to identify function names and other strings present in the source code from the binary. The
analysis conducted in this research is based on the assumption that symbolic information is
available for the disassembled binary code, which often is the case.

An important feature in IDA Pro® that is of interest to fault injection is the graphing utilities.
These utilities provide control flow graphs of the disassembled binary code as well as graphs of
cross references to the functions. A cross reference to/from a function of interest refers to a
function that is directly invoked by or invokes the function of interest, as illustrated in Figure 7–9.

130

Figure 7-9 Cross referencing in IDA Pro®

In Figure 7–9 there are four cross-references to Function 5 and one cross reference from
Function 5. For the purpose of this analysis, the cross reference count of a function is the
greater of the two types of cross references (to and from). Based on the cross referencing
feature, the functions with a large number of cross references are likely to be in the execution
path. Additionally, the functions with a large number of cross references are likely to be called
many times during the program execution. No assumptions are made about functions with a
small number of cross references. These assumptions can be verified through experimentation.
As the functions are likely to be invoked during program execution, the resources accessed
during the function call can be identified and faults can be injected accordingly.

7.5. Development and Implementation

7.5.1. Dynamic Analysis

The sim-safe simulator in SimpleScalar [Burger 1999] was chosen as the fault injection system.
The SimpleScaler family of simulators provides system developers with a virtual version of their
target hardware. The virtual target hardware operates completely within a virtualized
environment running on a standard laptop or desktop computer. The virtual hardware runs the
same binary software as the physical target system, including firmware, device drivers,
operating system, middleware stacks, and the application software. Software for the target
machine runs unmodified on the virtual hardware. The configuration for a SimpleScalar
execution is specified through a command line sequence of options that are to be applied to the
target application.

Being an open-source tool, the entire source code of SimpleScalar was available for this
research. Modifications were performed on the source code to enable a fault injection capability
in SimpleScalar. Along with the default options provided by the toolset, the source code was
modified to accept a few more arguments that specified fault and fault properties. When the
instruction number specified at the command line was reached during the program execution,
the fault value was injected into the resource, which was also specified in the command line.

The application to be analyzed was compiled for SimpleScalar and the fault free execution trace
was obtained. Dynamic analysis was performed on this trace and the fault list was generated.
This fault list was then parsed to a script generator that converted every entry in the fault list to
an individual fault injection experiment to be performed on SimpleScalar. During the script
generation process, the fault value to be injected was chosen. Fault injection experiments were
conducted with two fault values, i) a value of 0 was injected into the fault location, and ii) a
random bit in the fault location was flipped. Scripts were generated and approximately 28,000
fault injection experiments were conducted to determine the effectiveness of pre-fault injection
analysis towards improving the efficiency of fault injection experiments.

Function 1 Function 2 Function 3 Function 4

Function 5

Function 6

131

7.5.2. Static Analysis

IDA Pro® was used to analyze the application to verify the postulates. The cross reference
count of each function was determined and a few functions were selected based on the cross
reference count. Functions with more than 5 cross-references were considered to have a high
number of cross references whereas those with less than 5 cross-references were considered
to have a low number of cross references. These functions were then checked for invocation
and frequency of invocation by executing the functions on a debugger such as GDB (GNU
Debugger).

GDB is an open source debugging tool that was used to prove the research assumptions.
When debugging information is available in the specified binary code, GDB can be used to
observe the variables in the stack frame at any instant of time. The target binary should be
present in the search path of GDB. The application can be executed from GDB after the symbol
file of the application is loaded into GDB.

7.6. Experimentation and Results

7.6.1. Dynamic Analysis

The application considered for analysis was basicmath, an arithmetic application that is used to
solve cubic functions and also perform conversion from degrees to radians. This application
can be obtained from the Mibench® benchmark suite [Guthaus 2001].

Fault lists generated from the dynamic analysis of the fault free execution traces were converted
into scripts for fault injection on SimpleScalar. In order to compare the results of the fault
injection experiments, random fault injection experiments were also performed for each fault
value chosen. The results of the fault injection experiments are tabulated in Table 7-2.

Table 7-2 Results of fault injection experiments in SimpleScaler.

Fault
Value

Fault
Injection

type

No. of faults
resulting in

faulty output

No. of faults
resulting in

correct output

Total No. of Fault
Injection Experiments

Fault

value 0

Random
Fault

Injection
289 4710 4999

Fault
injection with

analysis
6326 7439 13765

Bit flip

Random
Fault

Injection
1138 3862 5000

Fault
Injection with

analysis
2549 2451 5000

Table 7–2 shows the results of the fault injection experiments obtained by comparing the
outputs of the fault injection experiments to the fault free output. It is observed that the number
of activated faults for random fault injection is at least 5.78% of all the fault injection experiments

132

(289/4,999) while that of directed fault injection is at least 45.96% (6,326/13,765) when a fault
value 0 is injected into all the locations. Fault injection experiments were also conducted by
flipping the bits of registers in the register files. When these faults were injected randomly, only
22.76% (1,138/5,000) of the fault injection experiments resulted in faulty outputs. However,
when the locations were obtained from analysis of the trace, nearly 50.98% (2,549/5,000) of the
fault injection experiments resulted in erroneous outputs.

The number of faults that resulted in faulty outputs does not represent the number of activated
faults because not all activated faults result in erroneous outputs. Sometimes, a faulty value
can be propagated but may not affect the program behavior or output. Thus, the number of
activated faults could be more than the number of faults that resulted in faulty outputs. These
results are further illustrated by means of the bar graph in Figure 7–10 to compare results of
fault injection experiments.

Figure 7-10 Results obtained from fault injection experiments

As shown by the results of the fault injection experiments in Table 7–2, a set of 5,000 random
fault injection experiments conducted by flipping a random bit in a random location at a random
time activated a fault into architecturally correct execution (ACE) bits in the register file in only
22.76 % of the experiments. However, when fault injection experiments were conducted with the
help of trace analysis, 50.98% of the experiments injected faults into ACE bits. It was known
that these are ACE bits in the register file because the output was erroneous. Thus, pre-fault
injection analysis can give a better estimate of the ACE bits in the micro-architectural structure.
Since, the experiments were not performed on a fault tolerant machine, there are no DUE bits.
All the ACE bits thus become SDC bits. The results are shown in Figure 7-11.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Random
location, zero‐

value

Directed zero‐
value

Random Bit Flip Directed Bit Flip

Noticeable response

No response

133

Figure 7-11 Comparison of ACE Bits obtained between random and directed fault
injection experiments

7.6.2. Static Analysis

The target application is the ls command. The ls command is used to list the contents of the
current working directory. There are many command line arguments that can be specified in the
input to the ls command. The different inputs obtained for the experiment were based on the
command line arguments. The target application was loaded in the debugger and executed.
The static analysis verified the postulates, thus enabling justification of the choice of code
regions that could be suitable candidates for fault injection.

The ls application consists of 256 functions. Out of these 256 functions, a large majority had
only 1 cross reference. A total of 26 functions were identified that had more than 1 cross
reference. Functions with more than 5 cross-references were considered functions with a high
number of cross-references, and those with less than 5 cross-references were regarded as
functions with a low number of cross references. The application was executed for a set of 8
different inputs. For each function identified, the number of times the function was invoked for
each input was determined and plotted. The results are shown in Figure 7–12.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Random Bit Flip Directed Bit Flip

SDC

unACE

134

Figure 7-12 Frequency of invoked functions for each of eight inputs

It was also observed that functions with a higher number of cross references were likely to be
present on multiple execution paths. The results are shown in Table 7–3. A tick () indicates
that the particular function was invoked when the program was executed with the input specified
in the column. An ‘x’ indicates otherwise.

It can be seen that the functions with a high number of cross-references are likely to be invoked.
Thus, cross referencing provides a reliable means to identify functions or code regions that can
occur in the program execution and thus represent suitable candidates for fault injection.

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9

Fr
eq

ue
nc

y

Inputs

#Xref>=6

#Xref < 6

135

T
ab

le
 7

-3

F
ig

u
re

 7
-1

2
fu

n
ct

io
n

 in
vo

ca
ti

o
n

 a
n

d
 c

ro
ss

 r
ef

er
en

ce
 c

o
u

n
t.

F
u

n
ct

io
n

 n
am

e/
In

p
u

t
-l

n
R

sa

-n
p

rR
sa

-R

a

-n

-p
a

-l
n

-r

s

-n
R

#X

re
f

d
ec

o
d

e_
sw

it
ch

es













>
10

p
ri

n
t_

lo
n

g
_f

o
rm

at




×


×



×


>

10

h
u

m
an

_r
ea

d
ab

le













>
10

X
m

al
lo

c












>

10

g
o

b
b

le
_f

ile













>
10

N
st

rf
ti

m
e




×


×



×


8

X
st

rd
u

p













7

q
u

o
te

_n
am

e












7

cl
o

se
_s

td
o

u
t_

st
at

u
s













6

X
st

rc
o

ll












6

h
as

h
_i

n
se

rt





×

×

×

×



5

h
as

h
_r

eh
as

h

×

×

×

×

×

×

×

×

5

U
sa

g
e

×

×

×

×

×

×

×

×

4

q
u

o
te

ar
g

_c
o

lo
n

×

×

×

×

×

×

×

×

4

g
et

u
id

b
yn

a
m

e
×

×

×

×

×

×

×

×

4

q
u

o
te

ar
g

_n
_o

p
ti

o
n

s
×

×

×

×

×

×

×

×

4

p
u

t_
in

d
ic

at
o

r
×

×

×

×

×

×

×

×

3

136

T
ab

le
 7

-3

F
ig

u
re

 7
-1

2
fu

n
ct

io
n

 in
vo

ca
ti

o
n

 a
n

d
 c

ro
ss

 r
ef

er
en

ce
 c

o
u

n
t.

F
u

n
ct

io
n

 n
am

e/
In

p
u

t
-l

n
R

sa

-n
p

rR
sa

-R

a

-n

-p
a

-l
n

-r

s

-n
R

#X

re
f

le
n

g
th

_o
f_

fi
le

_f
ri

lls

×

×


×



×


×

3

ch
ec

k_
tu

n
in

g





×

×

×

×



3

q
u

o
te

_n

×

×

×

×

×

×

×

×

3

q
u

o
te

ar
g

_n
_s

ty
le



×

×

×

×

×

×

×

3

M
b

sn
w

id
th

×

×

×

×

×

×

×

×

3

q
u

eu
e_

d
ir

ec
to

ry













2

p
ri

n
t_

n
am

e_
an

d
_f

ri
lls

×

×



×


×



×

4

137

7.7. Applying Dynamic Pre-Fault Injection Analysis to the Benchmark
System

The final step for this research task was to transition the pre-fault injection analysis algorithms to
the CPU instruction set architecture of the benchmark systems. The process of this adaption is
shown in Figure 7–13. To begin, the algorithms adapted to recognize the Instructions of the
benchmark microprocessor, which was based on an x86 instruction set architecture (ISA). The
x86 ISA mnemonics were loaded into the parsing table so each instruction could be recognized.
Instructions that read and write to memory and register locations were tagged so that the
algorithm could identify when these instructions occur in the execution trace.

Figure 7-13 Integration of pre-fault injection analysis algorithms into Benchmark
System I and execution trace files generated

Once the algorithms were converted to recognize the x86 instructions from the benchmark
system, partial real time instruction traces were collected from the benchmark system using the
HiTex DProbe Incircuit Emulator. There were limitations on how long the execution traces could
be collected due to buffer size. Most of the traces collected were less than 10ms in duration,
less than a full execution of the control cycle. Referring to Figure 7–13, the execution trace file
from the benchmark system was input into the parsers to produce a fault injection list with
windows of fault injection noted. These fault lists were then fed into another parser to generate
a fault list in suitable format for the ICE based fault injector. Finally, the fault list was processed
by UNIFI to inject faults into the benchmark system.

7.8. Results of Applying Pre-Injection Analysis to Benchmark
System I

Applying the pre-analyzed fault injection list to the benchmark system required that a breakpoint
be set in the fault injector for a specific memory or register reference at a specific time. This
was easily accomplished using the HiTOP breakpoint commands.

100001 addu r5, r2, r5
100002 addu r4, r2, r4
100006 addiu r4, r0, -1
100007 sltu r2, r2, r3
100009 addu r2, r0, r4

99998 r2
99999 r2
100000 r2
99998 r5
99999 r5
100000 r5
100001 r2
99999 r4
100000 r4
100001 r4

PARSER FOR THE
INSTRUCTION SET

Trace File of Instruction
Benchmark System Execution
obtained using ICE machine

Fault List Generated

SCRIPT GENERATOR
TO AUTOMATE
FAULT INJECTION

Fault Injection applied
to Benchmark System

138

The type of fault injected using the pre-injection analysis was a transient fault using the
breakpoint-halt-modify-write-resume command sequence of the fault injector. When the fault
injection campaigns were initiated it was noticed that this sequence of commands for fault
injection was taking too long to execute and many of the fault injections caused the benchmark
system watchdog timer to trip thus invalidating the fault injection result. A modification was
attempted to change the sequence with breakpoint-halt-write. This was somewhat more
productive; however, many of the fault injection trails caused the watchdog to trip. However, it
was noticed that for almost every successful fault injection trial the outcome produced an error
which was detected by the system self-tests. In a sense, this validated the simulation results
and method from an observational point of view.

The ineffectiveness of the fault injections on the benchmark systems using the pre-fault injection
analysis was not due to the pre-injection methodology, but due to the inability of the ICE based
fault injector to support timely fault injections using sophisticated breakpoint control. This
problem could be easily resolved with faster fault injection techniques such as OCD based fault
injection.

7.9. Other Techniques: Map File-based Fault List Generation

Traditionally, physical-based fault injection has been performed by corrupting memory locations,
register values, and memory mapped I/O with knowledge of data structures and values resident
in these resources. The problem with this approach is that when something “interesting”
occurred, it was difficult to trace the cause and effect back to the specific program variable or
data structure that was responsible for the “interesting” result. This characteristic was not
supportive of the assessment process. To address this challenge, a method of fault list
generation was developed directed at determining all locations in the memory that
corresponded to locations used by the application.

From the user perceptive, the safety application program contains variables, data structures,
and functions used to implement the application. The user usually has some familiarity with the
nature of these data structures as either the tester or the coder of the application. To develop a
fault list, the map file for the application is obtained from the application compilation to
determine all locations in the memory that correspond to locations used by the application and
their associated symbols. The map file contains a listing of all variables and functions used by
the application (see Figure 7–14).

UVA has developed a number of tools to extract all possible memory locations specified by their
address and symbolic information from the map files of digital I&C systems. The process of
fault list generation is now completely automated. The list of faults is then converted into fault
injection scripts ready for the fault injector.

Figure 7-14 Snip of a map file

...
9000H 3DF9H PUB M_RECHNERNAME
9000H 3BC8H PUB REMPU1
9000H 0010H PUB STACK00
9000H 0610H PUB STACK03
9000H 3720H PUB STACK0F

139

7.10. Conclusions

A comparison with the conventional method of random fault injection using execution traces
shows an increase in fault activation from ~6% to almost ~45% when a fault value of 0 is
injected into selected locations. An improvement from ~23% to ~51% was observed when the
injected fault is a flipped bit at the location selected. The faults used for fault injection were
transient in nature.

Less than 100% fault activation is primarly due to the fact that some bit flip fault injections did
not cause a significant error to be observed in the calculation of the output result. First, all
errors induced do not produce observable failures. Approximately 50% of the errors induced
into the system had negligble or no impact on the output of the system, even though the system
state was corrupted. This implies that approximately 50% of the error corruptions for the given
fault induced were of the un-ACE type.

Secondly, experiments were conducted on simulations of systems that had error detection
features. The experimental “error” detection process was to observe the erroneous nature of
the results of calculation at the output of the suimulated system. It is expected that system and
processor level error detection mechanisms would detect many more errors, thus the number of
un-ACE errors would go down depending on the effectiveness of the error detection
mechanisms.

An interesting attribute of pre-fault injection analysis is its ablity to collapse the fault space of
digital systems to those faults that are active with respect to the application domain. presented
this aspect of the work in this report was briefly discussed, but it is clearly an important
consideration for fault injection given that large numbers of fault injections may be required for
ultra reliable systems. The prre-injection methods from a fault list collapsing perspective are
being analyzed with the expectation of preliminary results in the future.

Static analysis conducted on disassembled binary code helps determine code regions that are
suitable candidates for fault injection based on the structure of the control flow graph. The cross
referencing utility in IDA Pro® was used to identify regions that were likely to occur on multiple
execution paths and also functions that would be called many times during a single execution
run of the program based on cross references as well for the ls application. Static analysis is
intended to provide a starting point for fault selection when execution information may not be
available.

For a bit to be declared ACE, the corresponding resource (memory location or register) must be
first accessed. The resources that are accessed and the time duration during which fault
activation in such resources can be achieved are obtained by analysis of the execution traces.
A large number of ACE bits are contained in these resources. It was observed that fault
injection experiments conducted on the bits of these resources resulted in a large number of
erroneous outputs indicating that a large number of ACE bits had been uncovered in the
process. Random fault injection experiments resulted in ~23% of 5,000 injected faults causing
erroneous outputs thereby, revealing ACE bits. However, fault injection performed in selected
resources at times obtained from analysis of execution information resulted in ~51% of 5,000
faults causing erroneous outputs. This means that of the 5,000 faults injected into different bits,
approximately 50% of the bits were found to be ACE bits.

Thus, it has been shown that pre-fault injection analysis is a means of improving the
effectiveness of fault injection experiments. It is also a method that can be used to determine a
significant number of ACE bits in the micro-architectural structure for the purpose of evaluating
the Architectural Vulnerability Factor (AVF).

140

7.11. References

[Barbosa 2005] Barbosa, R., Vintern, J., Fokesson, P., Karlsson, J. "Assembly-Level Pre-
Injection Analysis for Improving Fault Injection Efficiency." Lecture Notes
in Computer Science, vol. 3463, 2005: 246-262.

[Burger 2008] D. Burger, T. Austin. "The SimpleScalar Tool Set, Version 2.0." Technical
Report, 1999.

[Eagle 2001] Eagle, C. The IDA Pro Book. San Francisco, CA: William Pollock, 2008.
[Guthaus 2001] Guthaus, M. "MiBench: A Free, Commercially Representative Embedded

Benchmark Suite." Technical Report, 2001.
[Vinter 2005] J. Vinter, J. Aidemark, D. Skarin, R. Barbarosa, P. Folkesson, J.

Karlsson. An Overview of GOOFI a Generick Object-Oriented Fault
Injection Framework. Technical Report 05-07, Goteborg, Sweden:
Chalmers University of Technology, 2005.

[Johnson 1989] Johnson, Barry W. "Design and Analysis of Fault Tolerant Digital
Systems." Design and Analysis of Fault Tolerant Digital Systems. 1989.

[Sekhar 2009] M. Sekhar, C. Elks, R. Williams, B. Johnson. "Generating Fault Lists for
Efficient Fault Injection into Processor Based I&C Systems." 6th
International Topical Meeting on Nuclear Plant Instrumentation Control
and Human Machine Interface Technology. Knoxville, TN: NPIC&HMIT,
2009.

[Yuste 2003] P. Yuste, D. deAndres, L. Lemus, J. Serrano, P. Gil. "Inerte: Integrated
Nexus-Based Real-Time Fault Injection Tool for Embedded Systems."
International Conference on Dependable Systems and Networks. Sanf
Francisco, CA, 2003. 669-669.

[smith 1995] Smith, D Todd, B Johnson, and J Profeta D. "A Fault-List Generation
Algorithm for the Evaluation." 1995. 425-432.

[Tsai 1996] T.K. Tsai, R.K. Iyer, D. Jewitt. "An Approach Towards Benchmarking of
Fault-Tolerant Commercial Systems." 26th International Symposium on
Fault Tolerant Computing. 1996. 314-323.

141

8. APPLICATION OF FAULT INJECTION TO BENCHMARK
SYSTEM I: RESULTS

8.1. Introduction

After the UNIFI fault injection environment, operational profile generator, and RPS code
activities were completed fault injection campaigns were conducted intermittently over several
months on the benchmark system. These campaigns were conducted near the end of phase 2
of the project, and therefore the researchers were limited in the time they could conduct fault
injection campaigns. Nonetheless, a significant number of fault injections were performed on
the benchmark system. The campaigns were run in groups of experiments to access
applicability factors of fault injection with respect to the capability of the digital I&C system to
produce information that would support PRA assessment activities and produce information to
support claims of system operation.

Overarching these objectives is the “process of discovery”, that is the lessons learned way
continuing up to the culmination of results. This Section presents the types of quantitative and
qualitative lessons obtained by applying the fault injection-based dependability assessment
methodology to the benchmark system.

It is important to note that the data and results presented in this Section are meant to be
interpreted as the types of information that can be acquired from a fault injection-based
methodology, and not an assessment of the capabilities of the benchmark system. The
benchmark systems used as test platforms in this work were scaled representations of digital-
based Reactor Protection Systems and thus do not encompass all of the features that are found
in a typical digital-based RPS.

8.2. System Test Configuration

Referring to Figure 8–1, the benchmark system was configured from two perspectives. The first
perspective involved configuring UNIFI and the associated support equipment to properly
interface into the system for fault injection testing. Specifically, all of the benchmark system
digital and analog sensor I/O were routed through the PXI-1033 data acquisition control module
and controlled by the UNIFI/LabView fault injection environment. The analog input sensors
included coolant flow, hot leg pressure, and steam generator pressure. The digital output
signals included trip signals for each monitored sensor value; coolant flow trip, hot leg pressure
trip, and steam generator trip.

The trip signals coming from the benchmark system were sampled every 10ms and recorded by
UNIFI/LabView to indicate when they changed state. The ICE-based fault injector and the X-
bus fault injector were interfaced into the system as previously described in Section 5.10.
Recording system responses was accomplished by invoking the SMS service monitor unit
through the TCP/IP connection socket from UNIFI. These responses were error log files for
each fault injection trial. Each error log file contained the system response to the fault injection.

The TOP generator tool was run prior to an extensive fault injection campaign to provide an
operational profile for the fault injection experiments. The same operational profile was used
uniformly throughout all the fault injection experiments.

For a majority of the fault injection experiments, the benchmark system was configured as
shown in Figure 8–1. The RPS I&C function was distributed over all 4 processing channels as

142

discussed in Section 3. Processor-based fault injection was applied to channel A of the RPS
I&C function. X-bus fault injection was applied to the RS-485 electrical cable of channel A by
way of the interposer adapter to the DIN connector of the X-bus SLLM unit.

Figure 8-1 Benchmark system configurations

Sensors
Actuation signals
To/From Labview

SLLM SLLM SLLM SLLM

PRO
C‐A

PRO

C‐C

PRO
C‐B

PRO
C‐D

SC

SBG3

SBG4

RS485 X‐bus cable

Optical X‐bus
connectors

A
na In

A
na In

A
na In

D
IG

 O
ut

D
IG

 O
ut

D
IG

 out

Sensors
Actuation signals
To/From Labview

To Monitor
Unit

ICE Machine
Probe

Channel A

Channel B

Channel C Channel D

143

8.3. Typical Fault Injection Sequence For Benchmark System I

After the UNIFI is properly configured and interfaced to a target digital I&C system, a fault
injection campaign can proceed using the Master GUI. Figure 8–2, shows the typical
automated operations that are performed by UNIFI master GUI for a single fault injection trial.
Typically an experimenter will run hundreds of fault injection trials per campaign.

The sequence begins with resetting the target processor prior to a fault injection trial to ensure
the system is in an error free state. Diagnostic routines and self-tests that are executed during
system startup are the primary means to determine that error effects from previous fault
injection trials have been purged from the system. The benchmark system has the capability to
externally signal its health status to SMS service monitor. If the target computer signals to
UNIFI by the way of the SMS service monitor that it is operational, and then UNIFI will proceed
with the fault injection sequence; otherwise, UNIFI will abort the sequence with a NO-GO
message to the user. From this point forward UNIFI will automatically run the fault injection
sequence to completion.

Referring to Figure 8–2, the first few steps in the process are associated with initializing the
measurement systems, and providing operational inputs to the target system. These
operational inputs include enabling count down timers, setting the length of the censor time,
initializing measurement instruments in UNIFI, sending operational profile sensor data to the
target system through the I/O interface module, and establishing a connection to the benchmark
system SMS service monitor.

The SMS service monitor observes the target system during operation and stores health and
error messages from the benchmark system. These error messages form an error log of events
during a fault injection trial. During this phase of the fault injection sequence the system is
provided with steady state inputs from the TRACE operational profile generator. The next few
steps in the process take care of the fault injection initialization processes.

The fault list is initialized and incremented to the current active fault to be injected and the fault
injection parameters such fault type and fault mask are indexed and loaded into the fault list.
One of the timers used in UNIFI is an operational profile countdown timer. When this timer
reaches zero, the TRACE operational profile file initiates a plant event, in this case a LOCA.

144

F
ig

u
re

 8
-2

F

au
lt

 In
je

ct
io

n
 s

eq
u

en
ce

 f
o

r
B

en
ch

m
ar

k
S

ys
te

m
 I

145

In addition to the operational profile timer, there are fault injection timers. These timers
establish when the fault injection is to take place. A timer can be absolute (X seconds from the

start of the sequence), or relative (inject the fault after some event) or random. In the above
timeline, the fault injection is triggered after the LOCA event is initiated. This scenario was used
uniformly throughout the campaigns.

The benchmark system is allowed to run until the censor time of the experiment expires. This is
set by the user during campaign set up. The censor time for the experiments was 12 seconds.

The last steps in the sequence download and store all of the recorded system response and
error information in the database. Once all of the data is collected, UNIFI sends a reset to the
benchmark system, and the fault injection process for the trial is completed. After the sequence
is completed, UNIFI initializes all fault injection parameters to begin the next fault injection trial
sequence.

8.4. Experiment Definition

A number of fault injection experiments that represented the types of fault injection tests that
typically would be conducted by an assessment organization or the digital I&C equipment
vendor during the course of a V&V activity were executed on the benchmark system. These
experiments were chosen to provide a basis for determining the utility of the methodology to
support system safety assessment activities (e.g., license reviews, failure modes and effects
analysis (FMEA), and PRA activities). The quantitative results only reflect the ability to obtain
such information. The experiments run on the benchmark system are summarized in Table 8-1.
The experiment details and results are discussed in subsequent sections.

Table 8-1 Summary of experiments run on Benchmark System I.

Experiment Purpose
Type of fault

Injection
Fault model

used

Fault
Injection
reference
time point

Applied to
Module “ ”

In support of
verifying

CPU register
Fault

coverage

Provide data
to quantify the
error detection
coverage of
register faults

ICE based
fault injection

Transient
Single and
multi-bit flips

After LOCA

Channel A
main
processing
module

Self-tests and
error
detection
mechanisms
for processor
based faults

Memory
Fault

coverage

Provide data
to quantify the
error detection
coverage of
memory faults

ICE based
fault injection

Transient
Single and
multi-bit flips

After LOCA

Channel A
main
processing
module

Self-tests and
error
detection
mechanisms
for processor
based faults

Dual Port
memory

Fault
Coverage

Provide data
to quantify the
error detection
coverage of
DP memory
faults

ICE based
fault injection

Transient
Single and
multi-bit flips

After LOCA

Channel A
main
processing
module

Self-tests and
error
detection
mechanisms
for processor
based faults

Pre-injection
analysis

verification

Provide data
to verify the
efficiency
gains of pre-
injection
analysis

ICE based
fault Injection

Transient –
single bit
memory

After LOCA

Channel A
main
processing
module

Self-tests and
error
detection
mechanisms
for processor
based faults

146

Table 8-1 Summary of experiments run on Benchmark System I.

Experiment Purpose
Type of fault

Injection
Fault model

used

Fault
Injection
reference
time point

Applied to
Module “ ”

In support of
verifying

Output
Disable

Provide data
that the digital
output signals
are disabled
when a fault is
detected

ICE based
fault Injection

Transient –
single bit
memory

After LOCA

Channel A
main
processing
module

Self-tests and
error
detection
mechanisms
for processor
based faults

Digital Output
Trip function

timing
response

Provide data
that the digital
output signals
are actuated
in a timely
manner

ICE based
fault Injection

Transient –
single bit
memory

After LOCA

Channel C
and D main
processing
module

Actuation
timing

Fault and
error Latency

analysis

Provide data
to quantify the
error detection
latency of
register and
memory faults

ICE based
fault Injection

Transient –
single bit
memory

After LOCA

Channel A
main
processing
module

Self-tests and
error
detection
mechanisms
for processor
based faults

X-bus token
fault injection

Determine the
X-bus
controller
token re-
insertion
times for X-
bus

X-bus fault
injection

Permanent
and transient

No LOCA X-bus network

Self-tests and
error
detection
mechanisms
for X-bus
based faults

X-bus data
message
corruption

Provide data
to quantify the
error detection
capability of
corrupted X-
bus messages

X-bus Permanent No LOCA X-bus network

Self-tests and
error
detection
mechanisms
for X-bus
based faults

8.5. Processor-based Fault Injection Experiments

8.5.1. CPU register corruptions

Fault Injection using the ICE-based fault injector was applied to various registers of the system
Pentium I processor. These fault injections were transient single bit and multiple bit corruptions
injected into the 16 bit and 32 bit registers of the register file. The first five registers are 32-bit
general purpose registers. The second four registers are general purpose 16-bit registers.
There are additional registers used in the Pentium architecture, however the fault injections
were limited to this sub-set mainly for demonstration purposes because these registers are used
predominantly by both the application and system software. Table 8−2 shows the details of the
registers used in the fault injection experiment.

The fault injection experiments were conducted in the following manner. The selection of the
register to be corrupted was randomly picked. This accounts for some of the variation seen in
the fault injection totals for each register. The location of the fault in the register was selected at
random as well. After these random selections were made, they were written to a file so the
results of the fault injection could be traced.

147

All CPU register corruptions that were not of the “no-response” class were detected properly.
Pre-fault injection analysis was not used for these experiments, thus accounting for the high
number of no-response experiments (approximately 30% of the experiments produced no
meaningful results). The criterion for “error detected or not detected” was that a valid error log
was produced for the fault injection experiment. No-response experiments were those
experiments that did not produce an error log at all and did not produce any other observable
errors such as output deviations.

Table 8-2 Details of registers used in fault injection experiment.

Reg.
Type

Single Bit
fault

transient

Multi-bit
fault

transient

Bit
location In
Register

No
Response

Effectively
Detected

Not
detected

% Total
detected

EAX 610 67 Random 230 677 0 100

EBX 478 80 Random 197 558 0 100

ECX 497 34 Random 163 531 0 100

EDX 340 0 Random 130 340 0 100

EBP 672 0 Random 272 672 0 100

AX 497 206 Random 238 708 0 100

BX 707 109 Random 271 816 0 100

CX 284 310 Random 125 594 0 100

DX 469 383 Random 104 879 0 100

Total 4554 1189 Random 1730 5743 0 100

8.5.2. Memory Based Fault Injection

Experiments were performed to determine whether the target I&C systems with one faulty
channel would fail to initiate a reactor trip during a LOCA. In Benchmark System I,
approximately 500 different locations in memory space (which included application and DP)
were targeted for fault corruptions. These 500 fault locations were corrupted with single random
bit flips and multiple random bit flips. Each campaign was conducted with a fault list of 500
faults. The campaigns were repeated and run at slightly different times to expose the target
system to different fault activation intervals. Approximately 7,500 faults were injected for this
main experiment in Benchmark System I.

No uncovered faults were revealed during the course of this experiment. The target system
correctly actuated a reactor trip while handling a single channel fault in the target I&C system.
The summary results of this experiment are shown in Table 8–3.

Since no uncovered faults were found, the method of variance reduction was applied for
coverage estimation to provide a conservative bound on the coverage [Smith 1997]. This
statistical method removes one of the covered faults from the campaign and marks it as
uncovered for the purposes of computing a non-unity coverage bound.

148

Table 8-3 Summary of results from memory based fault injection experiments.

Location
Point

Estimate
of C

Variance
of C

Confidence
Bounds of

C

Number of
fault

Injections

No
response

faults

Memory 0.999697 9.188x10-8 0.9991<C<1.0 5274 1975

DP memory 0.9998 1.39x10-6 0.9965<C<1.0 1470 622

8.6. Pre-fault Injection Analysis Verification

As stated in Section 7.7, the successful application of pre-fault injection analysis methods to the
benchmark system was impeded by the long time delay associated with the breakpoint-halt-
read-modify-write fault injection operation of the ICE-based fault injector. Nonetheless, a very
small set of data was available for comparative analysis to non-pre fault injection results. In this
case, a memory location that stores the variable for the “coolant flow” set-point was corrupted
with both methods.

There were 22 successful pre-fault injection fault injections, meaning the benchmark system
watchdog timer did not trip due to the lengthy time of the fault injection process. Of these 22
fault injection experiments, 21 fault injections resulted in a detectable error (i.e., a valid error log
file was produced). This is a 95% effectiveness rate. By comparison, the same location in
memory was fault injected 12 times with no regard to the window of opportunity for when to
inject the fault to propagate an error. Out of these 12 fault injections, 7 of the fault injections
resulted in no response faults. This is a 42% effectiveness rate. While these results are
meager, they tend to confirm the value of using pre-fault injection analysis.

8.7. Digital Output Response and Output Disabled Experiments

Experiments were performed to test the capability of the methodology and the UNIFI
measurement systems to gather critical timing information about the actuation and
disengagement capabilities of the system. The purpose of the experiments was to detect
whether the outputs were disabled after a fault injection that was detected by the benchmark
system. The faults injected into the processing module were register based faults in which 250
transient single bit faults were applied to various registers of the CPU.

There are several metrics of interest with the experiments. The first is output disengagement
coverage. That is, after detecting a fault in the processor, does the benchmark system
disengage the outputs? The second metric of interest is the time delay or transport lag
associated with the disengagement signal.

The disengagement measurement was made with the LabView sample and record instrument.
The time of the fault injection was known by way of a time-stamp from UNIFI, which was
accurate to a resolution of 1 ms. The fault injection triggered the measurement counter to begin
counting in 10 ms increments. The outputs of the benchmark system were sampled every
10 ms. State changes from 1 to 0 indicated disengagement. These types of experiments allow
the real-time output response of the I&C function to be measured in a no-fault or faulted case.

149

Another experiment measured the time from when the set point of a signal goes high until a
reactor trip signal goes high at the output. This time measurement was facilitated by feeding a
set-point signal to the digital output of the benchmark system and comparing it with the reactor
trip signal going high. This was conducted in a no-fault scenario. The outputs of the benchmark
system were sampled at 1 ms intervals.

The results of the experiments are summarized in Table 8-4.

Table 8-4 Results from UNIFI experiments to detect CPU register faults

Experiment
Single Bit

Fault
Transients

Bit Location
in Register

Error
Detected

Error Not
Detected

No
Response

Output
Disengage-

ment

Mean Time
of

Disengage-
ment

Output
Actuation

Time

Output
Disengage-

ments
Faulted

250 Random 156 0 94 156
17ms

+/- 10ms
1 to 2 ms

8.8. Fault and Error Latency Analysis

Another important metric often used in dependability analysis is error and fault latency.
Figure 8-3 shows the concept of fault and error latency. Upon the occurrence of a fault the fault
may remain latent until it is activated by use in the program or hardware. Once it becomes
active it may produce an error that propagates until it is detected by the error detection
mechanisms or self-test functions of the system. Fault latency is important because the longer
an error or fault remains undetected in the system, the higher the probability the undetected
fault will collude with another fault in the system. This could result in two errors manifesting in
the same time interval thereby requiring the system to handle a double fault situation.

Figure 8-3 Example of fault and error latency

The fault injection experiments allow the total time to be measured with assistance from the
time-stamps on the error messages recorded in the error logs. Error logs from the benchmark
system are essential for determining when the system detects a fault and when the system
responds to the fault. In Benchmark System I the SMS service unit collected the error
messages from the benchmark system error detection mechanisms and self-tests. The SMS
time-stamped these error messages as it received them. It was assumed in the latency analysis

Fault Error failure

Fault
Occurrence

Fault
Activated

1st Error
detected

Fault Latency Error Latency

The total time is observed from a fault injection experiment

150

that the transport time of the error messages from the benchmark system to the SMS server unit
was minimal and fixed. In a more detailed measurement set-up, the time delay transport could
be accounted for by measuring this delay. Figure 8–4 shows an error log transcript from the
SMS server after a fault injection experiment.

Figure 8-4 Error log transcript from the SMS server

For each fault injection that results in a detected fault, the time of the first occurrence of an error
message response is noted. A few important points with respect to the measurement of the
fault latency are discussed in this section.

The time measured for latency includes the transport time of the error message from the
benchmark system to the service unit server where it is time-stamped. Therefore, the true
fault/error latency is less than what is shown in the graphs. This transport time from benchmark
system to service unit server is less than 10 ms given the communication is over a direct
Ethernet link. Another consideration that comes into play is that self-tests and error messages
are processed at the lowest priority of the RTE, which is level 3. This feature of the benchmark
system can further delay the error messaging of the injected fault. That is, an error may have
been detected and mitigated, but the message indicating the error could be pre-empted by the
system cyclic processing until there is idle time to transport the error message. Thus, the end-
to-end latency measurement is given as:
ݕܿ݊݁ݐܽܮ ݀݊݁ ݋ݐ ݀݊ܧ ൌ ௙ܶ௔௨௟௧ ൅ ௘ܶ௥௥௢௥೏೐೟೐೎೟ ൅ ௘ܶ௥௥௢௥೘೐ೞೞ೒ೌ೒೐ ൅ ்ܶ௥௔௡௦௣௢௥௧ (8.1)

where

Tfault is the latency of the fault activation,
Terror detect is the error detection latency,
Terror message is the latency of the error message, and
Ttransport is the time to transport the error message to the service unit.

Service Monitor Server - Version 1.12 / 2003-01-22
Benchmark System, © 1993 - 2002, Framatome ANP GmbH, NGLT
sms (info): Loading hardware diagrams...
sms (info): Loading software specification...
sms (info 65003): 20 messages have been loaded from database 'rpsver2'.
sms (info): SMS started. Date: 2009-01-07 19:17:40
2009 - 01 - 07 19:17:43.177 state (up / not available):
CPU 111 state: up since 2009-01-07 19:17:17.427 [25 s]

Beginning of SMS logging

...
2009 - 01- 07 19:26:30.979 CPU 124
RTE error 605, incoming, location RECV_DIRECT, cycle 3939483 7323
Outdated RTE message (message ID 4).
(SIGNALLING -)RTE msg 4 leads from CPU 111 to CPU 124.
...

Example RTE error
Timestamp

151

The variables Tfault, Terror detect, and Terror message are variable or random in nature, and the

constant Ttransport is a fixed but unknown time.

The variable nature of Tfault is due to the memory location containing the corrupted process
variable may be accessed at slightly different times depending on when the fault was injected
with respect to the program execution flow. Thus the fault activation is function of when the
program accesses the memory location.

The value of Terror detect can be variable due to a number of factors. One factor depends on the
error detection mechanism (EDM) that was activated by the fault. If the EDM was part of the
cyclic processing (highest priority) then the error would be detected quickly. Cyclic processing
EDMs would be functions like 2-out-of-4 voting with error signaling, a set point trip with error
signaling, etc. Secondly, if the error was detected by background self-tests, then the response
may be delayed due to the priority of the cyclic processing I&C functions. Lastly, if the error was
detected by self-tests running in background mode, there is a delay associated with when the
self-test is executed in the background task scheduler. Background tasks are queued in a task
list for the background scheduler to execute. There are many self-tests that are executed by the
background task scheduler; therefore,, it may take some time for a particular self-test to become
active and that self-test to execute its functions to detect the fault.

The value of Terror message can be variable if the EDM that signaled an error is a self-test running
in background mode. In this case, the error message may be delayed until cyclic processing
finishes and all service commands with a higher priority are processed.

Given the nature of the latency measurements, for all measurements the time of the fault
injection is differenced from the first time of error detection as noted on the error message
timestamp to yield the end-to-end fault/error latency of the response. Figure 8-5 shows the
sorted scatter plot of the fault latency responses. The x-axis is the fault injection experiment
conducted with respect to the program and system variables that were corrupted. That is, each
fault injection experiment performed one corruption on a single variable in memory space. For
the 500+ variables selected, multiple independent fault injection trials were repeated for each
variable on each response. The Y-axis is the end-to-end latency time.

Referring to Figure 8-5, the scatter plot reveals two distinct “bands” of time responses. One
band is located below the 2,000 ms fault latency line, the other is centered around the
10,000 ms fault latency line. At first glance, the unusual shape of the scatter plot would suggest
that the latency may be associated with a particular program variable.

152

Figure 8-5 Fault latency of memory fault injections

However, in the data shown in Figure 8-6 for the first 50 fault injections, the same program
variable is in both response bands. In one fault injection experiment it was detected rather
quickly (less than 1,000 ms), in another it took almost 7,000 ms to detect. This feature was
noted in most of the bimodal data sets. From this observation it was concluded that the bimodal
nature of the latency is not entirely due to the characteristics of a particular set of program
variables and their use by the RPS application.

Faulted Variable

14000

12000

10000

8000

6000

4000

2000

0
0 100 200 300 400 500

L
at

en
cy

 (
m

s)

153

Figure 8-6 First 50 variable locations of the memory fault injection campaign

Figure 8-7 shows the empirical distribution of the fault latency. Here, the bimodal nature of the
empirical distribution is more clearly visible. For most of the injected faults, the error detection
mechanisms and/or self-tests detected these faults in 1,500 ms or less. However, for a small
subset (less than 10%) the error detection mechanisms/self-test required on average about
10,000 ms to detect the faults; hence, the shape of the distribution.

Figure 8-8 shows the cumulative distribution of the fault latencies plotted in increasing order. As
shown in Figure 8-8, 88 per cent of the fault responses occur in less than 1,600 ms.

Without further detailed experiments to obtain measured data sets on Terror detect and
Terror message characterize the nature of bimodal distribution cannot be definitively characterized.
Obtaining Terror detect would entail instrumenting the system so that when a self-test or error
detection mechanism is triggered by a fault the output of the EDM (e.g. the fault detection
predicate) is time-stamped. Presently, the researchers do not have access to the outputs of the
self-test functions (their fault detection predicates). This type of instrumentation is possible with
vendor support. The same type of set-up is needed for the error message activation and
sending.

Same program variable

L
a
te

n
c
y
 (

m
s
)

Faulted Variable

8000

7000

6000

5000

4000

3000

2000

1000

0
0 5 10 15 20 25 30 35 40 45 50

154

Figure 8-7 Distribution of memory-based fault latency

Latency (ms)

C
o

u
n

ts
Smoothed Distribution, Latency of First Response

(Memory Fault Injections)
~Bimodal with Mean = 597ms and 10.4ms

Variance = 410ms and 240ms

500

450

400

350

300

250

200

150

100

50

0
0 2000 4000 6000 8000 10000 12000

155

Figure 8-8 Cumulative fault latency distribution

Another set of data that would have been very useful for this experiment is the the output
disengagement data. Specifically, for the long latency faults, an analysis using this data could
determine whether the outputs of the benchmark system disengaged. Unfortunately, this data
set was not taken in the experiments due to an oversight of the experiment set up. By the time
the oversight was discovered, the benchmark system had been disassembled for subsequent
use by another organization. The output disengage functionality is easily measured on the
benchmark system, so there is no technical barrier to such measurements in a fault injection
experiment.

A reasonable suggestion for the bi-modal shape of the latency data shown in Figure 8-5 thru
Figure 8-7 is that self-test phasing or scheduling along with the workload dependent detection
are the principle causes. This type of behavior is not atypical for distributed real-time systems.
The principle value of bimodal latency analysis to the vendor and/or regulator is to verify that
self-tests are effective in detecting the faults they are expected to detect and the detection times
of those faults can be empirically measured to see how they compare with the analytic fault
detection time bounds. In addition, the fault coverage estimates of the self-testing functions can
be deduced from the data sets to determine error detection coverage and real-time error
response coverage. Error response coverage refers to detecting an error within a specific time
bound; if the system does not detect the error within a specific period, then error detection
response is said to be defective or non-compliant.

Fault/error latency in the processor register space was more typical of what might be expected.
The distribution shown in Figure 8-9 is a scatter plot of the fault latency data obtained from the

Latencies in increasing order (88% <= 1,564ms)

14000

12000

10000

8000

6000

4000

2000

0
0 500 1000 1500 2000 2500 3000 3500

Ordered Faulted Variables

L
a
te

n
c
y
 (

m
s
)

156

CPU register fault injection experiments. The fault latency appears to be nearly uniform from
500 ms to 1,500 ms.

Figure 8-9 Fault latency of register-based fault injections

The empirical distribution of the fault latency data shown in Figure 8-9 is shown in Figure 8-10.
The distribution is approximately Gaussian in shape, with a mean of ~1,000 ms. Faults that
occur in registers of the CPU are generally expected to be detected quickly since the probability
of using the register with the corrupted information is relatively high. This is especially true of
the Pentium I processor, which is known to have a very small register set compared to its
instruction set. The distribution of the fault latency data appears to confirm this assumption.

4000

3500

3000

2500

2000

1500

1000

0 50 100 250 300

500

0
150 200 450 500350 400

Latency of first message from CPU 111 to any CPU

Faulted Variable

L
a

te
n

c
y
 (

m
s
)

157

Figure 8-10 Distribution of register-based fault latency

Another important set of information is the “crash” (i.e., halt) behavior and latency of the fault
injected processor. Figure 8-11 shows the fault/error latency of fault injections that resulted in
microprocessor halts. There were very few instances of halts observed (less than 50).
However, when a processor did halt it was usually due to the sensitive location of where the
fault was injected (e.g., in an operating system variable or process stack space).

Latency (ms)

C
o

u
n

ts
Smoothed Distribution, Latency of First Response

(Register Fault Injections)
Mean = 1,003ms, SD = 325ms, Variance = 105ms

100

90

80

70

60

50

40

30

20

10

0
0 500 1000 1500 2000 2500 35003000

158

Figure 8-11 Halt latency of injected processor

8.9. Addressing No-response Faults

In the fault injection experimentation the difference between no-response faults and long latency
faults could not be uniquely identified due to the time constraints of the research. However, in
the real world and to adhere to NRC single failure criteria testability, no-response faults need to
be truly distinguished from long latency faults or hidden faults. The pre-injection analysis
presented in Section 7 is one means to identify no-response faults and distinguish them from
long latency faults. Below is a suggested methodology to effectively deal with no-response
faults.

(1) Classify faults that result in a "no-response" as "further experiments needed".

(2) Group no-response faults into classes according to their function - Safety block
functions, registers, special purpose IC registers, OS, etc.

(3) Conduct pre-injection analysis to ensure the fault is in a part of the system that has

executable code and data.

(4) Re-perform each no-response fault injection experiment according to the following
process:

(1) Repeat the fault injection with same fault injection parameters, but extend the

observation time by increments of 5X.

0

2000

4000

6000

8000

10000

12000

14000

100 200 300 400 5000

Injected Variables

Latency of CPU Halt
(time of earliest detection of CPU 111 crash as seen by

other CPUs)

L
a
te

n
c

y
 (

m
s

)

159

(2) For all faults detected thru extended monitoring, identify how long the latency
was. Determine if these long latencies have impact on reliability by entering
them nto the PRA models. If so, then those faults with reliability impact should be
reassessed.

(3) If no response is observed after three successive FI experiments with increasing

monitoring (e.g., the last FI monitoring period is 30 minutes) then classify fault as
"very long latency".

(4) Classify the "very long latency" faults as potentially dangerous faults.

(5) Alter the FI parameters of the very long latency faults - time, duration, and value

– parametrically to determine sensitivity to these parameters.

(6) Execute different input profiles (trace events and data) to determine sensitivity to

the input and event space.

If faults still exist that produce no response, the analyst should try to identify why the fault is
latent/non-responsive. This may entail the use of dynamic and static analysis of the RPS code
to determine why the fault is not detectable. If the fault is in an area of the system code/data,
parameter space then, by definition, it is a latent fault. Very long latency, undetected faults
require complete analysis to determine why they are not detected, a complete analysis of the
faults, and a corrective plan of action. The severity of all fault Injections should be classified by
their observed responses. The classification should include latency, detection effectiveness,
and the system time response.

8.10. X-Bus Fault Injections

8.10.1. Introduction

After completing the processor and memory based fault injection, attention was turned to
injecting faults on the X-bus inter-processor communication network using the X-bus fault
injector developed and described in Section 4. Two types of fault injections were performed:
token corruptions and data message corruptions. Both types of corruptions are discussed in the
following sections.

8.10.2. Token Fault Injection

The idea behind token-based fault injection was to corrupt the Token Header PTP in order to
make the message appear to be unreadable to the destination station. To accomplish this, it
was essential to understand the structure of a Token message (see Figure 8-12), in which SD is
the Starting Delimiter, DA is the Destination Address, SA is the Start Address, and ED is the
Ending Delimiter.

Figure 8-12 Structure of a token message

It was determined that the simplest route to disable the readability of the Token message was to
alter the SD PTP to modify the bit pattern that the destination station expected. This ensures

160

that the destination station discards the message, unknowing that the source station actually
transmitted the Token DLPDU correctly and expects the destination station to take ownership of
the X-bus logical ring.

The data represented by each PTP is known after reading the first nine bits of the PTP, the start
bit followed by the eight data bits. Therefore, the FPGA is capable of recognizing the message
type based on the SD PTP well ahead of the transmission of the last bit of the current PTP.
This provided reasonable time to execute the correction in real-time without unwillingly
modifying any additional bits. The data value of the X-bus Token SD is 0xDC, which is
11011100 in binary. However, the most significant bit in the X-bus data ordering system is the
rightmost bit, hence the traffic data bit stream was observed by the fault injector as 00111011.
Including the first start bit, an even parity bit, and the stop bit, the resulting PTP is described as
the following bit sequence: 00011101111.

Based on the physical limitations of interfering with the X-bus signals, this sequence presents
the possibility to alter the last two bits, modifying them from high to low voltage, thus making the
SD PTP unreadable for the other stations on the X-bus network because of an incorrect parity
and stop bit. As mentioned earlier, if the SD of an X-bus DLPDU is corrupted, the receiving
stations are unable to decode it and must discard it. However, the transmitting station has no
information regarding this problem and it expects a normal continuation of traffic (i.e., the
receiving station taking ownership of the logical ring by transmitting its Data Messages or
passing the Token to the next station). Because of the corruption of the Token SD, this
scenario cannot occur and the station that is attempting to pass the Token must wait for a
significant period of time (Tsl) before it can resend the Token. Therefore, it is crucial to quantify
these delays and observe the responses of the target real-time safety-critical system under test.

8.10.3. Data Message Fault Injection

The foundation of executing a correct Data Message corruption is similar to corrupting a Token;
it is necessary to correctly recognize the type of message and to supply an interference signal
that affects one or more specific bits of the message, hence creating an altered message for the
destination station. However, this fault injection is not supposed to corrupt the Data Message
but rather to modify it. When using this approach, the destination station is unable to detect any
irregularities in any of the PTPs of the message. By looking at the structure of the Data
Message illustrated in Figure 8-13, it is obvious that its structure is very similar to the structure
of a Token message. In addition to the fields present in a Token message, a Data Message
includes PTPs containing the actual data information, an LE (Message Length) PTP, an FC
(Function Code) PTP, and an FC (Frame Check Sequence) PTP.

Figure 8-13 Structure of a variable length data message

To create the desired effect described earlier, the main focus of the Data Message corruption is
on the two repeating, consecutive LE PTPs. The strategy to correctly deceive the destination
station is to modify both PTPs containing information regarding the length of the Data Message
in the same exact way. Therefore, the receiving station would not be able to recognize any
inaccuracy of the corrupted Data Message. To accomplish this sophisticated corruption, two
data bits of each PTP must be corrupted in order to preserve the correct parity of the LE PTP. If
the fault injection is performed in this manner, both of the length fields will contain the same
value and the parity will remain correct.

161

The specific implementation of X-bus on the tested system (Benchmark System I) only utilized
data messages of length 249 (11111001 in binary) and 237 (11101101 in binary). Translating
this in a complete PTP block with the correct bit ordering, the actual bit streams observed by the
fault injector were the following:

Length 237 bits – 01011011101
Length 249 bits – 01001111101

The simplest means of corrupting two bits within the same data field is to provide interference to
two consecutive bits, essentially just by holding the corruption signal high for a longer period of
time. By analyzing the two different bit streams, it is clear that the best opportunity for
performing this complicated fault injection is to corrupt the 7th and 8th bit of the PTP. This would
change the data fields of the two different lengths to 10110001 (141) vs. 10110111 (237) and
10011001 (153) vs. 10011111 (249), respectively. If executed correctly, this should deceive the
receiving station and make it recognize the received Data Message to be shorter than it is in
reality. This situation could result in an abnormal behavior of the destination station because
the Data Message must be passed to upper layers of the X-bus functionality for verification of its
correctness because the bit level representation is correct without any illegitimate and
unexpected bit patterns.

After devising the described fault injection approach, the algorithm for performing a Data
Message corruption is the following:

(1) Read the SD of each message on the X-bus network.

(2) If the SD matches the VLDD (0x68, bit stream 00001011011), the fault injector observes

the next five bits.

(3) If the detected bits correspond to either one of the LE PTPs of a Data Message (01011

or 01001), the fault injector outputs the corruption signal, targeting the 7th and 8th bit.

(4) The same action is performed on the second LE PTP.

(5) The receiving station perceives the Data message to be shorter than its actual length,

and should detect it.

8.10.4. X-Bus Fault Injection Campaigns and Results

The designed X-bus fault injector was used to conduct fault injection campaigns targeting token
and data messages. The fault injection campaign was based on altering the duration of the
corruption applied to the Token and Data Messages. During the specified time, each
occurrence of Token or Data Message (based on the setting) was corrupted and the response
of Benchmark System I was observed. The response of the system was obtained by reading
error messages from the SMS service unit, which logs errors and warning messages.

8.10.4.1. Faulted Token Corruption Times

The correct functionality of the X-bus fault injection module was verified by observing the X-bus
traffic in the presence and absence of injected faults. This was achieved by using the logic
analyzer to capture and subsequently analyze X-bus signals.

Figure 8-14 and Figure 8-15 display the behavior of X-bus signals with and without the
corruption interference, respectively. By observing the response of the system under test, it

162

was confirmed that the X-bus fault injections were successful and executed at the correct time.
The X-bus network traffic is analyzed by the fault injection module in real-time and the
corruption signal interferes with the network signal at a specific moment. From Figure 8-15 it
can be seen that the corruption is performed instantaneously without any incurred overhead.

163

F
ig

u
re

 8
-1

4
Ja

m
m

in
g

 s
ig

n
al

 o
u

tp
u

t
co

rr
ec

tl
y,

 b
u

t
n

o
t

ap
p

lie
d

 t
o

 t
h

e
X

-b
u

s
ci

rc
u

it

164

F
ig

u
re

 8
-1

5
Ja

m
m

in
g

 s
ig

n
al

 a
p

p
lie

d
 t

o
 X

-b
u

s
th

er
eb

y
co

rr
u

p
ti

n
g

 t
ra

n
sm

is
si

o
n

165

The effectiveness of the fault injection was confirmed by measuring the synchronization time
after a corrupted Token had not been received by the destination Master station. This
synchronization time was equal to the Slot Time (Tsl, see description in Section 4.1). The time
represented by Tsl is significantly longer than the usual synchronization time during
uninterrupted transmissions [Miklo 2009]. As shown in Table 8-5, this time is almost a
magnitude larger than the average synchronization times observed during normal traffic. This
X-bus time response allowed researchers to determine when the fault injection resulted in a
successful token corruption.

Table 8-5 Synchronization times following uncorrupted and corrupted token in X-bus.

Transmission Type Synchronization Time

Uncorrupted Token followed by a Token 261.7 µs

Uncorrupted Token followed by non- Token 327.4 µs

Corrupted Token 2,236.3 µs

Experiments with multiple consecutive corrupted Tokens were executed in order to determine
the time required for reinsertion of a Master station after it was removed from the logical X-bus
ring. This time was measured to be 15,278 µs, measuring from the corruption of the first Token
to the time when the removed Master station was reinserted into the X-bus logical ring and
acquired ownership of the logical ring by executing a transmission [Miklo 2009]. This time was
determined when the target system was configured with two Master X-bus stations; the time
could be longer in a four X-bus Master configuration. In situations where the benchmark system
is heavily loaded with X-bus traffic, the reinsertion time can further increase because a
Discovery Message is only sent from a Master station in case it has spare time during the
rotation. The consequences of this problem could create a significant problem in a real-time
safety-critical system with a hard deadline, specifically in the case when a Master station is
removed from the Logical ring for a time longer than the system computational deadline.

For this reason, the Benchmark System I X-bus network is often configured to have additional
physical redundancy to cope with faulty X-bus Master stations and corrupted Tokens. The
additional redundancy mitigates cases of detectable faults in an X-bus communication module.

8.10.4.2. Token and Data Message Fault Injection Experiments

The detection of an unrecoverable corrupted message or Token was defined to be recognized if
an X-bus network communication error appeared in the log. When there was no error message
in the service log regarding the performed fault injection, then one of two possibilities can exist.
Either the Token was successful on its second retry and thus no error message was generated,
or the Token corruption was undetectable. Since the token synchronization time was
monitored, it could be verified that Tokens were being corrupted in each fault injection.

The duration of the X-bus fault injection for Tokens ranged from 1 ms to 50 ms, in increments of
1 ms. To obtain a significant amount of data, fault injections were repeated for each time
increment, 18 times in each Token fault injection campaign and 14 times in each Data Message
corruption campaign, totaling 900 Token and 700 Data Message fault injections, respectively.
For the data message corruption experiments the corruptions were varied from 1 ms to 100 ms.
This was to ensure that the data messages were corrupted beyond the control cycle of the
benchmark system (50 ms).

The response graph for the Token fault injection campaign is illustrated in Figure 8-16; and the
Data Message fault injection campaign in Figure 8-17. The Token response graph is interpreted

166

as follows. When the fault injection duration time for corrupting a Token was in the range of
10 ms to 24 ms, the system reported the Token corruption accurately about 80% of the time.
When the fault injection duration time for corrupting a Token was greater than 24 ms, the
system reported the Token corruption 100% of the time. However, it cannot be inferred that the
benchmark system did not detect the lower duration time fault injections. The most reasonable
explanation for this non-reporting is that the processor X-bus controller re-sent the Token and
the data on a second try, and the transmission was successful. From the graph it can be seen
that sometimes the transmission was successful on the second try and at other times it was not.
However, as the fault injections grew longer in duration, retransmissions were unsuccessful and
the system reported a communication error that it was unsuccessful in communicating with the
destination processor. So, from this it can be concluded that the Token corruption error
detection mechanisms of the benchmark system perform as described in the system
documentation.

The graph for the Data Message fault injection can be interpreted similarly to the Token
message graph. For short time durations of fault injection on the Data Message length field, the
system was able to detect the corruption most of the time and send a retry message
successfully. When the system could not send a retry message, the system reported an error
message. In addition, with Data Message corruptions there is the possibility of a no-response.
For this reason, the duration of the fault injection corruptions was extended to 100 ms, thus
ensuring that the Data Message would be corrupted over at least one control cycle. When the
duration of the fault injection corruptions was extended to longer intervals, the system correctly
reported that it had a communication error. However, in two instances when the duration of the
fault injection corruptions was extended the system did not report a communication error, one
instance at a 60 ms duration, and one instance at a 75 ms duration. The “yes” in the table
indicates a proper detection and reporting. The “x” indicates no fault injection was done in this
field.

167

Figure 8-16 Token message fault response graph

Figure 8-17 Data message fault response graph

168

Table 8-6 Data message response for long duration fault injections.

8.11. References

[Smith 1997] D.T. Smith, B.W. Johnson, N. Andrianos, J.A. Profeta III. "A Variance
Reduction Technique Using Fault Expansion for Fault Coverage
Estimation." IEEE Transactions on Reliability, September 1997: 366-374.

[Miklo 2009] M. Miklo, R.D. Williams, C.R. Elks. “Token fault time in Profibus DP”. In

6th American Nuclear Society International Topical Meeting on Nuclear
Plant Instrumentation, Control and Human Machine Interface
Technologies, April 2009.

FI Length 5ms_mult 10ms_mult_1 10ms_mult_2 10ms_mult_3 15ms_mult 20ms_mult 25ms_mult 30ms_mult 35ms_mult
50 Yes Yes Yes NO x x NO x x
55 Yes x x x x x x x x
60 Yes Yes Yes Yes NO Yes x Yes x
65 Yes x x x x x x x x
70 Yes Yes Yes Yes x x x x Yes
75 Yes x x x NO x Yes x x
80 Yes Yes Yes Yes x Yes x x x
85 Yes x x x x x x x x
90 Yes Yes Yes Yes Yes x x Yes x
95 Yes x x x x x x x x
100 Yes Yes Yes Yes x Yes Yes x x

169

9. SUMMARY, FINDINGS, AND CONCLUSIONS

This Section summarizes the activities described in this of this report (Section 9.1), and lists the
principal study findings (Section 9.2) derived from those activities. This section provides
preliminary conclusions drawn by the authors by applying and assessing the fault injection-
based assessment methodology to Benchmark System I. In closing, some final observations
and recommendations are made in order to better refine the fault injection-based assessment
methodology toward the application to digital I&C systems.

9.1. Summary of Key Activities and Results

The work described in this report presents in a detailed manner;

(1) The development of the fault injection methods and techniques that were applied to the

benchmark system,

(2) The development of fault injection environment for digital I&C systems

(3) Development of pre-injection analysis methods for automatically generating fault lists for

digital I&C systems,

(4) Results of the application of fault injection to the benchmark system,

(5) The challenges to applying fault injection to contemporary digital I&C systems, and

(6) The findings for addressing these challenges and establishing a basis for implementing

fault injection to digital I&C platforms.

The requirements and challenges of realizing fault injection on digital I&C systems are
summarized in the following discussion.

9.1.1. Identification and Selection of Appropriate Fault Injection Techniques

In Section 4 appropriate physical fault injection techniques were identified for the benchmark
system based on:

 The types of faults that could affect end-to-end system processing and thus impact I&C

functionality

 The sub-systems or modules where fault injection should be applied to represent faults
realistically

Based on these criteria, a fault injection technique matrix was developed that indicated
appropriate fault injections for each sub-system in the benchmark system. These
recommendations are presented from the view of the vendor’s I&C technical staff or an
independent assessor who has technical expertise and knowledge equivalent to the vendor.
Thus, the matrix provides information on what is possible if complete system level
documentation is available to the assessor.

Due to the proprietary nature of some of the JTAG test ports on the benchmark system and the
inability to acquire system level source code, the research was limited to implementing two fault
injection techniques. These were ICE-based fault injection and X-bus fault injection. Both of
these techniques were developed to provide a capability to inject processor level faults and

170

protocol level faults into X-Bus. The important point is that several of the fault injection
techniques surveyed and reviewed were not feasible or applicable to the benchmark system.
For example, SWIFI-based fault injection assumes (without stating it) that the source code of
the system software is available. While this may be the case for open operating systems such
as POSIX or Linux, most digital I&C systems have proprietary operating systems that make it
difficult to implement this popular type of fault injection on digital I&C systems by independent
assessors.

9.1.2. Development of a Platform Independent Fault Injection Environment

Most fault injection tools have been developed with a specific fault injection technique in mind,
targeting a specific system, and using a custom designed user interface. Extending such tools
with new fault injection techniques, or porting the tool to new target systems is usually a
cumbersome and time-consuming process. Since one of the objectives in this work was to
apply fault injection to digital I&C systems typical of the type found in NPPs, a flexible and
portable fault injection environment is required for efficient application of the UVA fault injection
based dependability assessment methodology.

The work presented in Section 5 toward developing appropriate fault injection techniques and
environments for digital I&C systems produces a body of work that the NRC and the nuclear
industry could use to establish a basis for the development and standardization of fault injection
processes.

The work toward developing the UNIFI serves a larger purpose in that it provides a detailed
understanding of the complexities and processes involved in implementing physical fault
injection effectively and efficiently in contemporary digital I&C systems. The successful
application of the fault injection methodology using UNIFI shows that it has the capability to
allow fault injections on complex digital I&C systems. The benchmark system used in this study
was not designed or developed with fault injection in mind; therefore, the system presents the
same challenge an independent assessor would encounter if employing a fault injection
methodology on a comparable digital I&C system.

9.1.3. Tools for automated operational profile generation

Context is important in fault injection. Operational profiles must be representative of different
system configurations and workloads that would be experienced in actual field operations. For
a fault injection-based assessment methodology, the operational profiles must represent the
input conditions and system interactions that can occur not only during nominal operations, but
also in off-nominal operations and more importantly during “accident” event scenarios.
Gathering profile real plant data across all of these domains of operations is a challenging task.
As a research part of this effort, an innovative approach to providing high fidelity operational
profiles of NPP digital I&C systems was developed. Before this phase of the research project,
the methodology provided guidance on how to use an operational profile for fault injection, but
provided little guidance on the various means to realize an operational profile. To address this
need for the digital I&C systems, a TRACE-based Operational Profile model generation tool
(TOP) was developed.

The TOP modeling tool is co-resident with the UNIFI fault injection environment. TOP normally
operates as a separate set of programs from LabView and passes its operational profile data
sets to the UNIFI/LabView environment. Operational profile data files are generated for the
target system for each type of operational profile or test case of interest. The operational profile
data for a specific test case or basis event is then repeatedly used for a set of fault injection
campaigns. Changing the operational profile or test case or obtaining a new set of process

171

variables only entails rerunning the TRACE simulation to collect a new set of data. The
important contribution of this work is that the set of tools that were developed allows for the
profile data to be seamlessly integrated into the digital I&C fault injection processes for digital
I&C testing in general.

9.1.4. Methods to improve the efficiency and effectiveness of fault injection
(pre-fault injection analysis)

Pre-injection analysis is a means to reduce or eliminate the “no-response” and the long fault
latency problem associated with typical fault injection campaigns. Being a statistical
experiment, fault injection testing may require a large number of experiments to be conducted in
order to guarantee statistically significant results. Thus, efficiency of the fault injection testing is
important.

A typical digital I&C system will have a significant memory space (hundreds of megabytes is not
uncommon), a large number of processor register files, special purpose configuration registers,
and (relatively) long control cycle times (50 ms to 200 ms). With random fault injection
experiments (i.e., with no regard to when and where a fault is injected), a large fraction (up to
90%) of fault injection experiments may have no-response outcomes [Sekhar 2008; Barbosa
2005].

A large percentage of these “no-response” outcomes resulting from fault injections are due to
non-use of the corrupted data by the executing program. For example, a randomly generated
fault could be injected into a memory location or a processor register that is not used by an
application. These instances in which the tested system would not respond to an injected fault
do not convey meaningful information about the fault tolerance capabilities of the system. Since
time has an associated cost value, if the efficiency of the fault injection campaign is low, then
the cost of the fault injection campaign is increased.

The pre-fault injection analysis techniques developed in this research and demonstrated by way
of simulation have the potential to significantly improve the effectiveness and efficiency of
physical-based fault injection. Preliminary results show at least a 50% improvement over
random-based fault injection. Another important benefit of pre-fault injection analysis is being
able to deduce the fault equivalence from a space-time perspective once the window of
opportunity is known. Knowing the fault equivalence sets of a window of opportunity allows for
fault expansion in the window. Fault expansion provides a means to increase the number of
equivalent fault injections without having to actually perform each fault injection.

9.1.5. Application of the Fault Injection Methodology to Benchmark System I

The culmination of this research effort was the application of the fault injection-based
dependability assessment methodology to the benchmark system. These experiments
represent the types of fault injection tests that would be typically conducted by an assessment
organization or the digital I&C equipment vendor during the course of a V&V activity. The
experiments were chosen to stress the methodology and the supporting tools (UNIFI) in order to
provide a basis for determining the effectiveness of the methodology to support system safety
assessment activities (e.g., license reviews and FMEA) and PRA activities. All of the
experiments were conducted successfully, providing a rich set of information on the fault
handling behavior of the benchmark system that would be very supportive of PRA assessment
activities.

172

9.2. Conclusions

This research effort lays a foundation for vendors and regulators to consider fault injection as a
method to help inform the assessment of digital I&C systems in nuclear energy applications.
Several findings were significant with respect to applying fault injection to the benchmark
system digital I&C system, namely:

 Establishing the baseline elements and functionality of a fault injection environment for

digital I&C systems;

 Developing new methods and tools for generating high-fidelity operational profiles from

NPP simulation tools and establishing a basis for integrated digital I&C and plant
analysis and testing.

 Developing new methods to improve the efficiency and effectiveness and to guide fault
list generation for digital I&C systems;

 Creating new methods for applying fault injection testing to digital I&C systems.

The fault injection methodology applied to the benchmark system successfully obtained
independent information about the benchmark system that corroborated vender and regulator
information, and in some cases produced information that would have been very difficult to
deduce from vendor information alone. The experience of conducting fault injection often yields
more information than just quantifying fault tolerance aspects of the system; it also is a means
to comprehend the behavior of complex fault tolerant I&C systems to support overall
assessment activities for both the regulator and the developer.

9.3. References

[Barbosa 2005] Barbosa, R., Vintern, J., Fokesson, P., Karlsson, J. "Assembly-Level Pre-
Injection Analysis for Improving Fault Injection Efficiency." Lecture Notes
in Computer Science, vol. 3463, 2005: 246-262.

[Sekhar 2008] Sekhar, M. Generating Fault Lists for Efficient Fault Injection into
Processor Based I&C Systems. Charlottesville, VA: University of Virginia,
2008.

U
N

IT
E

D
 S

TA
T

E
S

N

U
C

L
E

A
R

 R
E

G
U

L
A

T
O

R
Y

 C
O

M
M

IS
S

IO
N

W
A

S
H

IN
G

T
O

N
, D

C
 20555-0001

O

F
F

IC
IA

L B
U

S
IN

E
S

S

N
U

R
EG

/C
R

-7151
Volum

e 2
D

evelopm
ent of a Fault Injection-B

ased D
ependability A

ssessm
ent

M
ethodology for D

igital I&
C

 System
s

D
ecem

ber 2012

	1smrecyclelogo.pdf
	Page 1

