

A Large Scale Validation
of a Methodology for
Assessing Software
Reliability

Office of Nuclear Regulatory Research

NUREG/CR-7042

DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Government.
Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for any third party’s use, or the results of such use, of any
information, apparatus, product, or process disclosed in this publication, or represents that its use by such third
party would not infringe privately owned rights.

AVAILABILITY OF REFERENCE MATERIALS
IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access
NUREG-series publications and other NRC records at
NRC’s Public Electronic Reading Room at
http://www.nrc.gov/reading-rm.html. Publicly released
records include, to name a few, NUREG-series
publications; Federal Register notices; applicant,
licensee, and vendor documents and correspondence;
NRC correspondence and internal memoranda;
bulletins and information notices; inspection and
investigative reports; licensee event reports; and
Commission papers and their attachments.

NRC publications in the NUREG series, NRC
regulations, and Title 10, Energy, in the Code of
Federal Regulations may also be purchased from one
of these two sources.
1. The Superintendent of Documents
 U.S. Government Printing Office
 Mail Stop SSOP
 Washington, DC 20402–0001
 Internet: bookstore.gpo.gov
 Telephone: 202-512-1800
 Fax: 202-512-2250
2. The National Technical Information Service
 Springfield, VA 22161–0002
 www.ntis.gov
 1–800–553–6847 or, locally, 703–605–6000

A single copy of each NRC draft report for comment is
available free, to the extent of supply, upon written
request as follows:
Address: U.S. Nuclear Regulatory Commission
 Office of Administration
 Publications Branch
 Washington, DC 20555-0001
E-mail: DISTRIBUTION.RESOURCE@NRC.GOV
Facsimile: 301–415–2289

Some publications in the NUREG series that are
posted at NRC’s Web site address
http://www.nrc.gov/reading-rm/doc-collections/nuregs
are updated periodically and may differ from the last
printed version. Although references to material found
on a Web site bear the date the material was accessed,
the material available on the date cited may
subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical
libraries include all open literature items, such as
books, journal articles, and transactions, Federal
Register notices, Federal and State legislation, and
congressional reports. Such documents as theses,
dissertations, foreign reports and translations, and
non-NRC conference proceedings may be purchased
from their sponsoring organization.

Copies of industry codes and standards used in a
substantive manner in the NRC regulatory process are
maintained at—

The NRC Technical Library
Two White Flint North
11545 Rockville Pike
Rockville, MD 20852–2738

These standards are available in the library for
reference use by the public. Codes and standards are
usually copyrighted and may be purchased from the
originating organization or, if they are American
National Standards, from—

American National Standards Institute
11 West 42nd Street
New York, NY 10036–8002
www.ansi.org
212–642–4900

Legally binding regulatory requirements are stated
only in laws; NRC regulations; licenses, including
technical specifications; or orders, not in
NUREG-series publications. The views expressed
in contractor-prepared publications in this series are
not necessarily those of the NRC.

The NUREG series comprises (1) technical and
administrative reports and books prepared by the
staff (NUREG–XXXX) or agency contractors
(NUREG/CR–XXXX), (2) proceedings of
conferences (NUREG/CP–XXXX), (3) reports
resulting from international agreements
(NUREG/IA–XXXX), (4) brochures
(NUREG/BR–XXXX), and (5) compilations of legal
decisions and orders of the Commission and Atomic
and Safety Licensing Boards and of Directors’
decisions under Section 2.206 of NRC’s regulations
(NUREG–0750).

A Large Scale Validation
of a Methodology for
Assessing Software
Reliability

Manuscript Completed: November 2010
Date Published: July 2011

Prepared by
C. S. Smidts,
Y. Shi, M. Li, W. Kong, J. Dai

Reliability and Risk Laboratory
Nuclear Engineering Program
The Ohio State University
Columbus, Ohio

NRC Project Managers
S. Arndt, N. Carte, R. Shaffer, and M. Waterman

NRC Job Codes Y6591, N6878

Office of Nuclear Regulatory Research

NUREG/CR-7042

iii

ABSTRACT

This report summarizes the results of a research program initiated by the U.S. Nuclear
Regulatory Commission at the University of Maryland1 to validate a method for predicting
software reliability. The method is termed the Reliability Prediction System (RePS). The RePS
methodology was initially presented in NUREG/GR-0019, “Software Engineering Measures for
Predicting Software Reliability in Safety Critical Digital Systems” and validated on a small
control system application with a set of five RePSs in NUREG/CR-6848, “Validation of a
Methodology for Assessing Software Quality.” The current effort is a validation of the RePS
methodology with respect to its ability to predict software quality (measured in this report and in
NUREG/GR-0019 in terms of software reliability) and, to a lesser extent, its usability when
applied to safety-critical applications.

The application under validation, herein defined as APP, is based on a safety-related digital
module typical of what might be used in a nuclear power plant. The APP module contains both
discrete and high-level analog input and output circuits. These circuits read input signals from a
plant and send outputs that can be used to provide trips or actuations of system equipment,
control a process, or provide alarms and indications. The transfer functions performed between
the inputs and outputs are dependent on the software that is installed in the module.

The research described in this report provides evidence that twelve selected software engineering
measures in the form of RePSs can be used (with different degrees of accuracy) to predict the
reliability of software in safety-critical applications. These twelve measures are ranked based on
their prediction ability. The rankings are then compared with those obtained through an expert
opinion elicitation effort, as described in NUREG/GR-0019, and with those obtained through a
small-scale validation, as described in NUREG/CR-6848.

1 The research was initially performed at the University of Maryland and the report was completed at The Ohio State University.

v

FOREWORD

This report summarizes the results of a research program initiated by the U.S. Nuclear
Regulatory Commission at the University of Maryland and documented in its present form by
Ohio State University to validate a method for predicting software quality and reliability. The
method is termed the Reliability Prediction System (RePS). The RePS methodology was initially
presented in NUREG/GR-0019, “Software Engineering Measures for Predicting Software
Reliability in Safety Critical Digital Systems” (ML003775310) and validated on a small control
system application with a set of five RePSs in NUREG/CR-6848, “Validation of a Methodology
for Assessing Software Quality” (ML042170285).

Since the initial study was limited to five measures and considered a small application, the study
only partially validated the expert opinion rankings and RePS theory and thus was not yet
conclusive. Validation on an application of larger size was required. The objective of the
research described in this report was to perform a large-scale validation of the methodology
proposed in NUREG/GR-0019 for twelve measures for all life-cycle phases and apply it to a
nuclear safety application. The purpose of the validation was to determine the predictive ability
and practical applicability of the methodology to nuclear industry safety systems. The validation
results provide insights to guide NRC review and endorsement of IEEE standards such as IEEE
Std 1061-1998, IEEE Standard for a Software Quality Metrics Methodology.

For this study new RePSs were developed for the measures Cyclomatic Complexity, Cause and
Effect Graphing, Requirements Specification Change Requests, Fault-days Number, Capability
and Maturity Model, Completeness, and Coverage Factor. In this current study, the mean time to
failure (MTTF) measure was not applied and an alternative approach for assessing the failure
rate was introduced.

A summary description of the twelve measures is provided, and the results of the RePS software
reliability predictions are displayed and analyzed. These predictions are then validated by
comparison to a software reliability estimate obtained from operational data and statistical
inference. The comparison between the NUREG/GR-0019 ratings and the RePS prediction error
is also made, and the efficacy of the proposed methodology for predicting software quality is
determined.

The current regulatory review process does not use metrics to assess the potential reliability of
digital instrumentation and control systems in quantitative terms. The goal of the research
described in this report was to identify methods that could improve the regulatory review process
by giving it a more objective technical basis. While some of the models in this report use generic
industry data, experimental data, and subjective assessments, much of the modeling is based on
direct measurements of the application under study and, as such, is purely objective in nature.
Thus, the use of the proposed RePSs models (i.e., of the highly accurate RePSs) could potentially
yield better results than what can be obtained from the current review process.

A correlation of the metrics in this report with current NRC regulatory review practice suggests
some potential applicability of the metrics for use in licensing activities. The metrics described in

vi

this report provide varying degrees of support to the software lifecycle phase characteristics
endorsed by current NRC regulatory guidance; however, some metrics may prove to be too
costly or time consuming to implement for the benefit derived. The ultimate feasibility of using
these measures in the NRC regulatory process for digital safety systems is outside the scope of
this report.

The report advances the study of software quality metrics for potential use in nuclear safety
applications and concludes with follow-on activities needed to address issues that were identified
in the report. The report provides a priority ranking for follow-up activities that may be needed if
future decisions support developing products to be incorporated into the NRC regulatory review
process.

vii

TABLE OF CONTENTS

ABSTRACT ... iii
FOREWORD .. v
ACRONYMS ... xix
1. INTRODUCTION .. 1

1.1 Background .. 1
1.2 Objective .. 3
1.3 References .. 4

2. RESEARCH METHODOLOGY .. 5
2.1 Overview .. 5
2.2 Selection of the Application ... 5
2.3 Measures/Families Selection ... 7
2.4 Measurement Formalization .. 7
2.5 Reliability Assessment ... 8
2.6 Reliability Prediction Systems ... 8
2.7 Assessment of Measure Predictive Ability .. 8
2.8 References .. 9

3. SELECTION OF MEASURES .. 11
3.1 Criteria for Measure Selection ... 11
3.2 Ranking Levels .. 11
3.3 Measure Applicability .. 14
3.4 Data Availability .. 14
3.5 Coverage of Different Families ... 14
3.6 Final Selection ... 15
3.7 References .. 19

4. OPERATIONAL PROFILE ... 21
4.1 Introduction ... 21
4.2 Generic Architecture of Reactive Systems ... 22
4.3 APP Architecture .. 23
4.4 Generating the Operational Profile .. 24

4.4.1 A Guided Operational Profile Construction ... 28
4.4.2 Method for Identifying Infrastructure Inputs Related to the OP 31
4.4.3 Estimating the Plant Inputs Based on Plant Operational Data 38

4.5 References .. 47
5. RELIABILITY ESTIMATION CONSIDERATIONS .. 49

5.1 Estimation of Reliability Based on Remaining Known Defects .. 49
5.2 Reliability Estimation from the Unknown Defects .. 51

5.2.1 Reliability Estimation from the Number of Defects Remaining 52
5.3 References .. 55

6. BUGS PER LINE OF CODE ... 57
6.1 Definition ... 57
6.2 Measurement Rules .. 57

6.2.1 Module .. 58
6.2.2 LOC... 58

6.3 Measurement Results ... 61

viii

6.4 RePS Construction from BLOC... 66
6.5 Lessons Learned ... 67
6.6 References .. 68

7. CAUSE-EFFECT GRAPHING .. 69
7.1 Definition ... 69

7.1.1 Definition of Cause ... 70
7.1.2 Definition of Effect ... 70
7.1.3 Definition of Logical Relationship and External Constraints 70

7.2 Measurement Rules .. 71
7.2.1 Rule for Identifying Causes .. 71
7.2.2 Rule for Identifying Effects .. 72
7.2.3 Rule for Identifying Logical Relationship .. 72
7.2.4 Rule for Identifying External Constraints ... 72
7.2.5 Rules for Constructing an Actual Cause-Effect Graph ... 74
7.2.6 Rules for Identifying Defects in ACEG .. 74
7.2.7 Rules for Constructing a Benchmark Cause-Effect Graph ... 76

7.3 Measurement Results ... 78
7.4 RePS Constructed from Cause-Effect Graphing .. 83

7.4.1 Reliability Prediction Based On CEG ... 83
7.4.2 Reliability Prediction Results ... 86

7.5 Lessons Learned ... 87
7.6 References .. 88

8. CAPABILITY MATURITY MODEL ... 89
8.1 Definition ... 89

8.1.1 Definition of the Five Maturity Levels ... 89
8.1.2 Definition of the Key Process Areas (KPAs) ... 93

8.2 Measurement Rules .. 98
8.2.1 Standard SEI-CMM Assessment .. 98
8.2.2 UMD-CMM Assessment .. 100

8.3 Measurement Results ... 101
8.4 RePS Construction from CMM ... 103

8.4.1 CMM Maturity Levels vs. Number of Defects ... 103
8.4.2 Reliability Estimation ... 104

8.5 Lessons Learned ... 106
8.6 References .. 107

9. COMPLETENESS .. 109
9.1 Definition ... 109
9.2 Measurement Rules .. 111

9.2.1 B1: Number of Functions Not Satisfactorily Defined .. 111
9.2.2 B2: Number of Functions.. 112
9.2.3 B3: Number of Data References Not Having an Origin ... 115
9.2.4 B4: Number of Data References ... 115
9.2.5 B5: Number of Defined Functions Not Used ... 116
9.2.6 B6: Number of Defined Functions .. 116
9.2.7 B7: Number of Referenced Functions Not Defined ... 117
9.2.8 B8: Number of Referenced Functions .. 117

ix

9.2.9 B9: Number of Decision Points Missing Any Conditions .. 117
9.2.10 B10: Number of Decision Points ... 118
9.2.11 B11: Number of Condition Options Having No Processing 118
9.2.12 B12: Number of Condition Options ... 119
9.2.13 B13: Number of Calling Routines Whose Parameters Do Not Agree with the Called
Routines Defined Parameters .. 119
9.2.14 B14: Number of Calling Routines ... 119
9.2.15 B15: Number of Condition Options Not Set .. 120
9.2.16 B16: Number of Set Condition Options Having No Processing 120
9.2.17 B17: Number of Set Condition Options... 120
9.2.18 B18: Number of Data References Having No Destination 121
9.2.19 Measurement Procedure ... 121

9.3 Measurement Results ... 124
9.4 RePS Construction Using Completeness Measurement .. 133
9.5 Lessons Learned ... 135
9.6 References .. 137

10. COVERAGE FACTOR ... 139
10.1 Definition ... 139
10.2 Measurement Rules .. 141

10.2.1 Selection of Fault-Injection Techniques ... 142
10.2.2 Determination of Sample Input Space .. 143
10.2.3 Applying the Simulation-Based Fault Injection Technique to the APP 144
10.2.4 Determination of the CF ... 145

10.3 Measurement Results ... 148
10.4 RePS Construction Using Coverage Factors of μp1 and μp2 .. 150

10.4.1 Construction of Continuous-Time Markov Chain Model for a Microprocessor 150
10.4.2 Estimate the Reliabilities of μp1 and μp2 ... 154
10.4.3 Reliability Calculation for the APP .. 157

10.5 Lessons Learned... 158
10.6 References .. 160

11. CYCLOMATIC COMPLEXITY .. 163
11.1 Definition ... 163
11.2 Measurement Rules .. 166
11.3 Measurement Results ... 168
11.4 RePS Construction Using the Cyclomatic Complexity Measure 174

11.4.1 Estimating the Fault Contents in the Delivered Source Code 174
11.4.2 Calculating the Reliability Using the Fault-Contents Estimation 175
11.4.3 An Approach to Improve the Prediction Obtained from the CC Measure 177

11.5 Lessons Learned... 196
11.6 References .. 197

12. DEFECT DENSITY .. 199
12.1 Definition ... 199
12.2 Measurement .. 200

12.2.1 Requirements Inspection ... 201
12.2.2 Design Inspection.. 201
12.2.3 Source Code Inspection .. 202

x

12.2.4 Lines of Code Count ... 203
12.3 Results .. 203
12.4 RePS Construction and Reliability Estimation .. 206

12.4.1 Result .. 206
12.5 Lessons Learned... 206
12.6 References .. 207

13. FAULT-DAYS NUMBER .. 209
13.1 Definition ... 209
13.2 Measurement Rules .. 211
13.3 Measurement Results ... 221

13.3.1 Phases in the Development Life Cycle ... 222
13.3.2 Duration of Each Life-Cycle Phase .. 222
13.3.3 Software Development Life Cycle .. 224
13.3.4 Introduction Rates of Requirements Faults, Design Faults, and Coding Faults 225
13.3.5 The Expected Change in Fault Count Due to One Repair 227
13.3.6 Estimate of the Intensity Function of Per-Fault Detection 227
13.3.7 Expected Content of Requirements Faults, Design Faults, and Coding Faults 228

14... 230
13.3.8 Count of Fault-Days Number .. 230

13.4 RePS Construction Using the Fault-Days Number Measure ... 237
13.4.1 Estimate of Number of Faults Remaining in the Source Code Using FDN 238
13.4.2 Estimate of the Number of Delivered Critical and Significant Faults 239
13.4.3 Reliability Calculation from Delivered Critical and Significant Defects 239

13.5 Lessons Learned... 242
13.6 References .. 243

14. FUNCTION POINT... 245
14.1 Definition ... 245
14.2 Measurement Rules .. 246

14.2.1 Determining the Type of FP Count ... 248
14.2.2 Identifying the Counting Scope and Application Boundary 248
14.2.3 Identifying Data Functions and Their Complexity ... 248
14.2.4 Identifying Transactional Functions and Their Complexity 249
14.2.5 Determining the Unadjusted Function Point Count .. 250
14.2.6 Determining the Value Adjustment Factor ... 250
14.2.7 Calculating the Adjusted Function Point Count ... 251

14.3 Measurement Results ... 252
14.3.1 The Unadjusted Function Point .. 252
14.3.2 The Value Adjustment Factor ... 258
14.3.3 The Adjusted Function Point .. 259

14.4 RePS Construction from Function Point.. 259
14.4.1 Estimating the Number of Delivered Defects ... 259
14.4.2 Reliability Calculation from Delivered Critical and Significant Defects 263

14.5 Lessons Learned... 264
14.6 References .. 266

15. REQUIREMENTS SPECIFICATION CHANGE REQUEST 267
15.1 Definition ... 268

xi

15.2 Measurement Rules .. 269
15.2.1 Identifying Requirements Specification Change Requests 270
15.2.2 Identifying the Changed Source Code Corresponding to RSCR 270
15.2.3 Measuring the Size of the Changed Source Code Corresponding to RSCR 270
15.2.4 Calculating REVL ... 271

15.3 Measurement Results ... 271
15.4 RePS Construction Based On REVL ... 273

15.4.1 Estimating the Value of SLI for Requirements Evolution and Volatility Factor 273
15.4.2 Estimating the Fault Content in the Delivered Source Code 275
15.4.3 Calculating Reliability Using the Defect Content Estimation 276

15.5 Lessons Learned... 278
15.6 References .. 279

16. REQUIREMENTS TRACEABILITY... 281
16.1 Definition ... 281
16.2 Measurement Rules .. 282

16.2.1 Original Requirements Identification ... 282
16.2.2 Forward Tracing .. 287
16.2.3 Backward Tracing ... 289

16.3 Measurement Results ... 290
16.4 RePS Construction from Requirements Traceability ... 294
16.5 Lessons Learned... 296
16.6 References .. 297

17. TEST COVERAGE ... 299
17.1 Definition ... 299
17.2 Measurement Rules .. 300

17.2.1 Make the APP Source Code Executable ... 300
17.2.2 Determine the Total Lines of Code ... 302
17.2.3 Determine the Number of Tested Lines of Code .. 303
17.2.4 Determine the Percentage of Requirement Primitives Implemented 304

17.3 Measurement Results ... 305
17.3.1 Determine the Required Documents ... 305
17.3.2 Test Coverage Results... 306
17.3.3 Linear Execution Time Per Demand Results .. 307
17.3.4 Average Execution-Time-Per-Demand Results .. 308

17.4 RePS Construction from Test Coverage .. 309
17.4.1 Determination of the Defect Coverage ... 309
17.4.2 Determination of the Number of Defects Remaining in APP 309
17.4.3 Reliability Estimation ... 310

17.5 Lessons Learned... 312
17.6 References .. 313

18. REAL RELIABILITY ASSESSMENT ... 315
18.1 Definition ... 315
18.2 APP Testing ... 315
18.3 APP Operational Data .. 317
18.4 References .. 324

19. RESULTS .. 325

xii

19.1 Summary of the Measures and RePSs ... 326
19.1.1 Summary Description of the Measures ... 326
19.1.2 Summary Description of the RePSs .. 330

19.2 Results Analysis ... 334
19.2.1 Defects Comparison .. 334
19.2.2 Reliability Estimation Comparison ... 343

19.3 Discussion about the Measurement Process .. 356
19.4 Difficulties Encountered during the Measurement Process ... 359

19.4.1 Data Collection and Analysis for Reliability Prediction... 359
19.4.2 Data Collection and Analysis for the Reliability Estimation 362
19.4.3 Possible Solutions ... 362

19.5 Recommended Measures and RePSs ... 363
19.5.1 Recommended Use of this Methodology in Regulatory Reviews 364

19.6 Follow-On Issues ... 366
19.6.1 Defect Density Robustness ... 366
19.6.2 Test Coverage Repair .. 366
19.6.3 Issues with the Fault Exposure Ratio .. 367
19.6.4 CC, RSCR, and FDN Models ... 367
19.6.5 Cases Where No Defects Are Found .. 367
19.6.6 Issues with Repeatability and Scalability ... 367
19.6.7 Issues with Common-Cause Failures .. 368
19.6.8 Issues with Uncertainty and Sensitivity .. 368
19.6.9 Data Collection and Analysis.. 376
19.6.10 Combining Measures .. 376
19.6.11 Automation Tools ... 376
19.6.12 Priority Ranking of the Follow-On Issues .. 376

19.7 References .. 378
20. DEVELOPMENT AND USE OF AUTOMATION TOOLS .. 379

20.1 References ... 382
APPENDIX A: EXTENDED FINITE STATE MACHINE AND ITS CONSTRUCTION
PROCEDURES... A-1

A.1 Step 1: Construct of a High-Level EFSM Based On the SRS ... A-2
A.2 Step 2: Identify, Record, and Classify the Defects .. A-6
A.3 Step 3: Modify the HLEFSM by Mapping the Identified Defects A-8

A.3.1 Section A: Localize the Defects in the HLEFSM: .. A-9
A.3.2 Section B: Modify the HLEFSM: ... A-9
A.3.3 Section C: Split the HLEFSM to a LLEFSM ... A-11
A.3.4 Step 4: Map the OP to the Appropriate Variables (or Transitions) A-12
A.3.5 Step 5: Obtain the Failure Probability by Executing the Constructed EFSM A-13

A.4 References ... A-14
APPENDIX B: LIST OF SYMBOLS ... B-1

xiii

Figures

Figure 1.1 RePS Constitution .. 2
Figure 4.1 The APP Architecture ... 23
Figure 4.2 Musa’s Five-Step Approach for OP Development ... 28
Figure 4.3 Test Environment ... 29
Figure 4.4 An Example EFSM Model for the APP system ... 29
Figure 4.5 Excerpt from the APP SRS .. 32
Figure 4.6 Fault Tree for Event 2 .. 36
Figure 4.7 Fault Tree for Event 3 .. 36
Figure 4.8 Barn Shape of the Power Distribution Trip Condition ... 39
Figure 4.9 EFSM for APP Application Software ... 40
Figure 4.10 Example of Plant Operational Data ... 41
Figure 4.11 Data used for Statistical Extrapolation .. 44
Figure 5.1 Faulty Code and Its EFSM .. 51
Figure 7.1 Initialization Flow Chart ... 73
Figure 7.2 ACEG for Example #2 ... 77
Figure 7.3 BCEG for Example #2 ... 78
Figure 7.4 ACEG and BCEG for Defect #1 .. 79
Figure 7.5 ACEG and BCEG for Defect #2 .. 79
Figure 7.6 ACEG and BCEG for Defect #3 .. 80
Figure 7.7 ACEG and BCEG for Defect #4 .. 80
Figure 7.8 ACEG and BCEG for Defect #5 .. 81
Figure 7.9 ACEG and BCEG for Defect #6 .. 81
Figure 7.10 ACEG and BCEG for Defect #7 .. 81
Figure 7.11 The Generic Fault Tree for an ACEG .. 83
Figure 7.12 Algorithm for Calculating the Probability of a ROBDD .. 86
Figure 8.1 The Five Levels of Software Process Maturity ... 93
Figure 8.2 The Key Process Areas by Maturity Levels .. 94
Figure 8.3 CMM Appraisal Framework Activities ... 98
Figure 9.1 Procedure for Identifying Incompleteness Defects in the SRS .. 122
Figure 9.2 Procedure for Identifying Incomplete Functions in the SRS .. 123
Figure 9.3 Procedure for Identifying Incomplete Decision Points in the SRS ... 123
Figure 9.4 Procedure for Identifying Incomplete Calling Routines in the SRS .. 124
Figure 9.5 Approach used to estimate Reliability ... 133
Figure 10.1 CTMC Model for μp1 or μp2 ... 151
Figure 11.1 Control Flow Graph .. 164
Figure 11.2 Control Flow Graph with a Virtual Edge .. 165
Figure 11.3 The Yerkes-Dodson Law with Three Levels of Task Difficulty .. 182
Figure 11.4 U-Function Relating Performance to Arousal .. 182
Figure 13.1 Software Development Life Cycle for APP ... 224
Figure 15.1 Relationship between SLI10 and REVL .. 274
Figure 16.1 Procedure to Identify Functions in a SRS ... 286
Figure 16.2 Procedure to Identify Non-functional Requirements in a SRS .. 288
Figure 16.3 Procedure for Forward Tracing .. 289
Figure 16.4 Procedure for Backward Tracing ... 290
Figure 16.5 Approach of Reliability Estimation Based on the EFSM Model ... 295

xiv

Figure 17.1 Defect Coverage vs. Test Coverage ... 309
Figure 18.1 APP Reliability Testing Environment .. 316
Figure 18.2 Testing Software .. 316
Figure 19.1 Number of Defects Remaining in the Code Per Measure .. 335
Figure 19.2 Number of Defects Remaining Per Measure Per Group .. 335
Figure 19.3 Failure Probability Estimates for Measures in the Second Group ... 347
Figure 19.4 Requirements Traceability Measurement Matrix ... 354
Figure 20.1 Structure of the Automated Reliability Prediction System.. 381
Figure A.1 Typical Prototype Outline for SRS ... A-3
Figure A.2 SRS-Based HLEFSM Construction .. A-4
Figure A.3 General Procedures for Defect Mapping .. A-9
Figure A.4 Flowchart for Localizing the Defects ... A-10
Figure A.5 Original EFSM for Example 1 ... A-11
Figure A.6 Modified EFSM for Example 1 ... A-11

xv

Tables

Table 3.1 Measures Ranking Classification ... 12
Table 3.2 Measure, Family, Measure Applicability, Data Availability, and Ranking Class 15
Table 3.3 Applicable Life-Cycle Phases of the Selected Measures ... 18
Table 4.1 Composition of the Operational Profile for the APP Operational Modes 26
Table 4.2 Identified Hardware-Related OP Events for PROM Diagnostics in the APP system 33
Table 4.3 Hardware Components Related to OP Event 1 ... 34
Table 4.4 Basic Components for Events 2 and 3 ... 35
Table 4.5 Failure Rate for APP Hardware Components .. 37
Table 4.6 OP Events Quantification Results .. 37
Table 4.7 Operational Profile for APP PROM Diagnostics Test ... 38
Table 4.8 APP Application Software Algorithm .. 40
Table 4.9 Outage Information for Plant .. 42
Table 4.10 Number of Trip Data Sets Falling within Each Domain ... 43
Table 4.11 Tests for Normality Results ... 45
Table 4.12 Operational Profile for APP Application Software .. 46
Table 6.1 Additional Keywords in Keil Environment... 60
Table 6.2 C51 Assembly Instructions .. 60
Table 6.3 Bugs Per Line of Code Results (By Definition Level 1)... 62
Table 6.4 Bugs Per Line of Code Results (By Definition Level 2)... 62
Table 6.5 Number of Defects Found by Inspection and Testing during the Development Process 64
Table 6.6 Averages for Delivered Defects by Severity Level... 65
Table 6.7 Delivered Defects by Severity Level for a System Equivalent in Functional Size to FP 65
Table 6.8 Partitioned Defects (Based on Severity Level) for APP Using BLOC .. 66
Table 7.1 Cause-Effect Logical Relationships .. 71
Table 7.2 Cause-Effect Constraints ... 71
Table 7.3 CEG Measurement Results Table for the Example ... 74
Table 7.4 CEG Measurement Results for the Example ... 77
Table 7.5 List of Defects Found by CEG Based On the APP SRSs .. 78
Table 7.6 Checking Results for Defects Found by CEG ... 82
Table 7.7 Sample Decision Table for Judging Equivalence of Two Effects ... 85
Table 7.8 Reliability Prediction Results for Four Distinct Operational Modes ... 86
Table 8.1 Summary of the Answers to the Questions in the Maturity Questionnaire 101
Table 8.2 Result of Application of KPA Satisfaction Level Measurement Rules 102
Table 8.3 CMM Levels and Average Number of Defects Per Function Point ... 103
Table 8.4 Defect Estimation for the APP Using CMM ... 103
Table 8.5 Partitioned Number of Defects (Based On Severity Level) for the APP Using CMM 104
Table 9.1 Primitives for APP Modules .. 125
Table 9.2 Weights, Derived Measures, and COM Measures for the APP Modules 126
Table 9.3 Summary of Defects with Severity Level 1 and 2 Found in the SRSs of the APP System 127
Table 9.4 Reliability Estimation for the Four Distinct Operational Modes ... 134
Table 9.5 Effort Expended to Perform the Measurement of COM and Derived Measures 136
Table 10.1 Definition of States for Each Microprocessor ... 146
Table 10.2 Fault Injection Experimental Results .. 147
Table 10.3 Example Experiments Leading to the System Failure ... 149
Table 10.4 APP State Transition Parameters .. 151

xvi

Table 10.5 Component Failure Rates .. 152
Table 10.6 Transition Parameters (Probability) .. 154
Table 10.7 Probabilities of Six States of μp1 and μp2 with t = 0.129 Seconds ... 157
Table 10.8 Reliabilities of μp1 and μp2 with t = 0.129 Seconds ... 157
Table 11.1 Failure Likelihood fi Used for SLI1 Calculations ... 168
Table 11.2 Measurement Results for CCi .. 169
Table 11.3 ni Counts Per Subsystem ... 173
Table 11.4 Percentage Distribution of the APP System Modules ... 173
Table 11.5 SLI1 for the Different Subsystems ... 173
Table 11.6 Summary of Fault Content Calculation Results .. 175
Table 11.7 Rating Scales for Assessment and Assimilation Increment (AA) ... 180
Table 11.8 Rating Scales for Software Understanding Increment (SU) .. 180
Table 11.9 Rating Scales for Programmer Unfamiliarity (UNFM) ... 181
Table 11.10 Guidelines and Constraints to Estimate Reuse Parameters ... 181
Table 11.11 Rating Scales for APEX .. 183
Table 11.12 Rating Scales for PLEX ... 183
Table 11.13 Rating Scales for LTEX ... 184
Table 11.14 Experience SLI Estimation ... 184
Table 11.15 Rating Scales for ACAP .. 185
Table 11.16 Rating Scales for PCAP .. 185
Table 11.17 Rating Scales for TCAP .. 186
Table 11.18 Rating Scales for PCON ... 187
Table 11.19 Estimating SLI Value of Capability (Tester Capability Excluded) ... 187
Table 11.20 Estimating SLI Value of Capability (Tester Capability Included) ... 187
Table 11.21 Rating Scales for TOOL Factor ... 188
Table 11.22 Rating Scales for Site Collocation .. 188
Table 11.23 Rating Scales for Communication Support ... 189
Table 11.24 SITE Ratings and SLI Estimation .. 189
Table 11.25 Determining the Weighted Sum by the Rating of Collocation and Communication 189
Table 11.26 Rating Scales for TEAM ... 190
Table 11.27 TEAM Rating Components .. 190
Table 11.28 Rating Scales for STYLE ... 191
Table 11.29 Rating Scales and SLI Estimation for PMAT ... 191
Table 11.30 Rating Scales and SLI Estimation for REVL .. 192
Table 11.31 PIF Measurement Results for the APP System ... 192
Table 11.32 Summary of SLI Calculations ... 193
Table 11.33 Values of Weights Used for SLI Calculation .. 194
Table 11.34 Summary of Fault Content Calculation ... 195
Table 12.1 Values of the Primitives Di, j .. 203
Table 12.2 Values of the Primitives DFl, k .. 204
Table 12.3 Values of the Primitives DUm .. 204
Table 12.4 Primitive LOC ... 204
Table 12.5 Unresolved Defects Leading to Level 1 Failures Found during Inspection 205
Table 13.1 . Per Function Point Per Phase ... 215
Table 13.2 , , Mean Effort Per Function Point for Each Life Cycle Phase , in Staff Hours 215
Table 13.3 Boundary Information for . and , .. 216
Table 13.4 Boundary Information for ... 216
Table 13.5 Values of for Different Fault Categories ... 216

xvii

Table 13.6 Upper and Lower Bounds of the Fault Detection Efficiency during Development Phases..... 218
Table 13.7 Mean Fault Detection Efficiency and for Fault Detection Efficiency 218
Table 13.8 Estimations of the Reviewing Speed ... 219
Table 13.9 Average Peer Review Effort and Reviewing Speed ... 219
Table 13.10 Intensity Function of Per-fault Detection of Requirements, Design, and Coding Faults 220
Table 13.11 Measurement of Length of Each Life Cycle-Phase for the APP System 223
Table 13.12 Duration Estimation for All Life Cycle Phases of the APP ... 224
Table 13.13 Beginning Time of Each Life-Cycle Phase for the APP ... 224
Table 13.14 Fault Potential Per Function Point, ... 225
Table 13.15 , Fraction of Faults Originated in Phase ... 226
Table 13.16 Data Required to Calculate , for APP .. 226
Table 13.17 Introduction Rates of Requirements, Design, and Coding Faults for APP 227
Table 13.18 Intensity Function of Per-Fault Detection Faults for APP ... 228
Table 13.19 Data Required to Calculate FDN for Faults Removed during the Development Life Cycle .. 232
Table 13.20 Calculation of FDN for Faults Removed during the Development Life Cycle 234
Table 13.21 Calculation of Fault-days Number for Faults Remaining in the Delivered Source Code 236
Table 13.22 Number of Delivered Defects by Severity Level for the APP System.................................... 239
Table 14.1 Rating Matrix for Five Components in Function Point Counting .. 249
Table 14.2 Measurement Results of Data Functions for the APP System .. 252
Table 14.3 Measurement Results of Transaction Functions for the APP System..................................... 253
Table 14.4 The Counts of Components with Different Complexity Level .. 257
Table 14.5 The Counts of the Unadjusted Function Points .. 257
Table 14.6 Measurement Results of General System Characteristics for the APP System 258
Table 14.7 Averages for Delivered Defects Per Function Point .. 260
Table 14.8 Averages for Delivered Defects by Severity Level .. 262
Table 14.9 Number of Delivered Defects by Severity Level for the APP System 262
Table 15.1 Measurement Results for RSCR and REVL for the APP System .. 272
Table 15.2 Rating Scale and SLI Estimation for REVL .. 275
Table 15.3 Summary of Fault-Content Calculation ... 276
Table 16.1 Distinguishing Functional Requirements from Non-Functional Requirements 285
Table 16.2 Summary of the Requirements Traceability Measurement for μp1 System Software 291
Table 16.3 Summary of the Requirements Traceability Measurement for μp1 Application Software 292
Table 16.4 Summary of the Requirements Traceability Measurement for μp2 System Software 292
Table 16.5 Summary of the Requirements Traceability Measurement for μp2 Application Software 292
Table 16.6 Summary of the Requirements Traceability Measurement for CP ... 293
Table 16.7 Description of the Defects Found in APP by the Requirements Traceability Measure 293
Table 16.8 Reliability Estimation for Four Distinct Operational Modes ... 296
Table 17.1 Original Source Code Information with Compilers Used in This Research 301
Table 17.2 APP Source Code Modification Examples ... 301
Table 17.3 Total Number of Executable Lines of Code Results .. 302
Table 17.4 Testing Information for μp1 .. 306
Table 17.5 Statement Coverage Results ... 306
Table 17.6 Linear Execution Time for Each Microprocessor in the APP System 308
Table 17.7 Defects Remaining, N, as a Function of TC and Defects Found for Three Malaiya Data Sets 310
Table 17.8 Probability of Success-Per-Demand Based On Test Coverage .. 311
Table 18.1 Summary of Problem Records .. 319
Table 18.2 Deployment of APP Modules in Plant ... 322
Table 19.1 A Summary of Measures Used .. 326

xviii

Table 19.2 Family/Measure Information .. 328
Table 19.3 Information about Families Containing More Than One Measure ... 330
Table 19.4 Summary of the RePSs .. 331
Table 19.5 Number of Defects Remaining in the Code .. 334
Table 19.6 Defects Found by the Measures in the Second Group ... 336
Table 19.7 Detailed Description of Defects Found by the Second Group of Measures 336
Table 19.8 Detailed Description of the Defects .. 338
Table 19.9 Modified Defects Description ... 340
Table 19.10 Inspection Results for the APP System ... 342
Table 19.11 Capture/Recapture Model Results for the APP System .. 342
Table 19.12 Defects Discovery Probability ... 343
Table 19.13 Reliability Estimation Results .. 344
Table 19.14 Failure Probability Results for Measures in the First Group ... 345
Table 19.15 Failure Probability Results in Each Mode for Measures in the Second Group 346
Table 19.16 Failure Probability Results for Measures in the Second Group .. 347
Table 19.17 Original Defects Found in the APP Requirement Specification .. 348
Table 19.18 Fault Exposure Ratio Results ... 349
Table 19.19 Updated Results if is Applied to Group-II Measures ... 350
Table 19.20 Inaccuracy Ratio Results and Rankings for Each RePS .. 351
Table 19.21 Validation Results for Group II RePSs ... 353
Table 19.22 DD Measure Checklist Information ... 353
Table 19.23 Comparison of the Rankings with Results in NUREG/CR-6848 ... 356
Table 19.24 Total Time Spent for the Twelve RePSs .. 356
Table 19.25 Cost of the Supporting Tools... 358
Table 19.26 Experts Required ... 359
Table 19.27 Recommended Measures ... 363
Table 19.28 Measures and Life-Cycle Phase Characteristics .. 365
Table 19.29 Initial Sensitivity Analysis Results ... 369
Table 19.30 Priority Ranking for Follow-On Issues ... 377
Table A.1 EFSM Construction Step 1 for Example 1 ... A-6
Table A.2 Example Table for Recording Identified Defects .. A-7
Table A.3 Possible Instances or Further Description for Each Field in Table A.2 A-7
Table A.4 Record of Identified Defects for Example 1 .. A-8

xix

ACRONYMS

A/D Analog to Digital

AA Percentage of Assessment and Assimilation

AAF Adaptation Adjustment Factor

AAM Adaptation Adjustment Modifier

ABL Address Bus Line

ACAP Analyst Capability

ACAT Application Category

ACEG Actual Cause-Effect Graph

ANSI American National Standards Institute

APEX Application Experience

APP Application

ARM Automated Reliability Measurement

AT Acceptance Testing

AVIM Analog Voltage Isolation Process

BCEG Benchmark Cause-Effect Graph

BDD Binary Decision Diagram

BLOC Bugs per Line Of Code

CBA IPI Capability Maturity Model-Based Appraisal for Internal Process Improvement

C/R Capture Recapture

CC Cyclomatic Complexity

CEG Cause-Effect Graphing

CF Coverage Factor

CM Percentage of Code Modified

CMM Capability Maturity Model

COM Completeness

xx

CP Communication Microprocessor

CPU Central Processing Unit

CR Code Review

CTMC Continuous-Time Markov Chain

D/A Digital to Analog

DD Defect Density

DE Design Phase

DET Data Element Type

DF Delta Flux

DM Percentage of Design Modified

DR Design Review Phase

DS Data Set

DTMC Discrete-Time Markov Chain

EEPROM Electrical Erasable Programmable Read Only Memory

EFSM Extended Finite State Machine

EI External Input

EIF External Interface File

EO External Output

EQ External Query

FDN Fault-days Number

FP Function Point

FPU Float Point Unit

FR Functional Requirement

FT Function Testing

FTM Fault-Tolerant Mechanism

FTR File Type Reference

GUI Graphical User Interface

HLEFSM High Level Extended Finite State Machine

xxi

I&C Instrumentation and Control

I/O Input/Output

IC Integrated Circuit

IgT Integration Testing

ILF Internal Logical File

IM Implementation

IpT Independent Testing

IU Integer Unit

KLOC Kilo Lines of Code

KPA Key Process Area

LCOM Lack of Cohesion in Methods

LLEFSM Low Level Extended Finite State Machine

LLNL Lawrence Livermore National Laboratory

LOC Line of Code

LTEX Language and Tool Experience

MIS Management Information System

MTTF Mean Time To Failure

NOC Number Of Children

NR Non-functional Requirement

N/A Not Applicable

OBDD Ordered Binary Decision Diagram

OO Object Oriented

OP Operational Profile

PACS Personnel Access Control System

PCAP Programmer Capability

PCI Peripheral Component Interconnect

PCON Personnel Continuity

PIE Propagation, Infection, Execution

xxii

PIF Performance Influencing Factor

PLEX Platform Experience

PMAT Process Maturity Factor

PROM Programmable Read Only Memory

QuARS Quality Analyzer for Requirements Specifications

RAM Random Access Memory

RC Run Commands

RCS Reactor Coolant System

RePS Reliability Prediction System

RET Record Element Type

REVL Requirements Evolution Factor

RMRP Rule-based Model Refinement Process

ROBDD Reduced Ordinary Binary Decision Diagram

ROM Read-Only Memory

RPS Reactor Protection System

RQ Requirements Analysis

RR Requirements Review

RSCR Requirements Specifications Change Request

RT Requirements Traceability

SBFI Simulation-Based Fault Injection

SCED Development Schedule Factor

SDD Software Design Description

SITE Development Site Factor

SLI Success Likelihood Index

SLIM Success Likelihood Methodology

SRM Software Reliability Model

SRS Software Requirements Specifications

STYLE Management Style Factor

xxiii

SU Percentage of Software Understanding

SUT Software Under Test

SW-CMM Software Capability Maturity Model

SWIFI Software-Implemented Fault Injection

TEAM Team Cohesion Factor

TC Test Coverage

TCAP Tester Capability

TE Testing

TOOL Development Tools Factor

TSL Test Script Language

UFPC Unadjusted Function Point Count

UMD University of Maryland

UNFM Programmers Unfamiliarity with Software

V&V Verification and Validation

VAF Value Adjustment Factor

WMC Weighted Method per Class

1

1. INTRODUCTION

1.1 Background

The current regulatory review process does not use metrics to assess the potential reliability of
digital instrumentation and control systems in quantitative terms. The goal of the research
described in this report was to identify methods that could improve the regulatory review process
by giving it a more objective technical basis. While some of the models in this report use generic
industry data, experimental data, and subjective assessments, much of the modeling is based on
direct measurements of the application under study and, as such, is purely objective in nature.
Thus, the use of the proposed RePSs models (i.e., of the highly accurate RePSs) could potentially
yield better results than what can be obtained from the current review process.

As one of the most important characteristics of software quality [ISO, 2001], software reliability
concerns itself with how well software functions meet the requirements of the customer [Musa,
1987]. Software reliability is defined [IEEE, 1991] as the probability of failure-free software
operation for a specified period of time in a specified environment. Failures are the result of the
triggering of software faults. Triggering of such faults occurs when the right external input
conditions are met, i.e., the inputs direct the execution towards the location of a fault. In addition,
the defective state of the application (or product) persists until the output results in a significant
change of the output conditions when compared to the “correct” or “expected” output conditions.
Whether or not the defective state persists depends on the logical structure of the application, on
the types of operations encoded, etc. The input conditions are defined by the operational
environment in which the application runs. Thus, software reliability is essentially determined by
product characteristics and the operational environment. Product characteristics are further
determined by project characteristics (the type of application, the project’s functional size) and
by development characteristics (the development team’s skill level, the schedule, the tools, and
development methods). These characteristics influence the likelihood of faults being introduced
into the application/product.

All the above characteristics can be explicitly or implicitly reflected by software engineering
measures. Therefore, one inference is that software engineering measures determine software
reliability.

Software reliability, in this study, is defined to be the probability that the software-based digital
system will successfully perform its intended safety function, for all conditions under which it is
expected to respond, upon demand, and with no unintended functions that might affect system
safety.

A study sponsored by the U.S. Nuclear Regulatory Commission (NRC) (NUREG/GR-0019,
[Smidts, 2000]) systematically ranked 40 software engineering measures with respect to their
ability to predict software reliability using expert opinion elicitation. These measures are listed in

2

the Lawrence Livermore National Laboratory (LLNL) report [LLNL, 1998] and IEEE Std.
982.1-1988 [IEEE 982.1, 1988]. Additional measures are identified in NUREG/GR-0019.

The concept of a Reliability Prediction System (RePS) was proposed in the NRC study to bridge
the gap between measures and reliability (see Figure 1.1). A RePS is defined as “a complete set
of software engineering measures from which software reliability can be predicted.” Figure 1.1
shows the constitution of the RePS. The construction of a RePS starts with the “Measure,” which
is also the “root” of a RePS. Support measures are identified in order to connect the measure to
reliability. The set of the “measure” and “support measures” constitutes a RePS. The “Model”
between the measures and reliability is generally termed a Software Reliability Model (SRM).

 Figure 1.1 RePS Constitution

A small, experimental validation of the expert-opinion-based rankings was performed using six
of the measures documented in NUREG/CR-6848 [Smidts, 2004]. These measures were “mean
time to failure,” “defect density” (DD), “test coverage” (TC), “requirements traceability” (RT),
“function point” (FP) analysis and “bugs per line of code”
 (BLOC) (Gaffney estimate). The application used in the validation study, PACS (Personnel
Access Control System) (see NUREG/CR-6848 [Smidts, 2004]), is a simplified version of an
automated personnel entry access system controlling a gate used to provide privileged physical
access to rooms and buildings. The application was developed industrially using the waterfall
lifecycle and a Capability Maturity Model (CMM) level 4 software development process. The
application contains approximately 800 lines of code and was developed in C++.

Different software engineering measures were collected at different stages of the software
development life-cycle (e.g., requirements, design, coding (implementation), and integration and
test2) and hence different RePSs can be developed for different phases of the life-cycle. The
small-scale validation study performed for the NRC demonstrated the University of Maryland
(UMD) research team’s ability to construct RePSs during the test phase (i.e., from measures
collected during the test phase) and assessed the difference between reliability estimates
produced by these RePSs and actual operational reliability. PACS reliability (ps) was assessed by

2 The four stages listed (requirements, design, coding, and integration and test) are key development stages in the “waterfall”
software development lifecycle model which is widely used in software development. The waterfall model is the recommended
lifecycle for safety-critical applications. Variations of the waterfall lifecycle development model exist as well as radically
different life-cycles, e.g., “spiral” software-development model, “incremental” software-development model, etc. In such models,
the four listed stages may not follow one another in sequence. However, these four stages are always the essential stages in each
development model. Thus, the methodology proposed in this report is the basis that can be extended (with some required
adjustments) to all the development models.

Reliability

Measure

Support
Measure

n

Model Support
Measure

2

Support
Measure

1
…

3

testing the code against an expected operational profile. In addition, six RePSs were established
for the test phase. From these RePSs, the UMD research team obtained six reliability estimates
that were compared with ps. The prediction error defined as the relative difference between ps
and the estimated value was used to rank the measures. This ranking was found to be consistent
with the rankings obtained through expert opinion elicitation.

Since the study was limited to six measures, and used what is considered to be a small
application, the study only partially validated the expert opinion rankings and RePS theory—thus
the study was not conclusive. Validation on an application of larger size was required in which
more measures needed to be considered and their corresponding RePSs needed to be constructed.
Additionally, the six RePSs already constructed were refined to provide better software
reliability estimates. This was not done during the NUREG/CR-6848 [Smidts, 2004] study
because the UMD research team were under the requirement to limit the construction of the
RePSs to current state-of-the-art validation tools, techniques, methodologies, and published
literature.

This report documents a large scale validation of the methodology. It is a continuation of
research started in NUREG/GR-0019 [Smidts, 2000] and in NUREG/CR-6848 [Smidts, 2004].

1.2 Objective

The objective of this research was to perform a large-scale validation of the methodology
proposed in NUREG/GR-0019 [Smidts, 2000] and apply it to a nuclear-safety application. This
was done by applying the methodology to a set of twelve, pre-determined software engineering
measures (including five of the six measures that served in the initial validation study described
in NUREG/CR-6848 [Smidts, 2004]). RePSs are developed for these twelve measures for all
life-cycle phases. In this research, the application of the RePSs to a nuclear power plant reactor
safety-control system (Plant X) was limited to the testing phase because the post-mortem nature
of the study did not allow reconstruction of the required state of the application throughout the
development life-cycle. Such validation helps determine the predictive ability and practical
applicability of the methodology to the nuclear power industry.

Also, the validation results could help NRC determine whether or not to endorse a standard set of
metrics, such as those described in IEEE Std 1061-1998 (IEEE Standard for a Software Quality
Metrics Methodology) [IEEE, 1998].

Chapters 2 to 18 present the details of the theory and its application to the safety-critical system
selected. Chapter 19 summarizes the analyses of the results and presents lessons learned, as well
as issues to be addressed to further the use of RePS models. Chapter 19 also provides a
discussion of how this methodology can be applied to support regulatory reviews of software
used in nuclear power plant DI&C systems.

Chapter 20 provides an extended discussion of the potential for increased efficiency and
effectiveness of the methodology through automation.

4

1.3 References

[IEEE 982.1, 1988] “IEEE Standard Dictionary of Measures to Produce Reliable Software,”

IEEE Std 982.1-1988, 1988.
[IEEE, 1998] “IEEE Standard for a Software Quality Metrics Methodology,” IEEE Std

1061-1998, 1998.
[IEEE, 1991] “Standard Glossary of Software Engineering Terminology,” IEEE Std

729-1991, 1991.
[LLNL, 1998] J.D. Lawrence et al. “Assessment of Software Reliability Measurement

Methods for Use in Probabilistic Risk Assessment,” FESSP, Lawrence
Livermore National Laboratory, 1998.

[ISO, 2001] ISO/IEC 9126-1:2001, “Software engineering - Product quality - Part 1:
Quality model,” ISO, 2001.

[Musa, 1987] J.D. Musa, A. Iannino, and K. Okumoto. Software Reliability:
Measurement, Prediction, Applications. New York: McGraw-Hill, 1987.

[Smidts, 2000] C. Smidts and M. Li, “Software Engineering Measures for Predicting
Software Reliability in Safety Critical Digital Systems,” NRC, Office of
Nuclear Regulatory Research, Washington DC NUREG/GR-0019, 2000.

[Smidts, 2004] C. Smidts and M. Li, “Validation of a Methodology for Assessing
Software Quality,” NRC, Office of Nuclear Regulatory Research,
Washington DC NUREG/CR-6848, 2004.

5

2. RESEARCH METHODOLOGY

2.1 Overview

The research methodology is described below. It consists of six main steps. These are

1. Selection of the Application (APP)
2. Measures/Families Selection
3. Measurement Formalization
4. Reliability Assessment
5. Construction of Reliability Prediction Systems
6. Measurement and Analysis

The above methodology was developed in NUREG/CR-6848 and is applied in this research.
Each step is described below.

2.2 Selection of the Application

Software used by nuclear power plants typically belongs to a class of high-integrity, safety-
critical, and real-time software systems. The system selected for this study should, to the extent
possible, reproduce these same characteristics.

The UMD research team selected a typical Reactor Protection System (RPS) multi-dimensional
trip function that uses a number of reactor variables. The function is designed to prevent power
operation with reactor power greater than that defined by a function of reactor coolant system
flow and reactor core neutron flux imbalance (i.e., flux in the top half of the reactor core minus
flux in the bottom half of the reactor core).

The APP was modeled on a typical nuclear power industry APP protection system trip function.
The APP contained both discrete and high-level analog input and output circuits. These circuits
read input signals from the plant and sent outputs that could be used to provide trips or actuations
of safety system equipment, control a process, or provide alarms and indications. The transfer
functions performed between the inputs and outputs were dependent on the software installed in
the module. The APP function was developed using the processes described in the following
standards:

• ANSI/IEEE Standard 830 (1984): IEEE Guide to Software Requirements Specifications.
• ANSI/IEEE Standard 1016 (1987): IEEE Recommended Practice for Software Design

Descriptions.

6

• NRC Regulatory Guide 1.152: Criteria for Programmable Digital Computer System
Software in Safety-Related Systems of Nuclear Power Plants.

• ANSI/IEEE/ANS Standard 7-4.3.2 (1982): Application Criteria for Programmable Digital
Computer Systems in Safety Systems of Nuclear Power Generating Stations.

• ANSI/IEEE Std 279-1971. “Criteria for Protection Systems for Nuclear Power
Generating Stations.”

• IEEE Std 603-1991. “IEEE Standard Criteria for Safety Systems for Nuclear Power
Generating Stations.”

• IEEE Std 730.1-1989. “IEEE Standard for Quality Assurance Plans.”

It should be noted that the APP was designed to be safety related. As such, it would have been
developed following NUREG-0800 Chapter 7, BTP-14. The APP documentation available to the
research team did not explicitly reference BTP-14, however, it cites many of the references
found in the NUREG-0800 Chapter 7 BTP-143.

The following documents were provided to the contractor by the system developer:

• APP Instruction Manual
• APP Module-Design Specification
• APP Design Requirements
• APP Module μp1 System [Software Requirements Specification] SRS
• APP Module μp1 System [Software Design Description] SDD
• APP Module μp1 System Software Code
• APP Module μp1 Flux/Delta Flux/Flow Application SRS
• APP Module μp1 Flux/Delta Flux/Flow Application SDD
• APP Module μp1 Flux/Delta Flux/Flow Application Software Code
• APP Module μp2 System SRS
• APP Module μp2 System SDD
• APP Module μp2 System Software Code
• APP Module μp2 Flux/Delta Flux/Flow Application SRS
• APP Module μp2 Flux/Delta Flux/Flow Application SDD
• APP Module μp2 Flux/Delta Flux/Flow Application Software Code
• APP Module Communication Processor SRS
• APP Module Communication Processor SDD
• APP Module Communication Processor Software Code APP CTC and SMC System SRS
• APP CTC and SMC System SDD
• APP CTC and SMC System Software Code
• APP Flux/Flow CTC App SRS
• APP Flux/Flow CTC App SDD
• APP Flux/Flow CTC App Software Code
• APP Module Software V&V Plan
• Final V&V Report for APP Module Software
• APP Test Plan for μp1
• APP Test Plan for μp2

3 NUREG-0800 Chapter 7 BTP-14 cites 28 references among which 17 are not applicable to APP. Among the remaining 11
references, six are also references in the APP documentation.

7

• APP Test Plan for Communication Processor
• APP Test Summary Report for μp1
• APP Test Summary Report for μp2
• APP Test Summary Report for Communication Processor

2.3 Measures/Families Selection

In order to perform a validation of the ranking of measures defined in NUREG/GR-0019
[Smidts, 2000], two software engineering measures were selected from the high-ranked
categories, six from the medium-ranked categories, and four from the low-ranked categories that
were identified in NUREG/GR-0019 [Smidts, 2000]. This selection of 12 measures allowed a
partial validation of the ranking.

The set of measures selected for this study is listed below.

1. Highly-ranked measures: Defect density (DD), Coverage factor (CF).
2. Medium ranked measures: Fault-days number (FDN), Cyclomatic complexity (CC),

Requirement specification change request (RSCR), Test coverage (TC), Software
capability maturity model (CMM), Requirements traceability (RT).

3. Low-ranked Measures: Function point analysis (FPA), Cause and effect graphing (CEG),
Bugs per line of code (Gaffney) (BLOC), Completeness (COM).

A detailed discussion of the measures selection process follows in Chapter 3.

2.4 Measurement Formalization

For a measurement to be useful it must be repeatable. Experience with NUREG/GR-0019
[Smidts, 2000] has shown that no standard definition of the measures exists, or at least no
standard definition that ensures repeatability of the measurement. To address these issues, the
UMD team began by reviewing the definitions of the measures [IEEE 982.1, 1988] [IEEE 982.2,
1988] to define precise and rigorous measurement rules. This step was seen as necessary due to
the inherent limitations of the IEEE standard dictionaries [IEEE 982.1, 1988] and [IEEE 982.2,
1988]. This set of measurement rules is documented in Chapters 6 to 17. The values of the
selected measures were then obtained by applying these established rules to the APP system.

Note that IEEE revised IEEE Std. 982.1-1988 in 2005 (see [IEEE 982.1, 2005]). IEEE Std.
982.1-2005 includes minor modifications for two of the twelve measures (Defect Density and
Test Coverage) used in this research and adds maintainability and availability measures that are
not related to this research. The definitions of defect density and test coverage and the
approaches for measuring them have not been modified. Therefore, the release of IEEE Std.
982.1-2005 should not have significant effect on the results presented in this research.

8

2.5 Reliability Assessment

The quality of APP is measured in terms of its reliability estimate. Reliability is defined here as
the probability that the digital system will successfully perform its intended safety function (for
the distribution of conditions to which it is expected to respond) upon demand and with no
unintended functions that might affect system safety. The UMD team assessed APP reliability
using operational data. The operational data and consequent analysis are documented in
Chapter 18.

2.6 Reliability Prediction Systems

The measurements do not directly reflect reliability. NUREG/GR-0019 [Smidts, 2000]
recognizes the Reliability Prediction System (RePS) as a way to bridge the gap between the
measurement and the reliability. RePSs for the measures selected were identified and additional
measurements were carried out as required. In particular, the UMD team developed an
operational profile to support quantification. This operational profile is documented in Chapter 4.
RePS construction is discussed in Chapter 5 and further elaborated in Chapters 6 to 17.

2.7 Assessment of Measure Predictive Ability

The next step was to assess the ability of each measure to predict reliability by comparing the
reliability of the code with the predicted reliability. Discrepancies between these two values were
then analyzed. This analysis is presented in Chapter 19.

9

2.8 References

[IEEE 982.1, 1988] “IEEE Standard Dictionary of Measures to Produce Reliable Software,”

IEEE Std. 982.1-1988, 1988.
[IEEE 982.1, 2005] “IEEE Standard Dictionary of Measures of the Software Aspects of

Dependability,” IEEE Std. 982.1-2005, 2005.
[IEEE 982.2, 1988] “IEEE Guide for the use of Standard Dictionary of Measures to Produce

Reliable Software,” IEEE Std. 982.2-1988, 1988.
[Smidts, 2000] C. Smidts and M. Li, “Software Engineering Measures for Predicting

Software Reliability in Safety Critical Digital Systems,” NRC, Office of
Nuclear Regulatory Research, Washington DC NUREG/GR-0019, 2000.

[Smidts, 2004] C. Smidts and M. Li, “Validation of a Methodology for Assessing
Software Quality,” NRC, Office of Nuclear Regulatory Research,
Washington DC NUREG/CR-6848, 2004.

11

3. SELECTION OF MEASURES

This chapter discusses the rationale for the selection of the measures used in the project. The
final selection of the measures includes “Defect density,” “Coverage factor,” “Fault days
number,” “Cyclomatic complexity,” “Requirement specification change request,” “Test
coverage,” “Software capability maturity model,” “Requirements traceability,” “Function point
analysis,” “Cause and effect graphing,” “Bugs per line of code” (Gaffney [Gaffney, 1984]), and
“Completeness.”

3.1 Criteria for Measure Selection

Measures for the validation project were selected based upon the following criteria:

1. Ranking levels
2. Measure applicability
3. Data availability
4. Coverage of different families

Each of the above criteria is described below.

3.2 Ranking Levels

This project was designed to validate the results presented in NUREG/GR-0019 [Smidts, 2000],
“Software Engineering Measures for Predicting Software Reliability in Safety Critical Digital
Systems.” In that study, forty4 measures were ranked based on their ability to predict software
reliability in safety-critical digital systems. This study documented in NUREG/GR-0019 must be
validated to confirm that highly ranked measures can accurately predict software reliability. High
prediction quality means that the prediction is close to the actual software reliability value.

A complete validation could be performed by: 1) predicting software reliability from each of the
pre-selected forty measures in NUREG/GR-0019; and then 2) comparing predicted reliability
with actual reliability obtained through reliability testing. However, the limited schedule and
budget of the current research constrained UMD’s ability to perform such a brute-force
experiment on all forty measures. An alternative method was proposed whereby: a) two
measures were selected from the high-ranked measures, six from the medium-ranked measures,

4The initial study involved 30 measures. The experts then identified an additional 10 missing measures bringing the total number
of measures involved in the study to 40.

12

and four from the low-ranked measures; b) the above experiment was performed on these twelve
measures; and c) the results were extrapolated to the whole spectrum of measures.

The forty measures available during the testing phase were classified into high-ranked, medium-
ranked, and low-ranked measures by comparing the predicted reliability with the actually
reliability (rate) using the following thresholds5:

1. High-ranked measures: 0.75 ≤ rate ≤ 0.83
2. Medium-ranked measures: 0.51 ≤ rate < 0.75
3. Low-ranked measures: 0.30 ≤ rate < 0.51

Table 3.1 lists the high-ranked measures, medium-ranked measures, and low-ranked measures.

Table 3.1 Measures Ranking Classification

Measure Rate Rank No. Ranking Class

Failure rate 0.83 1

High

Code defect density 0.83 2

Coverage factor 0.81 3

Mean time to failure 0.79 4

Cumulative failure profile 0.76 5

Design defect density 0.75 6

Fault density 0.75 7

Fault-days number 0.72 8

Medium

Cyclomatic complexity 0.72 9

Mutation score 0.71 10

Minimal unit test case determination 0.7 11

Modular test coverage 0.7 12

Requirements specification change requests 0.69 13

Test coverage 0.68 14

Class coupling 0.66 15

Class hierarchy nesting level 0.66 16

Error distribution 0.66 17

Number of children (NOC) 0.66 18

Number of class methods 0.66 19

5 These thresholds are determined by the mean (μ) and standard deviation (σ) of the distribution of the rates of the measures.
Rates define the degree to which measures can be used to predict software reliability. These rates are real numbers ranging from
0 to 1. Rates of 1 indicate measures deemed crucial to the prediction of software reliability. Rates of 0 correspond to measures
that definitely should not be used. The rate of a measure is obtained by aggregating the experts’ opinions. The intervals
correspond to: μ+σ≤ rate ≤ upper limit, μ-δ ≤ rate < μ+σ, lower limit ≤ rate < μ - σ. Please refer to NUREG/GR-0019 for details.

13

Table 3.1 Measures Ranking Classification (continued)

Measure Rate Rank No. Ranking Class

Lack of cohesion in methods (LCOM) 0.65 20

Medium

Weighted method per class (WMC) 0.65 21

Man hours per major defect detected 0.63 22

Functional test coverage 0.62 23

Reviews, inspections and walkthroughs 0.61 24

Software capability maturity model 0.6 25

Data flow complexity 0.59 26

Requirements traceability 0.55 27

System design complexity 0.53 28

Number of faults remaining (error seeding) 0.51 29

Number of key classes 0.51 30

Function point analysis 0.5 31

Low

Mutation testing (error seeding) 0.5 32

Requirements compliance 0.5 33

Full function point 0.48 34

Graph-theoretic static architecture complexity 0.46 35

Feature point analysis 0.45 36

Cause and effect graphing 0.44 37

Bugs per line of code (Gaffney) 0.4 38

Cohesion 0.33 39

Completeness 0.36 40

The measures “Defect density,” (which includes “Code defect density” [ranks No. 2] and
“Design defect density” [No. 6]) and “Coverage factor” [No. 3] were chosen as high-ranked
measures. The measures “Fault-days number” [No. 8], “Cyclomatic complexity” [No. 9],
“Requirements specification change request” [No. 13], “Test coverage” [No. 14], “Software
capability maturity model” [No. 25], and “Requirements traceability” [No. 27] were selected as
the medium-ranked measures. The low-ranked measures included “Function point analysis” [No.
31], “Cause and effect graphing” [No. 37], “Bugs per line of code (Gaffney estimate)” [No. 38],
and “Completeness” [No. 40].

14

3.3 Measure Applicability

Measure applicability is an important criterion by which measures were selected. Since the APP
code was written in ANSI C and Assembly language, only non-Object Oriented (OO) measures
could be considered as a part of the pool of measures.

3.4 Data Availability

Data availability is another criterion that limits the selection. None of the measures were directly
available. However, base data from which software engineering measures could be calculated
were mostly available in the testing phase and either totally or partially unavailable in other
phases of the life-cycle (see Table 3.2).

3.5 Coverage of Different Families

As addressed in Section 2.3 of NUREG/GR-0019:

Measures can be related to a small number of concepts such as for instance the concept of
complexity, the concept of software failure or software fault. Although the number of
these concepts is certainly limited, the number of software engineering measures
certainly does not seem to be. Therefore a many-to-one relationship must exist between
measures and primary concepts. These primary concepts are at the basis of groups of
software engineering measures, which in this study are called families. Two measures are
said to belong to the same family if, and only if, they measure the same quantity (or more
precisely, concept) using alternate means of evaluation. For example, the family
Functional Size contains measures “Function Point” and “Feature Point.” Feature point
analysis is a revised version of function point analysis appropriate for real-time
embedded systems. Both measures are based on the same fundamental concepts.
[Albrecht, 1979] [Jones, 1986] [Jones, 1991]

In this study, the attempt was made to select measures from as many families as possible so as to
obtain a broad coverage of semantic concepts6. The twelve selected measures were chosen from
the following families: “Fault detected per unit of size,” “Fault-tolerant coverage factor,” “Time
taken to detect and remove faults,” “Module structural complexity,” “Requirements specification
change requests,” “Test coverage,” “Software development maturity,” “Requirements
traceability,” “Functional size,” “Cause and effect graphing,” “Estimate of faults remaining in
code,” and “Completeness” (see Table 3.2). This selection reflects a bias toward failure- and
fault-related families as well as requirements-related families. This is due to a strong belief that
software reliability is largely based upon faulty characteristics of the artifact and the quality of
requirements used to build the artifact.

6The “semantic” concept was also termed as “family” which is defined as a set of software engineering measures that evaluate the
same quantity.

15

3.6 Final Selection

Table 3.2 lists several characteristics of the pre-selected measures including: the family to which
the measure pertains, the measure applicability, the availability of APP data, and the ranking
class.

The final selection is thus as follows: “Defect density,” “Coverage factor,” “Fault days number,”
“Cyclomatic complexity,” “Requirement specification change request,” “Test coverage,”
“Software capability maturity model,” “Requirements traceability,” “Function point analysis,”
“Cause and effect graphing,” “Bugs per line of code” (Gaffney estimate), and “Completeness.”
In Table 3.2, these measures are in boldface. The applicable life-cycle phases of each measure
are provided in Table 3.3.

Table 3.2 Measure, Family, Measure Applicability, Data Availability, and Ranking Class

Measure Family
Measure

Applicability
Data

Availability
Ranking

Class

Failure rate Failure rate Applicable Available

High

Mean time to failure Failure rate Applicable Available

Cumulative failure profile Failure rate Applicable Not Available

Coverage factor
Fault-tolerant
coverage factor

Applicable Available

Code defect density
Fault detected per
unit of size

Applicable Available

Design defect density
Fault detected per
unit of size

Applicable Available

Fault density
Fault detected per
unit of size

Applicable Available

16

Table 3.2 Measure, Family, Measure Applicability, Data Availability, and Ranking Class (continued)

Measure Family
Measure

Applicability
Data

Availability
Ranking

Class

Modular test coverage Test coverage Applicable Available

Medium

Test coverage Test coverage Applicable Available

Fault-days number
Time taken to
detect and remove
faults

Applicable Available

Functional test coverage Test coverage Applicable Available

System design complexity
System architectural
complexity

Applicable Available

Mutation score Test adequacy Applicable Available

Minimal unit test case
determination

Module structural
complexity

Applicable Available

Requirements
specification change
requests

Requirements
specification change
requests

Applicable Available

Error distribution Error distribution Applicable Available

Class coupling Coupling Not Applicable -

Class hierarchy nesting
level

Class inheritance
depth

Not Applicable -

Number of children (NOC)
Class inheritance
breadth

Not Applicable -

Number of class methods
Class behavioral
complexity

Not Applicable -

Lack of cohesion in
methods (LCOM)

Cohesion Not Applicable -

Weighted method per class
(WMC)

Class structural
complexity

Not Applicable -

Man hours per major defect
detected

Time taken to detect
and remove faults

Applicable Available

Reviews, inspections and
walkthroughs

Reviews, inspections
and walkthroughs

Applicable Available

17

Table 3.2 Measure, Family, Measure Applicability, Data Availability, and Ranking Class (continued)

Measure Family
Measure

Applicability
Data

Availability
Ranking

Class

Software capability
maturity model

Software
development
maturity

Applicable Available

MediumRequirements traceability
Requirements
traceability

Applicable Available

Number of key classes Functional size Not Applicable -

Number of faults remaining
(error seeding)

Estimate faults
remaining in code

Applicable Available

Cyclomatic complexity
Module structural
complexity

Applicable Available

Low

Data flow complexity
System architectural
complexity

Applicable Available

Requirements compliance
Requirements
compliance

Applicable Available

Mutation testing (error
seeding)

Estimate faults
remaining in code

Applicable Available

Cause and effect graphing
Cause and effect
graphing

Applicable Available

Full function point Functional size Applicable Available

Function point analysis Functional size Applicable Available

Graph-theoretic static
architecture complexity

System architectural
complexity

Applicable Available

Feature point analysis Functional size Applicable Available

Cohesion Cohesion Applicable Available

Completeness Completeness Applicable Available

18

Table 3.3 Applicable Life-Cycle Phases of the Selected Measures

Family Measures Applicable Life Cycle Phases

Estimate of Faults Remaining
per Unit of Size

BLOC Coding, Testing, Operation

Cause and Effect Graphing CEG
Requirements, Design, Coding, Testing,
Operation

Software Development
Maturity

CMM
Requirements, Design, Coding, Testing,
Operation

Completeness COM
Requirements, Design, Coding, Testing,
Operation

Fault-Tolerant Coverage
Factor

CF Testing, Operation

Module Structural
Complexity

CC Design, Coding, Testing, Operation

Faults Detected per Unit of
Size

DD Testing, Operation

Time Taken to Detect and
Remove Faults

FDN
Requirements, Design, Coding, Testing,
Operation

Functional Size FP
Requirements, Design, Coding, Testing,
Operation

Requirements Specification
Change Request

RSCR
Requirements, Design, Coding, Testing,
Operation

Requirement Traceability RT Design, Coding, Testing, Operation

Test Coverage TC Testing, Operation

19

3.7 References

[Albrecht, 1979] A.J. Albrecht. “Measuring Application Development,” in Proc. SHARE-

GUIDE, 1979, pp. 83–92.
[Gaffney, 1984] J.E. Gaffney. “Estimating the Number of Faults in Code.” IEEE

Transactions on Software Engineering, vol. 10, pp. 459–64, 1984.
[Jones, 1986] C. Jones. Programming Productivity. McGraw-Hill, Inc., 1986.
[Jones, 1991] C. Jones. Applied Software Measurement. McGraw-Hill, Inc., 1991.
[Smidts, 2000] C. Smidts and M. Li, “Software Engineering Measures for Predicting

Software Reliability in Safety Critical Digital Systems,” NRC, Office of
Nuclear Regulatory Research, Washington DC NUREG/GR-0019, 2000.

21

4. OPERATIONAL PROFILE

4.1 Introduction

The operational profile (OP) is a quantitative characterization of the way in which a system will
be used [Musa, 1992]. It associates a set of probabilities to the program input space and therefore
describes the behavior of the system. The determination of the OP for a system is crucial because
OP can help guide managerial and engineering decisions throughout the entire software
development life cycle [Musa, 1992]. For instance, OP can assist in the allocation of resources
for development, help manage the reviews on the basis of expected use, and act as a guideline for
software testing.

The OP of a system is also a major deciding factor in assessing its reliability. Software reliability
is the ability of a software system or component to perform its intended functions under stated
conditions for a specific period of time [IEEE, 1991]. The OP is used to measure software
reliability by testing the software in a manner that represents actual use or it is used to quantify
the propagation of defects (or unreliability) through extended finite state machine models [Li,
2004] [Smidts, 2004]. However, determining the OP of the system is a challenging part of
software reliability assessment in general [Shukla, 2004].

The OP is traditionally evaluated by enumerating field inputs and evaluating their occurrence
frequencies. Musa pioneered a five-step approach to develop the OP. His approach is based on
collecting information on customers and users, identifying the system modes, determining the
functional profile, and recording the input states and their associated occurrence probabilities
experienced in field operation. Expert opinion, instead, is normally used to estimate the hardware
components-related OP due to the lack of field data.

Musa’s approach has been widely utilized and adapted in the literature to generate the OP. Some
of these applications are summarized below:

 Chruscielski and Tian applied Musa's approach to a Lockheed Martin Tactical Aircraft

System's cartridge support system [Chruscielski, 1997]. User surveys were used instead of
field data.

 Elbaum and Narla [Elbaum, 2001] refined Musa’s approach by addressing heterogeneous
user groups. They discovered that a single OP only “averages” the usage and “obscures” the
real information about the operational probabilities. They utilized clustering to identify
groups of similar customers.

 Gittens, et al., proposed an extended OP model which is composed of the process profile,
structural profile, and data profile. The process profile addresses the processes and associated
frequencies. The structural profile accounts for the system structure, the configuration or

22

structure of the actual application, and the data profile covers the inputs to the application
from different users [Gittens, 2004].

In this research, the probabilities for individual operations instead of end-to-end operations are
considered. Musa’s approach and other extended approaches all require either field data or
historic usage data. These approaches use an assumption that field data or historic usage data
cover the entire input domain. This assumption is not always true and these approaches are not
always successful simply because some input data may not be available, especially for safety
critical control systems.

There are at least two reasons why the entire input data spectrum is often unavailable. First, the
system may not be widely used. Therefore, very little field and historic usage data can be
obtained. Second, the field data may not cover the entire spectrum of the input domain because
some conditions may be extremely rare. Further many inputs may not be visible. The derivation
of a generic OP generation method for safety critical systems based on limited available data is
presented in this chapter.

Since the different values of the environmental inputs will have major effects on processing,
Musa’s [Musa, 1992] recommended approach for identifying the environmental variables is to
have several experienced system design engineers brainstorm a list of those variables that might
necessitate the program to respond in different ways. Furthermore, Sandfoss [Sandfoss, 1997]
suggests that estimation of occurrence probabilities could be based on numbers obtained from
project documentation, engineering judgment, and system development experience. According to
Gittens [Gittens, 2004], a specific OP should include all users and all operating conditions that
can affect the system. In this research their approaches have been extended and a systematic
method to identify those environmental variables and estimate all the environmental inputs has
been generated.

This chapter is structured as follows. Section 4.2 describes the generic architecture of the safety
critical system under study. The method for OP generation will be introduced in Section 4.3
along with a detailed example.

4.2 Generic Architecture of Reactive Systems

Reactive systems continuously react with their environment and must satisfy timing constraints
to be able to take into account all the external events [Ouab, 1995]. Such reactive systems may
be used to implement a safety critical application.

A typical reactive system is composed of components such as sensors, actuators, voters and
controllers (software and hardware). Both sensors and actuators are used to implement the
mechanisms that interact with the reactive system's environment. Sensors are used to acquire the
plant input information7. Safety critical systems are designed to control and monitor these
systems. The outputs from the different controllers are provided to the voter and the voting

7 The term “plant” has a broad definition. Complex systems such as nuclear power plants, aircrafts, and military systems are
considered “plants.”

23

results are sent to the actuators, which are used to maintain interaction with the plant, i.e.
perform corresponding actions. The voter can be a hardware component or an independent
software-based system. If an accident condition is identified by the voter, a safety protection
action will be initialized. For instance, in a nuclear power plant, if the reactor’s power
distribution parameter exceeds its allowable limits, the reactor protection system will issue a trip
signal to shutdown the reactor and inform the operator.

It should be noted that the notion of sensors and actuators can be extended to human beings.
Human beings may indeed provide inputs (as sensors) and receive output from the controller and
then take further actions (as actuators).

4.3 APP Architecture

The APP application under study was a model of a nuclear reactor protection system that falls
into the reactive system category and in addition is a safety critical system. Figure 4.1 depicts the
architecture of the APP system. Three layers coexist: the application software layer, the system
software layer, and the infrastructure layer.

Figure 4.1 The APP Architecture

The top layer is an application software layer that contains the safety control algorithms, which
implement the intended functionality. The APP application software receives the plant inputs,
and then determines whether the reactor is operating normally. If this is not the case, a trip signal
is issued to shutdown the reactor. Although this layer can independently perform its intended
function, the features that monitor and assure the healthy functioning of this layer are not
implemented in this layer. Such features include, but are not limited to, online diagnostics for
critical hardware components such as memory, timely enforcement of each cycle to assure the

24

system can react in a real-time manner, etc. The APP system contains a layer that implements
these features and is depicted in Figure 4.1 as the system software layer. This layer is also called
the health-monitoring layer.

The status of the system hardware components will be determined through well-defined
diagnostics procedures. It is worth noting that the operating system for large-scale, safety critical
control systems falls into this layer also. The system software layer also receives plant inputs to
monitor the status of the sensors and to determine whether the inputs are in a normal range. If
this layer detects anomalies, it will first maintain the entire control system in a fail-safe situation
(for instance, shutdown the reactor in the nuclear industry) and then issue an alarm signal or its
equivalent (for instance, trip signal in the nuclear industry). Communications are used to share
information between these two layers.

The lowest layer is the infrastructure layer, which acts as the infrastructure of the system. It is
obvious that the normal operation of the safety critical system relies on the successful operation
of this layer. Failure of any hardware component may lead to the malfunction of the system.
Such failures cannot be neglected in modern safety critical systems. The failure rates of hardware
components have been reduced to the level of 10-7 failures per hour or less in light of
contemporary manufacturing technologies [Poloski, 1998].

It should be pointed out that the division between layers may be somewhat arbitrary. Further the
three layers are not independent. Application software, system software, and the infrastructure
are required to work together to perform the system function. Failure modes between layers are
interdependent. In the case of the APP, the possible impact of failures of the infrastructure layer
on the application software is handled by the system software, which conducts the online
monitoring of the infrastructure layer.

The counterparts to “plant inputs” are “infrastructure inputs,” which include the hardware and
software health statuses. The infrastructure input is an important component of the OP. This is
because the input inevitably influences the way in which the system software executes. The
infrastructure inputs are normally invisible and typically are not included in the OP. The
customers generally are not aware of these infrastructure inputs [Musa, 1992].

4.4 Generating the Operational Profile

After studying the general architecture of reactive systems, one can conclude that an OP for such
systems should address operating conditions for each subsystem and the operating conditions for
the voter if it is an independent software-based system. As for each subsystem, both the
operating conditions for the application software and the system software should be considered.
That is,
 , , … , , (4.1)
where

 OP for subsystem 1

25

 OP for subsystem 2
 OP for subsystem n

 OP for the voter if it is a software-based system

The OP for each sub-system with the exception of the voter is discussed in this section.

According to Musa, the system modes (subsystem modes) need to be determined before
generating the OP. A system mode is a set of functions or operations that are grouped together
for convenience for analyzing the system's operational behavior. A system can switch between
system modes so that only one system mode is in effect at a given time, or different system
modes can exist simultaneously, sharing the same computer resources [Musa, 1992]. After
determining the system modes, the OP must be generated for each mode. Thus the general
complete OP for a subsystem with multiple operational modes is:
 1, … , (4.2)
where

 OP for subsystem i

 OP for the first system mode of subsystem i

 OP for the n-th system mode of subsystem i

In general, an OP of a software system is the complete set of all the input probabilities in a given
operational mode. Therefore, there is a high level system input which is used to determine the
system mode. This type of input can be expressed as the probability of the system modes.

Based on the discussion in the previous section, the OP for a subsystem in a specific operational
mode, , is a pair of two elements: the element denoted as that represents the OP for the
plant inputs, and the element denoted as that represents the OP for the infrastructure inputs.
Therefore the complete set of an OP in operational mode j can be expressed as:
 , (4.3)

The construction of these two elements is discussed in turn in the following subsections.

There are two subsystems, μp1 and μp2, in the APP system used to implement the trip function.
These two subsystems work independently. Each subsystem receives inputs from sensors and
conducts its own internal calculations. Whether or not to send out a trip signal depends on the
calculation results. The APP voter is a hardware component. There is a communication processor
(CP) which handles communications between the two subsystems and other equipment outside
the APP system. CP is only required during the power-up sequence, calibration, and tuning
modes. CP only uses the infrastructure inputs as do μp1 and μp2 but is not related to the “plant
inputs.” Thus, the OP for the APP system should include the operational conditions for these
three subsystems:
 , , (4.4)

26

where
 OP for the APP system
 OP for μp1

 OP for μp2
 OP for CP

The APP possesses four distinct operational modes: Power On, Normal, Calibration, and Tuning
[APP, 1].

1. The “Power On Mode” includes the initialization function and the self test procedures for

each microprocessor in the APP. The system will not be put into action until it is
successfully powered on.

2. The “Normal Mode” is the main working mode for the APP. In this mode the APP
monitors the nuclear power plant operating conditions.

3. The “Calibration Mode” is chosen if there is a need to perform an input or output
calibration.

4. The “Tuning Mode” is chosen if there is a need to reload the parameters used for the
application algorithm.

There is a switch on the APP front panel that is used to force the APP to switch from one mode
to another. The probability of each system mode is shown in Table 4.1 and the composition of
the OP for each operational mode is also shown.

Table 4.1 Composition of the Operational Profile for the APP Operational Modes

Operational
Mode

Operational Profile
Probability

 ,

Power On
μp1

Infrastructure
Inputs

μp2
Infrastructure

Inputs

CP
Infrastructure

Inputs
∅ 1.004×10-6

Normal
μp1

Infrastructure
Inputs

μp2
Infrastructure

Inputs
∅

Plant-Specific
Inputs

0.992

Calibration
μp1

Infrastructure
Inputs

μp2
Infrastructure

Inputs

CP
Infrastructure

Inputs

Fixed Plant
Inputs

0.004

Tuning
μp1

Infrastructure
Inputs

μp2
Infrastructure

Inputs

CP
Infrastructure

Inputs

Fixed Plant
Inputs

0.004

As shown in Table 4.1, in the power-on mode, the APP is not ready to receive inputs from the
nuclear power plant system. UMD conducted experiments and the results revealed the average
“power-on” duration to be around 20 s. This included the initialization procedures and “power-

27

on” self tests for all three microprocessors. UMD also understood that plant outages required the
APP module to be shut down. Outage data will be shown later in Table 4.9. This data was
obtained from a nuclear power plant that had been using a similar APP module in which there
had been 19 outages in 12 years. Thus, the probability of the APP being in this mode can be
estimated as 20 spower on 19 power ons12 yr 3600 s/hr 24 hr/dy 365 dy/yr 1.004 10

During the normal mode, the APP system implements a reactor protection (or trip) function that
evaluated core power distribution [USNRC, 1995]. The trip function is used to prevent operation
when reactor power is greater than that defined by a function of the reactor coolant system (RCS)
flow rate and when the indicated power imbalance exceeds safety limits. A reactor trip will be
issued by the APP system if the total power (flux) or power distribution exceeds a pre-
determined safety boundary. This function is implemented by the APP system application
software. The APP system software is used to diagnose whether its hardware components are in
healthy condition. In the case of the APP, the two subsets of OPs are:

1. OP for APP infrastructure inputs. The infrastructure inputs of the APP consist of the

statuses of all hardware components identified through the procedures predefined in the
system software.

2. OP for APP plant inputs. The inputs to the APP include four analog inputs. The
application software obtains these inputs from the plant and conducts the calculation
based on the predefined algorithms. The system software also reads these inputs to verify
whether the input components function normally. The actuator functions according to the
output of the application and system software against the inputs. The four inputs are the
measured reactor power in the top half of the reactor core as represented by neutron flux
monitoring instrumentation (), the measured reactor power in the bottom half of the
reactor core (), and reactor coolant flow rates represented by pressure differential
measurement instruments in the RCS hot leg loop A () and the RCS hot leg loop B
(). The plant inputs OP consists of the probability distribution of these four inputs.

Per discussion with a APP system expert the calibration and tuning are performed every two
weeks and the calibration and tuning required approximately 2 hours to perform. Thus, the
probability that the APP is in a calibration or tuning mode can be estimated as
 26 calyr 2 hrcal24 hr/dy 365 dy/yr 0.006

Also, a functional test is performed every 45 days (or 8 tests/year) requiring 2 hr/test. Thus, the
probability that APP is in a functional test mode per year can be estimated as:
 8 testsyr 2 hrtest24 hr/dy 365 dy/yr 0.002

28

While in these modes, the APP would be bypassed and would not receive any actual plant inputs.
Instead, fixed plant inputs would be used to perform the calibration and tuning functions. These
fixed inputs, however, act as parameters and do not need to be determined as part of the OP. The
sum of the calibration and tuning probability and the functional test probability are divided
between the calibration and tuning probabilities in Table 4.1 above (i.e., 0.004 for each mode).

The following subsections provide a general discussion of the OP construction. Further, a
construction of the infrastructure inputs OP is discussed followed by the plant inputs OP. An
application of this approach to the APP system is then illustrated.

4.4.1 A Guided Operational Profile Construction

The concept of OP has been used in automated software reliability-engineered testing and
software reliability assessment studies [Li, 2003] [Li, 2004] [Widmaier, 2000].

Musa [Musa, 1992] pioneered a five-step approach to develop the OP. As shown in Figure 4.2,
his approach is based on collecting information on customers and users, identifying the system
modes, determining the functional profile, and recording the input states and their associated
occurrence probabilities experienced in field operation. The Musa approach is user and customer
centric and is most relevant for applications with a large user and customer group. In the case of
the APP, the number of customers and users was limited and focus was mostly on physical
system parameters and infrastructure parameters rather than on functions which may depend on
the type of user or consumer. Furthermore, portions of the data space that represented the most
significant portions of the OP may not have been encountered in the field (such as hardware
failure modes, or physical input conditions that trigger trip conditions) and corresponding data
may not exist. The approach used to generate the APP OP is discussed in this section.

Figure 4.2 Musa’s Five-Step Approach for OP Development

Customer
Profile

User Profile

System-mode
Profile

Functional Profile

Operational Profile

29

Figure 4.3 Test Environment

The automated software reliability-engineered testing process involves developing a test oracle
represented by an Extended Finite State Machine (EFSM) model using a tool named TestMaster
[TestMaster, 2000] [TestMaster, 2004]. The EFSM model is constructed based on the software
requirements specification8. The TestMaster tool is used to build the EFSM model and execute
this model to generate test scripts in accordance with the OP. The test scripts are then executed
on the software under test (SUT) using WinRunner [WinRunner, 2001] as a test harness. The
results of the tests (numbers of failures and trials) are recorded and used to calculate reliability.

TestMaster is a test design tool that uses the EFSM notation to model a system [TestMaster,
2000]. TestMaster captures system dynamic internal and external behaviors by modeling a
system through various states and transitions. A state in a TestMaster model usually corresponds
to the real-world condition of the system. An event causes a change of state and is represented by
a transition from one state to another [TestMaster, 2004]. TestMaster allows models to capture
the history of the system and enables requirements-based extended finite state machine notation.
It also allows for the specification of the likelihood that events or transitions from a state will
occur. Therefore, the OP can be easily integrated in the model.

Figure 4.4 depicts an example EFSM that models the PROM (Programmable Read Only
Memory) test function in the APP system.

PROM Test Passed

PROM Test Test Results PROM Test Failed

Hardware Failed

Watchdog
Timer Set

== 55H
Operation
Continues

== BBH

== Anything Else

Stayed in
Halt Loop

Figure 4.4 An Example EFSM Model for the APP system

The PROM test compares the checksum of the PROM with a predefined value. The value 55H
will be written to a specific status address if the test passes or BBH if it fails. Any value other
than 55H or BBH is not expected but may occur if the hardware fails during the status writing
operation.

8 Please refer to Chapter 5 for a more detailed discussion on EFSM and Appendix A for EFSM construction procedures.

Test Execution
Environment

Requirements
s

Analysis

Test
Cases

APP

TestMaster WinRunner

Test Design
Environment

30

After completing the model, software tests are created automatically with a test script generator.
A test is defined as a path from the entry to the exit state. The test generator develops tests by
identifying a path through the diagram from the entry to the exit state. The path is a sequence of
events and actions that traverses the diagram, defining an actual-use scenario. As for the above
example, the ordered state series {PROM Test, Test Results, PROM Test Passed, Operation
Continues} (denoted as), {PROM Test, Test Results, PROM Test Failed, Watchdog Timer
Set, Stayed in Halt Loop}(denoted as), and {PROM Test, Test Results, Hardware Failed,
Watchdog Timer Set, Stayed in Halt Loop} (denoted as) are possible paths.

TestMaster implements several test strategies such as Full Cover, Transition Cover, and Profile
Cover. The strategy used to generate test cases is Profile Cover. Profile Cover generates a pre-
specified number of test cases in accordance with the likelihood of each path. In TestMaster,
the likelihood of a path is the product of the likelihoods of transitions that traverse this path.
Only likelihoods for the three conditional transitions count:

 , 55 occurs
 , : occurs
 , : Anything else occurs, as shown in Figure 4.4

This is because likelihoods for other transitions are 0.0. Therefore, we have:
 Pr Pr , Pr Pr , Pr Pr ,

As such, we define the OP for the example in Figure 4.4, , as:
 , , Pr , , , , Pr , , , , Pr ,

It should be noted that: Pr , Pr , Pr , 1

The OP is generally defined as:
 : , Pr

Where is the set of OP, is the set of occurrences of the multiple transitions (multiple options
after one state), and Pr is the set of probabilities of . In other words:
 ,

Where i is the index for the occurrence and j is the index for the transitions within each
occurrence. Pr , 1

31

holds for the i-th occurrence.

This OP definition is different from Musa’s in the sense that the point of interest is transitions
instead of each individual input. It is worth noting that the condition for a transition may be the
combination of multiple inputs. This issue will be addressed later in this chapter.

The other OP application is the determination of the software unreliability (probability of failure)
from the defects using an EFSM. In this study, the defects are propagated by using an EFSM.
This method proceeds in three stages:

1. Construction of an EFSM representing a user’s requirements and embedding a user’s
profile information. The OP is represented as the set of probabilities of the transitions.

2. Mapping of the defects to this model and the actual tagging of the states and transitions.

3. Executing the model to evaluate the impact of the defects identified by the TestMaster test
generator using Full Coverage.

The Full Coverage generates all paths and then paths with tagged defects are identified and their
associated probabilities extracted. The sum of these probabilities is the failure probability per
demand.

Some conditions in the EFSM are determined by multiple input variables. The determination of
the likelihoods of these conditions from the input profile (contains likelihood for individual
input) can be very complicated, especially if the individual inputs are statistically dependent. Not
all likelihoods for individual inputs are required, especially in the software-reliability
propagation study—only the likelihoods of the paths that traverse the defects are required. By
using our method, one can improve the OP generation efficiency by simply not considering the
non-defect-related transitions.

In summary, the OP is defined in both applications as the occurrence probability of transitions
rather than the occurrence probability of inputs. Identification and exploration of the multiple
transitions, termed “OP events” throughout this chapter, guide the construction of such OPs. It is
worth noting that this method is within Musa’s OP framework. The high-level principles are
applicable to this study. The procedures for constructing the OP are discussed in detail in the
following subsections.

4.4.2 Method for Identifying Infrastructure Inputs Related to the OP

As shown in the generic reactive system architecture, the normal operation of such a system
heavily depends on the infrastructure inputs. In order to obtain a complete OP, each of the
infrastructure inputs should be identified. The infrastructure inputs usually cannot be obtained
from the field. This is simply because the failures of these hardware components are rare and
hardly observed, sometimes even over their entire performance periods.

32

The six-step method discussed below was used to define the OP for the infrastructure inputs:

1. Collect required documents;
2. Construct the EFSM;
3. Identify the hardware-related OP events;
4. Identify the hardware components related to OP events identified in Step 3;
5. Model the OP events identified in Step 3 using fault trees;
6. Quantify the fault trees established in Step 5.

These six steps are explained in turn.

Step 1: Collect Required Documents:

The required documents are:

1. Requirements specifications for the system
2. Requirements specification for the application software
3. Requirements specification for the system software
4. Basic failure rate information

The requirements specifications documents clearly define the software functionality and the
software-hardware interaction. These documents are used to construct the EFSM, to identify
hardware related OP events, and to construct the fault tree. Failure rate databases were used to
quantify the fault trees in Step 6.

Step 2: Construct the EFSM. The EFSM was constructed based on the requirements
specifications. Figure 4.4 depicts an example EFSM based on the requirements given in Figure
4.5. A discussion on EFSM construction is presented in Chapter 5 and Appendix A. Please refer
to [Savage, 1997] for an in-depth explanation.

Figure 4.5 Excerpt from the APP SRS

“A code Checksum shall be performed in the ‘Power-Up Self Tests’ and ‘On-Line Diagnostics’ operations.
This is done by adding all of the programmed address locations in PROM and comparing the final value to
a preprogrammed checksum value. A code checksum is a calculated number that represents a summation of
all of the code bytes. The code checksum shall be stored at the end of the PROM.

The test shall start by reading the program memory data bytes and summing all of the values. This process
shall continue until all of the code memory locations have been read and a checksum has been generated.

The calculated value shall be compared to the reference checksum stored in RAM. If the values match, the
algorithm shall update the status byte in the status table with the value 55H and increment the status
counter by one count. If the checksums don’t match, then BBH shall be written instead to the status byte and
the status counter shall not be incremented.”

33

Step 3: Identify the hardware-related OP events. This can be done by scrutinizing all OP events
to see if any transition condition relates to the hardware status. For instance, the OP event in
Figure 4.3 is the occurrence of the multiple transitions after the state Test Results. All three
transitions were hardware related and hence this OP event is hardware-related. In general, most
system software OP events are hardware-related.

The example in Figure 4.4 is used to illustrate how to identify the hardware-related OP events.
This EFSM is constructed based on the fragment of SRS in Figure 4.5. As a general rule, most
hardware components and the application algorithms should be examined in most safety critical
systems. These components include but are not limited to, RAM (Random Access Memory),
ROM (Read-Only Memory), PROM, EEPROM (Electrical Erasable PROM), Data Bus Line and
Address Bus Line, input and output devices (for instance, A/D (analog to digital), D/A (digital to
analog) converters), etc. The software components are the calculation algorithm, the input
reading algorithm and so on.

From Figure 4.4, the hardware-related OP events are identified and presented in Table 4.2.

Table 4.2 Identified Hardware-Related OP Events for PROM Diagnostics in the APP system

No. OP Events

1 The probability of 55H being written into APP status table

2 The probability of BBH being written into APP status table

3 The probability of neither 55H nor BBH being written into APP status table

Step 4: Identify hardware components related to OP events identified in Step 3

The hardware components that contribute to the OP events in Table 4.2 can be either explicitly
identified from the SRS in Figure 4.5, (for instance, the hardware component PROM is easily
identified); or from background knowledge about the workings of the control system (for
instance, the check-sum operation involves read/write activities), and the RAM that contains the
intermediate results of the checksum. In principle, normally the components under examination
plus the components involved in the process should be considered. The hardware components for
each OP event listed in Table 4.2 were examined in turn. Table 4.3 summarizes the findings for
the OP Event 1 and Table 4.4 for the OP events 2 and 3.

34

Table 4.3 Hardware Components Related to OP Event 1

No. Requirements Basic Components

1

This is done by adding all of the programmed address
locations in PROM and comparing the final value to a
preprogrammed checksum value. A code checksum is a
calculated number that represents a summation of all of the
code bytes. The code checksum shall be stored at the end of
the PROM.

PROM

RAM

Components Involved in
Read/Write Operation

Register

2

The test shall start by reading the program memory data bytes
and summing all of the values. This process shall continue
until all of the code memory locations have been read and a
checksum has been generated.

Components Involved in
Read/Write Operation

Register

3
The calculated value shall be compared to the reference
checksum stored in RAM.

RAM

Components Involved in
Read/Write Operation

Register

4
If the values match, the algorithm shall update the status byte
in the APP status table with the value 55H and increment the
status counter by one count.

RAM

Components Involved in
Read/Write Operation

Register

5
If the checksums don’t match, then BBH shall be written
instead to the status byte and the status counter shall not be
incremented.

RAM

Components Involved in
Read/Write Operation

Register

35

Table 4.4 Basic Components for Events 2 and 3

Event No. Event Basic Components

2
The probabilities of BBH is written into the APP
status table

PROM

RAM

Components Involved in
Read/Write Operation

Register

3
The probabilities of neither 55H nor BBH is written
into the APP status table

RAM

Components Involved in
Read/Write Operation

Register

Step 5: Model the OP events identified in Step 3 using fault trees

Fault tree analysis is a mature technique widely used in the reliability and risk analysis fields.
This technique is restricted only to the identification of the system elements and events that lead
to one particular undesired failure. The undesired failure event appears as the top event, and this
is linked to more basic fault events by logic gates. In this study the fault tree is used to model the
OP events.

For example, the fault trees for events 2 and 3 are shown in Figure 4.6 and Figure 4.7
respectively. The PROM test result is BBH if any of the following four events occur: PROM
fails, the RAM that contains the intermediate checksum results fails, the R/W operation fails (due
to control bus, data bus, or address bus failures), or the Central Processing Unit (CPU) fails.

Step 6: Quantify fault trees established in Step 5

The basic events presented in Figure 4.6 and Figure 4.7, such as RAM fails, and PROM fails,
need to be quantified. The ideal solution is to obtain failure rate information from the hardware
manufacturer. This approach normally does not work due to the proprietary nature of such
information. Some public databases, such as the RAC database [RAC, 1995], MIL-HDBK-217
[MIL, 1995] and the Nuclear Regulation Commission (NRC) database [Poloski, 1998,
NUREG/CR-5750] can be used for the probabilistic modeling of digital systems. The use of such
databases may lead to sacrificing the precision of the data. The failure rate for a specific
component may not be found but information for similar hardware may be available. For
instance, the specific RAM used in APP cannot be found in those databases. A failure rate for a
general RAM device is used instead. Table 4.5 shows the failure rate of the APP hardware
components.

36

Figure 4.6 Fault Tree for Event 2

Figure 4.7 Fault Tree for Event 3

37

Table 4.5 Failure Rate for APP Hardware Components

Hardware
Components

Description
Sub-Components

Failure Rate
(failure/hour)

Components
Failure Rate
(failure/hour)

RAM 8K byte 3.3E-7 3.3E-7
DPM Dual Port RAM 1.7E-8 1.7E-8

PROM 64K byte 2.6E-8 2.6E-8

EEPROM 64K byte 2.4E-9 2.4E-9

CPU register N/A 6.1E-8 6.1E-8

Latch N/A 1.2E-8 1.2E-8

Address bus line Line Bus Driver 4.6E-7
5.22E-7

 Line Bus Receiver 6.2E-8

Data bus line Line Bus Driver 4.6E-7
5.22E-7

 Line Bus Receiver 6.2E-8

Control line Line Bus Driver 4.6E-7
5.22E-7

 Line Bus Receiver 6.2E-8

MUX For analog input 3.3E-8 3.3E-8

The results of this step are summarized in Table 4.6 and Table 4.7.

Table 4.6 OP Events Quantification Results

Events
Hardware

Components
Failure Rate
(failure/hour)

Resources Results

The probability of
BBH is written into
the APP status
table.

PROM λ1 = 2.6E-8 NUREG/CR-5750

7.13×10-5/demand

RAM λ2 = 3.3E-7 NUREG/CR-5750

Components
Involved in
Read/Write
Operation

λ3 = 1.6E-6 NUREG/CR-5750

Microprocessor λ4 = 3.3E-8 NUREG/CR-5750

The probability of
neither 55H nor
BBH is written into
the APP status
table.

RAM λ2 = 3.3E-7 NUREG/CR-5750

7.03×10-5/demand

Components
Involved in
Read/Write
Operation

λ3 = 1.6E-6 NUREG/CR-5750

Microprocessor λ4 = 3.3E-8 NUREG/CR-5750

38

Table 4.7 Operational Profile for APP PROM Diagnostics Test

No. Event Operational Profile (per demand)

1 PROM Test Status Flag is 55H P1 = 1 - P2 - P3 = 0.9998584

2 PROM Test Status Flag is BBH P2 = 7.13×10-5

3 PROM Test Status Flag is neither 55H nor BBH P3 = 7.03×10-5

It should be noted that simply using the failure rate data from the databases is based on the
assumption that the infrastructure inputs related to hardware components have not been replaced.
If any hardware component has been replaced, the classical renewal theory should be applied to
obtain a more accurate OP. For the case of the APP system, as will be stated later in Chapter 18,
some hardware components such as EEPROM, AVIM (Analog Voltage Isolation Process) and
5V DC regulator had been replaced. Thus, the renewal theory should be incorporated to the OP
estimation.

For instance, the EEPROM of the APP module used in a power plant unit had been replaced by a
new EEPROM. The old EEPROM had been deployed for 77,040 hours and the new EEPROM
was deployed for 18,000 hours. The failure rate information given in the databases is an average
value (2.4×10-9 failure/hour). In this particular study, the estimation of reliability is on a per
demand basis. If one neglects the occurrence of this replacement and assumes the cycle time for
one calculation is 0.129 s, the probability of failure per demand is:
 Pr 2.4 10 /3600 / 0.129 8.6 10 /

If the replacement is taken into account, the average failure rate throughout the entire
deployment period can be roughly estimated as:
 ln 2.4 10 18,00077,040 18,000 5.61 10 /

Therefore the probability of failure per demand of the EEPROM can be updated to:
 Pr 5.61 10 /3600 / 0.129 /2.01 10 /

4.4.3 Estimating the Plant Inputs Based on Plant Operational Data

The plant inputs are gathered from the field through sensors. Ideally the OP for plant inputs can
be derived from the plant's operational data if this data set is complete. By “complete,” it is
meant that both normal and abnormal data are available. In the case of the APP, “normal data”
corresponds to situations under which the reactor operates within the power distribution envelope

39

shown in Figure 4.8; “abnormal data” corresponds to situations under which the data is outside
the power distribution envelope. The truth, however, is that abnormal conditions are extremely
rare.

The following steps describe the general procedure used to estimate the OP of plant inputs based
on plant operational data.

1. Construct the EFSM for the application software. The algorithm used in the application

software is given in Figure 4.9. In other words, if the power and power distribution (as
represented by neutron flux measurements) is outside the power distribution envelope,
the application software trips; otherwise it does not. The notions in Figure 4.9 are: DF is
the measured neutron flux imbalance, P is the reactor thermal power, TT is the maximum
reactor thermal power, B1, B2, B3, B4, M1 and M2 are setpoints (coefficients). The
corresponding EFSM is shown in Figure 4.8.

Figure 4.8 Barn Shape of the Power Distribution Trip Condition

2. Identify the OP events. The OP events and the associated conditions are defined in Figure

4.9. The results are presented in Table 4.8.

40

Figure 4.9 EFSM for APP Application Software

Table 4.8 APP Application Software Algorithm

Event Condition

1

2
 and

3

4
 and

5

6 Normal condition

3. Derive the data sets representing individual OP event’s conditions from the normal field

operation data.

UMD obtained a data set that contained eleven-years of normal operational data (hour by hour)
from a nuclear power plant. There were 88,418 distinct data records. Each record included the
total reactor coolant flow, the neutron detector flux difference, and other critical plant
parameters. An example of such records is shown in Figure 4.10.

41

where:
 NI 5 PR FLUX the current flux percentage
 RPS CH A TOTAL RCS FLOW the total reactor coolant system flow of reactor protection

system channel A
 RC LOOP A FLOW the flow of reactor coolant loop A;
 RC LOOP B FLOW the flow of reactor coolant loop B;
 NI 5 DETECTOR FLUX DIFF the detector flux difference;
 CORE THERMAL POWER BEST current thermal power percentage;
 INCORE IMBALANCE the indicator of core delta flux.

Figure 4.10 Example of Plant Operational Data

After a careful study of the data set, UMD identified three classes of data that could not be
treated as normal operational data. The three classes are described in turn:

1) Outage Data.

Data recorded during outages cannot be considered an integral part of the normal operational
data set. Indeed, data recorded during these time periods is out-of-range and basically
meaningless. The plant owner provided UMD with outage start date and end date information for
the power plant, as shown in Table 4.9. There are 15,094 records falling within these time
intervals.

42

Table 4.9 Outage Information for Plant

From To

4/27/95 3:59 AM 5/10/95 10:30 PM

11/2/95 1:00 AM 12/10/95 4:58 AM

2/28/96 9:02 AM 3/1/96 1:59 PM

10/4/96 12:33 AM 2/12/97 8:54 PM

3/28/97 2:42 PM 4/11/97 4:12 PM

6/13/97 4:30 PM 7/3/97 2:52 PM

9/18/97 3:41 AM 12/24/97 11:55 PM

12/28/97 3:55 PM 12/31/97 11:59 PM

1/1/98 12:01 AM 2/11/98 3:04 AM

2/15/98 3:47 AM 2/19/98 12:38 AM

8/8/98 9:11 AM 8/25/98 8:46 PM

5/21/99 1:18 AM 7/3/99 5:00 PM

2/17/00 3:35 PM 3/2/00 2:10 AM

11/24/00 1:10 AM 1/9/01 11:48 PM

3/23/02 4:48 PM 4/26/02 11:46 AM

9/20/03 2:11 PM 12/13/03 2:00 AM

12/18/03 8:00 AM 1/1/04 2:00 PM

4/9/05 9:27 AM 5/11/05 9:20 AM

10/7/06 12:00 AM 11/30/06 12:00 AM

2) Missing Data

Some operational data was missing from the data set. This data typically was labeled: “bad
input,” “shut down,” or “under range.” The plant APP system expert stated that these records
likely corresponded to data recorded during maintenance or test activities. Therefore, the data
cannot be considered an integral part of the normal operational data either. The number of data
records affected was 792.

3) Aberrant Data

There were 21 strange records either with a negative reactor coolant flow value or an extremely
large reactor flow value (of the order of 1026 which far exceeds the normal values that are

43

typically of the order of 105). This data was suspicious, so UMD eliminated this data from
consideration9.

The total number of operational data points, with each data point representing the equivalent of
one hour of operating history is:
 88,418 15,094 792 21 72,511 hours

The number of data points falling within each domain (OP event) was then counted and is
reported in Table 4.10.

Table 4.10 Number of Trip Data Sets Falling within Each Domain

Event Condition Number of Data Sets

1 2

2
 and

0

3 7

4
 and

0

5 1

6 Normal condition 72,501

It is clear that for conditions 1, 3 and 5, the probability of occurrence of the condition can be
estimated as the number of data points over the total number of operational data points.
Therefore, the probability of occurrence of conditions 1, 3 and 5 is respectively:
 2 trips72,511 hr 2.758 10 trip/hr

 7 trips72,511 hr 9.654 10 trip/hr

 1 trip72,511 hr 1.379 10 trip/hr

9 It would seem that one of the reasons that the records may show these “strange records” might be a failure of the hardware or
software in the system or failure of systems that provide inputs to the system. These “strange records” may also reflect additional
maintenance/outage data.

44

Because there are no data points (events) within the domains of conditions 2 and 4, one could
conclude that the probabilities of occurrence of these two conditions are zero. However, to obtain
a more accurate estimation, a statistical extrapolation method can be applied. The data sets that
can be used for the extrapolation are those in area 1 and area 2 in Figure 4.11. The number of
data points in area 1 is forty five and in area 2 is one.

Figure 4.11 Data used for Statistical Extrapolation

The Shapiro-Wilk test is applied to test the normality of the 45 data points in Area 1. This test
evaluates the null hypothesis (i.e. data set (, , … ,) comes from a normally distributed
population) using the test statistics:

 ∑∑ (4.5)

where coefficients are functions of the expected value and covariance matrix of the order
statistics of random variables from the standard normal distribution and would be fixed for a
given sample size and (, , … ,) are ordered sample values.

The guiding principle of the test is to construct a regression of ordered sample values on
corresponding expected normal order statistics, which should be linear for a data set from a
normally distributed population. represents the linear fit of the regression, i.e., the closer is
to a value of 1, the more evidence exists that (, , … ,) are normally distributed.

45

In the test, the -value illustrates the probability of obtaining a particular value of the test
statistics or a more extreme value of this statistic under the null hypothesis. As shown in
Table 4.11, the possibility of observing 0.969387 or smaller is 27.51% (larger than 10%).
This result, which includes both the value of and that of , offers sufficient evidence that the
null hypothesis is reasonable. Consequently, the hypothesis that the data points come from a
normal distribution cannot be rejected.

Table 4.11 Tests for Normality Results

For this distribution, the mean of the data points is 30.32 and the standard deviation is 15.29. The
extrapolation result is: 0 30.3215.29 0.023

where is the cdf of the standard deviation.

Therefore, the probability of occurrence of condition 2 is a conditional probability calculated as:
 45 data points72,511 hr 0.023 1.427 10 data points/hr

For condition 4, obviously, the fact that there exists only 1 data point in area 2 is not sufficient to
perform a valid statistical extrapolation. Traditionally, the maximum likelihood and unbiased
estimate of the failure rate is given in Equation 4.6 [Ireson, 1966] if we assume failures are
observed in hours of operating time:

 (4.6)

A common solution to failure rate estimation when no failure event has been observed is to take
one half as the numerator () in Equation 4.6 [Welker, 1974]. Thus, the probability of the
occurrence of condition 4 can be roughly estimated as 0.5 data points/72,511 hr = 6.9×10-6 data
point/hr.

The analysis presented above yields the OP for the APP application software summarized in
Table 4.12.

Tests for Normality

Test Statistic P Value

Shapiro-Wilk 0.969387 Pr 0.2751

46

Table 4.12 Operational Profile for APP Application Software

Event Condition Probability Probability

1 2.758 × 10-5 9.8828 × 10-10/demand

2
 and

1.427 × 10-5 5.1134 × 10-10/demand

3 9.654 × 10-5 3.4594 × 10-9/demand

4
 and

6.9 × 10-6 2.4725 × 10-10/demand

5 1.379 × 10-5 4.9414 × 10-10/demand

6 Normal condition 0.99984 0.9999999943/demand

47

4.5 References

[APP, 1] APP Instruction Manual.
[Chruscielski, 1997] K. Chruscielski and J. Tian. “An operational profile for the Cartridge

Support Software,” in Proc. The Eighth International Symposium On
Software Reliability Engineering, 1997, pp. 203–212.

[Elbaum, 2001] S. Elbaum and S. Narla. “A Methodology for Operational Profile
Refinement,” in Proc. Reliability and Maintainability Symposium, 2001,
pp. 142–149.

[Gittens, 2004] M. Gittens, H. Lutfiyya and M. Bauer. “An Extended Operational Profile
Model,” in Proc. 15th International Symposium on Software Reliability
Engineering, 2004, pp. 314–325.

[IEEE, 1991] “IEEE Standard Glossary of Software Engineering Terminology,” IEEE
Std. 610.12-1990, 1991.

[Ireson, 1966] W.G. Ireson. Reliability Handbook. New York, NY: McGraw Hill, Inc.,
1966.

[Kumamoto, 1996] H. Kumamoto and E.J. Henley. Probabilistic Risk Assessment and
Management for Engineers and Scientists. IEEE Press, 1996.

[Li, 2003] B. Li et al. “Integrating Software into PRA,” in Proc. 14th International
Symposium on Software Reliability Engineering, 2003, pp. 457.

[Li, 2004] M. Li et al. “Validation of a Methodology for Assessing Software
Reliability,” in Proc. 15th IEEE International Symposium of Software
Reliability Engineering, 2004, pp. 66–76.

[MIL, 1995] “Reliability Prediction of Electronic Equipment,” Department of Defense
Military Handbook 217FN2, 1995.

[Musa, 1992] J. Musa. “The Operational Profile in Software Reliability Engineering: an
Overview,” in Proc. 3rd International Symposium on Software Reliability
Engineering, 1992.

[Ouab, 1995] F. Ouabdesselam and I. Parissis. “Constructing Operational Profiles for
Synchronous Critical Software,” in Proc. 6th International Symposium on
Software Reliability Engineering, 1995.

[Poloski, 1998] J.P. Poloski et al. “Rates of Initiating Events at U.S. Nuclear Power Plants:
1987-1995,” NRC NUREG/CR-5750, 1998.

[RAC, 1995] “Electronic Parts Reliability Data,” Reliability Analysis Center EPRD-95,
1995.

[Sandfoss, 1997] R.V. Sandfoss and S.A. Meyer. “Input Requirements Needed to Produce
an Operational Profile for a New Telecommunications System,” in Proc.
8th International Symposium on Software Reliability Engineering, 1997.

[Savage, 1997] P. Savage, S. Walters and M. Stephenson. “Automated Test Methodology
for Operational Flight Programs,” in Proc. IEEE Aerospace Conference,
1997.

[Shukla, 2004] R. Shukla, D. Carrington and P. Strooper. “Systematic Operational Profile
Development for Software Components,” in Proc. 11th Asia-Pacific
Software Engineering Conference, 2004.

[Smidts, 2004] C. Smidts and M. Li, “Validation of a Methodology for Assessing
Software Quality,” NRC, Office of Nuclear Regulatory Research,

48

Washington DC NUREG/CR-6848, 2004.
[TestMaster, 2004] “TestMaster Reference Guide,” Teradyne Software & System Test,

Nashua, NH, 2000.
[TestMaster, 2004] “TestMaster User’s Manual,” Teradyne Software & Systems Test,

Nashua, NH, 2004.
[USNRC, 1995] “Use of Probabilistic Risk Assessment Methods in Nuclear Regulatory

Activities,” USNRC, vol. 60, 1995.
[Welker, 1974] E.L. Welker and M. Lipow. “Estimating the Exponential Failure Rate

from Data with No Failure Events,” in Proc. Annual Reliability and
Maintainability Conference, 1974.

[Widmaier, 2000] J.C. Widmaier, C. Smidts and X. Huang. “Producing more Reliable
Software: Mature Software Engineering Process vs. State-of-the-Art
Technology,” presented at International Conference on Software
Engineering, 2000.

[WinRunner, 2001] “WinRunner Test Script Language Reference Guide,” Mercury Interactive
Corp., Sunnyvale, CA, 2001.

49

5. RELIABILITY ESTIMATION CONSIDERATIONS

This chapter establishes a basis for estimating software reliability from the number of defects
remaining in the software. The concept of fault exposure ratio, , introduced by Musa [Musa,
1987] is revisited. A new concept, entitled “new ” (), is proposed to replace Musa’s fault-
exposure ratio. This is based on an analytical analysis of fault-propagation phenomena and,
as such, eliminates the effort of estimating some parameters (such as linear execution time) using
Musa’s method.

5.1 Estimation of Reliability Based on Remaining Known Defects

Generally, software fails due to defects introduced during the development process. A defect
leads to a failure if the following occurs: 1) the defect is triggered (executed), 2) such execution
modifies the computational state, and 3) the abnormal state propagates to the output and
manifests itself as an abnormal output, i.e., a failure [Voas, 1992] [Li, 2004].

The “Propagation, Infection, Execution” (PIE) concept [Voas, 1992] is borrowed to describe this
failure mechanism. The acronym PIE corresponds to the three program characteristics above: the
probability that a particular section of a program (termed “location”) is executed (termed
“execution” and denoted as E), the probability that the execution of such section affects the data
state (termed “infection” and denoted as I), and the probability that such an infection of the data
state has an effect on program output (termed “propagation” and denoted as P). Thus the failure
probability (unreliability) is given in Equation 5.1:

 (5.1)
where
 The propagation probability for the i-th defect
 The infection probability for the i-th defect

 The execution probability for the i-th defect

In the original PIE method, P, I, and E are statistically quantified using mutation [Voas, 1992].
However, this method is unable to combine the OP and unable to consider defects that do not
appear in the source code (e.g., requirements errors like missing functions). In addition, the large
amount of required mutants hinders the practical implementation of this method.

In this study, a simple, convenient, and effective method to solve this problem is proposed using
an extended finite state machine model (EFSM) [Wang 1993]. EFSMs describe a system’s
dynamic behavior using hierarchically arranged states and transitions. A state describes a
condition of the system and the transition can graphically describe the system’s new state as the
result of a triggering event.

50

The method proceeds in three stages:

1. Construction of an EFSM representing the user’s requirements and embedding the
user’s OP information;

 2. Mapping of the defects to this model and actual tagging of the states and transitions;
 3. Execution of the model to evaluate the impact of the defects.

Assume a defective or faulty transition (the transition that, when executed, leads to at least a
faulty state in the system), and , , … is the set of input/output paths in the
EFSM that traverse this defect. An input/output path is defined as a path in the EFSM model that
starts from the start state at the very top level (denoted as top level 0) and ends with the final or
exit state at level 0 and is the set of all the transitions along the path. Let (pd(g)) = (dg1, dg2, ... dgn)
be the g-th input/output path consisting of n transitions and Pr(pd(g)) be the probability of
traversing the g-th path. The probability of failure caused by this defect can then be determined
by:
 ∑ (5.2)
where: ∏ (5.3)
and:

 Conditional probability that the q-th transition is traversed in the g-th path
 Transition index
 Path index
 Number of transitions in the g-th path

Equations 5.2 and 5.3 also hold true if there are multiple defects M. In this case, these M defects
first need to be mapped and tagged into the EFSM. Pd then becomes the set of paths
encompassing M defects. The parameter m in (5.2) is then replaced with m(M), number of
input/output paths containing at least one of the M defects. This feature solves a critical problem
in the software engineering literature: the interaction among multiple defects and its effect on the
fault propagation process.

It should be noted that Equations 5.2 and 5.3 are based on an assumption that P and I are equal to
1. If this assumption does not hold, the EFSM model must be modified (refined to a lower level
of modeling) in such a manner that P and I are equal to 1.

A defect does not infect and/or propagate if its execution is not triggered. For example, a
correctly implemented code segment (written in C syntax) and its associated EFSM are given in
Figure 5.1.

Assume that the real implementation contains a defect in the predicate: the threshold is 6 instead
of 4. We deduce that if 6, then this defect will not infect the software state because will be
0. Similarly, if 4, this defect will not infect the software execution since will be 1. Only if 4 6 will this defect infect the system by assigning the value 1 instead of 0. Thus the
condition under which the defect does not infect the software is 6 and 4. The faulty
code and the decomposed EFSM are given in Figure 5.2. The bold branch indicates the defect

51

and its corresponding state and transition in the EFSM. By following the same principle and
consideration, the non-propagation condition is identified and the EFSM is decomposed in a
manner that assures I equals 1. The process of decomposition of the EFSM may also be stopped
whenever conservative estimates of probabilities of failure become acceptable.

Correct Code EFSM

…
if (x > 4)
 y = 0;
else
 y = 1;
…

Correct Code and Its EFSM

Faulty Code EFSM

…
if (x > 6)
 y = 0;
else
 y = 1;
…

Figure 5.1 Faulty Code and Its EFSM

The following measures utilize EFSM to propagate the defects found during the measurement
process: Completeness (Chapter 9), Defect Density (Chapter 12), Requirements Traceability
(Chapter 16), and Test Coverage (Chapter 17).

5.2 Reliability Estimation from the Unknown Defects

The method described in Section 5.1 is limited to known defects, i.e., defects found by inspection
and testing. The known defects discovered by inspection relate to the measures Completeness,

52

Defect Density, and Requirement Traceability. The Test Coverage measure also uses this method
to obtain the fault exposure ratio for a specific application through propagation of defects found
by testing. Unknown defects that may remain in the application will contribute to application
failure, and not accounting for these defects will result in an overestimation of reliability.
Therefore, to improve this method, one needs to: 1) estimate the number of unknown defects
remaining in the application and 2) investigate the unknown defects’ contribution to the
probability of failure. In this section the number of defects remaining (both known and
unknown) is obtained by means described in the following chapters and then used to analytically
estimate the reliability.

5.2.1 Reliability Estimation from the Number of Defects Remaining

Once the number of defects remaining is determined, the software reliability of the system can be
estimated using Equations 5.4 and 5.5. Musa [Musa, 1987] proposed the concept of fault
exposure ratio and its relation to the failure rate) and (the number of defects remaining—
including both known and unknown unresolved defects).

 (5.4)

Then, the software reliability at time t is10:

 (5.5)
Where:

 Fault exposure ratio, the average value is 4.2 × 10–7 [Musa, 1987]
 Linear execution time, s.
 Number of defects

 Execution time, s

TL is the linear execution time, defined as the execution time of the software if each statement
executes only once.

As seen from Equation 5.4, the failure rate λ is constant if no change is made to the software. The
failure rate λ will vary during software development phases (such as testing) as faults are being
introduced, detected, and/or removed (thus N and K will change). It will also vary as the code is
modified structurally (thus K or TL will change). On the other hand, λ will not vary during
operation when the code is frozen.

The value of K has become obsolete for modern safety-critical systems. For example, if one
evaluates safety critical software reliability within a one-year period using Equation 5.5, the time
t is roughly 3.15 × 107 seconds. For a real-time system, TL is normally less than one second (e.g.,

10 “If a program has been released and no changes will be made, the failure intensity of this program is a constant. For the basic
execution time model and the logarithmic Poisson model, the failure process is then described by a simple homogeneous Poisson
process with failure intensity as a parameter. The number of failures in a given time period follows a Poisson distribution. The
failure intervals thus follow an exponential distribution [Musa, 1998].” It should be pointed out that although there are quite a
few software reliability models available, Musa’s basic execution time model (used here) is one of the two models (with Musa’s
logarithmic Poisson model) that have been fully validated and confirmed through many practical applications [Dale, 1982]
[Derriennic, 1995] [Farr, 1996] [Jones, 1991] [Musa, 1975] [Malaiya, 1992].

53

0.129 s). Furthermore, assuming only one fault remains in the code, the reliability is calculated
as:
 . . . 1.8 10

This implies that software with only one fault remaining almost definitely fails at the end of one
year. This conclusion contradicts existing power plant field data.

To address this contradiction between theory and evidence, the concept of (new K) is
proposed to simplify Equation 5.5:

 (5.6)

where t is the execution time. The execution time is either the time-per-demand or the length of a
year. The latter is normally used in the nuclear industry.

Both K and will vary as a function of life-cycle phases because the structural properties of
the code and the number of defects in the code changes.

Then the probability of failure (unreliability) simply becomes a function of the number of defects
(assume the failure rate is very small for safety critical systems):
 1 (5.7)

It is worth noting that is an average value and can be analytically estimated from the known
defects remaining in the software using the EFSM technique. The precision of the estimation
statistically depends on the number of defects propagated and the time over which the defects
existed in the life cycle. Defect locations also influence the value of . In this study it is
assumed the average value of obtained from the known defects represents the value of the
of the unknown defects. This is an assumption which needs further study to validate it or to find
a way to improve it. Some studies [Lait, 1998] have demonstrated that different defect detection
techniques may reveal different types of defects. It is reasonable to assume that the combination
of different defect detection techniques may reveal the majority of defects and thus increase the
validity of this assumption.

The remaining defects are classified into two groups: known and unknown. Let us assume that
the number of known remaining defects is N1, and the number of unknown defects is N2. Thus,
the total number of remaining defects is:

 (5.8)

The unreliability contributed from N1 and N2 are:

 (5.9)

54

and

 (5.10)
respectively.

The N1 defects can be mapped into the EFSM and thus pf1 can be propagated. The average is
obtained from Equation 5.9 as:

 (5.11)

Equation 5.7 can then be written as:
 1 11 2 (5.12)

where N1 is the number of known but unresolved defects and N2 is the number of unknown and
unresolved defects. Note that when no known, unresolved defects exist, one can still apply the
technique using the last known and resolved defects and obtain a conservative estimation of .

55

5.3 References

[Dale, 1982] C.J. Dale. “Software Reliability Evaluation Methods,” Report ST26750.

British Aerospace, 1982.
[Derriennic, 1995] H. Derriennic and G.L. Gall. “Use of Failure-Intensity Models in the

Software-Validation Phase for Telecommunications.” IEEE Transactions
on Reliability, vol. 44, pp. 658–665, 1995.

[Farr, 1996] W. Farr. “Software Reliability Modeling Survey,” in Handbook of
Software Reliability Engineering, M. Lyu, Ed. New York, NY: McGraw-
Hill, 1996.

[Jones, 1991] W.D. Jones. “Reliability Models for Very Large Software Systems in
Industry,” in Proc. 2nd International Symposium on Software Reliability
Engineering, 1991, pp. 35–42.

[Lait, 1998] O. Laitenberger. “Studying the Effects of Code Inspection and Structural
Testing on Software Quality,” in Proc. 9th International Symposium on
Software Reliability Engineering, 1998.

[Li, 2004] M. Li et al. “Validation of a Methodology for Assessing Software
Reliability,” in Proc. 15th IEEE International Symposium of Software
Reliability Engineering, 2004, pp. 66–76.

[Malaiya, 1992] Y.K. Malaiya, N. Karunanithi and P. Verma. “Predictability of Software
Reliability Models.” IEEE Transactions on Reliability, vol. R-41, pp. 539–
546, 1992.

[Musa, 1975] J.D. Musa. “A Theory of Software Reliability and its Application.” IEEE
Transactions on Software Engineering, vol. SE-1, pp. 312–327, 1975.

[Musa, 1987] J.D. Musa, A. Iannino, and K. Okumoto. Software Reliability:
Measurement, Prediction, Applications. New York: McGraw-Hill, 1987.

[Voas, 1992] J.M. Voas. “PIE: A Dynamic Failure-Based Technique,” IEEE
Transactions on Software Engineering, vol. 18, pp. 717–27, 1992.

[Wang, 1993] C.J. Wang and M.T. Liu. “Generating Test Cases for EFSM with Given
Fault Models,” in Proc. 12th Annual Joint Conference of the IEEE
Computer and Communications Societies, 1993.

57

6. BUGS PER LINE OF CODE

The goal of this measure is estimate the number of faults in a program module per line of code.
This measure is simplistic and ignores many aspects of the software and its development, so it is
not likely to be very accurate.

This measure can only be applied when source code is available. As listed in Table 3.3, the
applicable life cycle phases for the BLOC measure are Coding, Testing, and Operation.

6.1 Definition

Gaffney [Gaffney, 1984] established that the total number of defects in the software (F) could be
empirically expressed as a function of the number of lines of code. That is:
 ∑ 4.2 0.00155 (6.1)

where
 The module index
 The number of modules
 The number of lines of code for the i-th module

Gaffney justified the power factor of 4/3 in [Gaffney, 1984] based on Halstead’s formula
[Halstead, 1977]. The coefficients of 4.2 and 0.0015 were estimated based on the Akiyama
assembly code data [Halstead, 1977] [Gaffney, 1984]. The experts engaged in the NUREG/GR-
0019 study [Smidts, 2000] concluded that these coefficients are meaningful for modern
programming languages such as C or C++, but did not express confidence in this measure’s
ability to predict reliability and therefore ranked it very low. It is obvious that size is not the only
factor that influences reliability. However, at this point, no validated model exists that includes
additional factors (such as the developers’ skill) in the BLOC model. As illustrated in Figure 1.1,
such additional factors, if identified and validated, can be easily incorporated in to the RePS
model and can be used as support measures. Since the current RePS from BLOC only considers
size, its prediction ability is limited.

6.2 Measurement Rules

The BLOC definition identified two primitives in Equation 6.1: the module and the Lines of
Code (LOC) for each module. The module index, however, is used to numerate the module and
is not considered a primitive. The counting rules for the two primitives are described in turn in
Section 6.2.1 and 6.2.2.

The counting rules have been customized to the specific language (C language) used in the APP
development process. The software on the safety microprocessor 1 (μp1) and communication
microprocessor (CP) were developed using the Archimedes C-51 compiler, version 4.23; the

58

software on safety microprocessor 2 (μp2) was developed using the Softools compiler, version
1.60f. Due to the obsolescence of these tools, the software was ported to the Keil PK51
Professional Developer’s Kit and IAR EWZ80, version 4.06a-2, respectively. The major
modifications are the replacements of some obsolete keywords with their equivalents in the new
compilers. Consequently, the porting does not change the results.

6.2.1 Module

A module is defined as “an independent piece of code with a well-defined interface to the rest of
the product” in [Schach, 1993]. IEEE [IEEE, 1990] defines module in the following two ways:
“A program unit that is discrete and identifiable with respect to compiling, combining with other
units, and loading,” or “A logically separable part of a program.” Gaffney [Gaffney, 1984],
however, did not provide a clear definition but mentions a module as a “functional group.”

The existence of multiple definitions of the module concept and the lack of consensus make its
measurement problematic.

In the previous validation study [Smidts, 2004], the system under study was implemented using
the C++ language. The researchers thus defined a class as a module since a class is a functional
group, an independent piece of code with a well-defined interface to the rest of the product, and a
logically separable part of a program.

In this study, the definition of a module needs to be modified because the system under study
was coded using the C language. The individual file rather than the function is considered as a
module due to the dependency among functions in a file introduced by global variables.

The APP software is composed of two types of user-defined files: the source file (.c file) and the
header file (.h file). The .c file contains the major software implementation while the .h file
mainly contains the declaration of (global) variables, the function prototypes (function
declarations), and macros or inline functions. A header file cannot be considered individually to
be a module because it does not provide any functionality. Rather, a .c file together with the .h
files included in it becomes an independent piece of code with a well-defined interface to the rest
of the product. As such, a module is defined as a .c file together with all the user-defined .h files
it includes.

The counting rule for the module is to enumerate all .c files in the APP software package. The
user-defined .h files need to be identified per .c file to facilitate the LOC counting.

6.2.2 LOC

The C language used in the APP software development is a super set of the ANSI C language.
”Super set” means that additional features such as keywords are added into the standard ANSI C
language to reflect the characteristics of the embedded system development. It is worth noting
that development environments (C compilers) differ in terms of keywords.

59

The LOC counting is heavily language- and keyword-dependent. Because two C compilers were
used in the APP development, the LOC measurement rules needed to encompass the difference.
Because only a limited number of features are added into the two compilers, the most efficient
way to conduct the measurement was to measure according to the ANSI C standard for the first
round, and then identify all added features and count them separately in the second round.

The following counting rules reflect this idea: the general ANSI C counting rules are introduced
and are followed by the individual compiler.

6.2.2.1 LOC Counting Rules for ANSI C

Rule 0: Logical statement in a module (a .c file plus all user defined .h files it includes)

counts. Each statement counts 1. A statement normally ends with “;”. Exceptions
are specified below.

Rule 1: Statements that count

The “while” statement: starts with the keyword “while” and ends with the finish
of the condition “)”
The “if” statement: starts with the keyword “while” and ends with the finish of the
condition “)”

 The “else” keyword followed by “if” statement
 The definition of a function: ends with “)”
 The “switch” statement: ends with “)”
 The “case” statement: ends with “:”
 The “default” statement: ends with “:”
 The “for” statement: ends with “)”
 Other statements: end with “;”

Rule 2: Statements that do not count
 Blank lines
 Comment: starts with /* and ends with */
 Preprocessor directive: starts with # and ends with a hard return
 The beginning of a statement block, the left bracket “{”
 The end of a statement block, the right bracket “}”
 The “else” keyword itself

Other statements that cannot be classified by Rule 1 and Rule 2. These must be
part of a statement that spans multiple physical lines.

6.2.2.2 LOC Counting Rules for Keil C

The Keil C compiler introduces the keywords in Table 6.1 in addition to the ANSI C standard.
These new keywords are part of the statement and do not impact the counting rules described in
the previous section. However, part of the functions in the μp1 software was implemented using
assembly language. This section describes the counting rules for the C51 family assembly code.

60

Table 6.1 Additional Keywords in Keil Environment

at alien bdata

bit code compact

data far idata

interrupt large pdata

priority reentrant sbit

sfr sfr16 small

task using xdata

Rule 0: Physical statement counts. Each statement counts 1.

Rule 1: Statements that count

Instructive statement: starts with a valid instruction, including “MOV,” “MOVX,”
“JMP,” “INC,” “DJNZ,” “CJNE,” “RET” and more (summarized in Table 6.2).

Rule 2: Statements that do not count:
 Blank line
 Comment: starts with “;”
 Label statement; ends with “:”

Preprocessor directive: starts with the keywords “NAME,” “PUBLIC,”
“EXTRN,” “DPR_START_ADDR,” “SCODE,” “RSEG,” “END,”
“_ _ERROR_ _,” “EVEN,” “EXTERN,” “LABEL,” “ORG,” “PUBLIC,”
“SEGMENT,” “SET.”

 Other statements that cannot be classified by Rule 1 and Rule 2.

Table 6.2 C51 Assembly Instructions

BIT BSEG CODE

CSEG DATA DB

DBIT DD DS

DSB DSD DSEG

DSW DW IDATA

ISEG LIT PROC

ENDP sfr sfr16

sbit USING XDATA

XSEG

61

6.2.2.3 LOC Counting Rules for IAR C

IAR C Compiler introduces the following keywords in addition to the ANSI C standard: “sfr,”
“no_init,” “interrupt,” “monitor,” “using,” “_C_task.” These new keywords are part of the
statement (modifier) and do not impact the counting rules described in the previous section.

The original μp1 software implementation contains pieces of embedded assembly code. This
feature is not supported by IAR C Compiler. These pieces were rewritten to implement the same
functionality.

Unlike the μp1 software, the μp2 software does not contain functions implemented in assembler.
The counting rules for the assembly code were not developed.

6.2.2.4 Considerations for General Use

Most of the above counting rules, especially the rules for ANSI C, are generic to any C code.
Although the rules for the two compilers are specific, the principle of counting the instructions is
generic also. In conclusion this set of rules can be easily customized to any embedded software
developed using C and assembly languages.

6.3 Measurement Results

It should be noted that the definition of F (the total number of defects in the software) includes
an assumption that smaller modules are less-fault prone. Thus, the result of F might be highly
dependent on the definition of module. The higher the level module definition used, the less F
calculated by Equation 6.1. For the APP system, there can be two levels of definition of module:

1. Each “.c” and “.h” files (i.e., “SF1PROG” along with its header files is a module),
2. Each function or subroutine (i.e., the “Main function” of “SF1PROG” is a module).

Table 6.3 lists modules (according to the definition level 1), the corresponding number of lines
of code for the source code and header files, and the corresponding value of Fi. The number of
defects, F, per module is also shown. The total number of defects remaining in the APP source
code is approximately equal to 115 (rounded up to an integer).

Similarly, Table 6.4 lists the measurement results according to the second level module
definition. The total number of defects remaining in the APP source code is approximately 530.

One header file may appear multiple times in different modules. Since each file is included in a
module individually, a header file’s defect contribution to one module is independent of its
contribution to other modules. As such, one header file counts separately in different modules. It
should also be mentioned that the header files are those developed by the APP development team
and do not include standard library header files. There are sufficient reasons to believe that those

62

standard header files have higher reliability than modules assessed by Equation 6.1 due to their
large usage in a number of applications and the consequent thorough testing they have
undergone. Consequently, those files are not considered in this research.

Table 6.3 Bugs Per Line of Code Results (By Definition Level 1)

 Module LOC
Header

Files’ LOC
Total LOC Fi F

μp1

SF1APP 226 254 480 9.84

53.54

SF1CALTN 245 163 408 8.74

SF1FUNCT 285 163 448 9.34

SF1PROG 234 254 488 9.96

SF1TEST1 159 163 322 7.51

SF1TEST2 205 163 368 8.15

μp2

APP1 206 0 206 6.02

31.66

CAL_TUNE 318 0 318 7.46

MAIN 379 0 379 8.31

ON_LINE 44 0 44 4.43

POWER_ON 154 0 154 5.44

CP

COMMONLI 76 114 190 5.84

29.25
COMMPOW 241 114 355 7.97

COMMPROC 120 114 234 6.36

COMMSER 317 114 431 9.08

Total 3,209 1,616 4,825 114.45 114.45

Table 6.4 Bugs Per Line of Code Results (By Definition Level 2)

 LOC Fi Total

μp1

SF1APP 480 24.55

243.25

SF1CALTN 408 32.03

SF1FUNCT 448 70.05

SF1PROG 488 49.23

SF1TEST1 322 31.47

SF1TEST2 368 35.92

63

Table 6.4 Bugs Per Line of Code Results (By Definition Level 2) (continued)

 LOC Fi Total

μp2

APP1 206 18.03

128.26

CAL_TUNE 318 19.23

MAIN 379 52.37

ON_LINE 44 8.56

POWER_ON 154 30.07

CP

COMMONLI 190 22.18

158.46

COMMPOW 355 44.11

COMMPROC 234 35.09

COMMSER 431 57.08

Total 4825 529.97
529.97
(530)

There are two main concerns regarding the results:

1. It is believed that definition 1 is not appropriate. As Gaffney specified, a module is a

“functional group.” But according to the inspection of the APP system, the modules
shown in Table 6.5 are not all arranged by functionalities. For example, SF1APP is a
special function used to decide whether or not to generate a trip signal while SF1PROC
includes the initialization function and a high-level main program for the first safety
microprocessor. So from this point of view, the level 2 module definition is more
appropriate in the case of APP.

2. There are two issues with the coefficients used in Equation 6.1. First, those coefficients
were determined about 20 years ago and have not been updated since then. No updating
information could be obtained. Second, as stated before, the counting rules may be the
same for both C code and assembly code, while the coefficients in Equation 6.1 for these
two types of code may not be the same. This topic, however, is out of the scope of this
research.

Once the total number of defects in the software using Gaffney’s equation have been obtained,
the number of remaining defects can be derived by subtracting the number of defects found
during the development process (by inspection and testing). That is, .

The number of defects found by inspection and testing is presented in Table 6.5.

64

Table 6.5 Number of Defects Found by Inspection and Testing during the Development Process

 Number of Defects Found

μp1 SRS Inspection 60

μp2 SRS Inspection 65

CP SRS Inspection 55

μp1 SDD Inspection 65

μp2 SDD Inspection 110

CP SDD Inspection 40

μp1 code Inspection 7

μp2 code Inspection 11

CP code Inspection 15

Testing 7

TOTAL 435

Thus, the total number of remaining defects is:
 530 435 95

The next step is to partition the defects based on their criticality. According to [Jones, 1996],
defects are divided into four categories according to their severity level:

 Severity 1: Critical problem (software does not operate at all)
 Severity 2: Significant problem (major feature disabled or incorrect)
 Severity 3: Minor problem (some inconvenience for the users)
 Severity 4: Cosmetic problem (spelling errors in messages; no effect on operations)

Only defects of Severity 1 and Severity 2, called “critical defects” and “significant defects,”
respectively, should be considered for estimating software reliability. Defects with Severity 3
and 4, called “minor defects” and “cosmetic defects,” respectively, do not have an impact on the
functional performance of the software system. Thus, they have no effect on reliability
quantification.

Table 6.6 (Table 3.48 in [Jones, 1996]) presents US averages for percentages of delivered defects
by severity levels.

65

Table 6.6 Averages for Delivered Defects by Severity Level
(Adapted from Table 3.48 in [Jones, 1996])

Function points
 Percentage of Delivered defects by Severity Level

Severity 1
(critical)

Severity 2
(significant)

Severity 3
(minor)

Severity 4
(cosmetic)

1 0 0 0 0

10 0 0 1 0

100 0.0256 0.1026 0.3590 0.5128

1000 0.0108 0.1403 0.3993 0.4496

10000 0.0150 0.1450 0.5000 0.3400

100000 0.0200 0.1200 0.5000 0.3600

Average 0.0197 0.1215 0.4996 0.3592

Using Table 6.6 and logarithmic interpolation, the percentages of delivered defects by severity
level can be obtained for APP. For example, based on the assessment of the APP function point
count (discussed in detail in Chapter 14), the percentage of delivered defects of severity 1
corresponding to FP = 301 (100 < 301 < 1000) is:
 0.0256 . 301 100 0.0185

 (6.2)

Table 6.7 presents the percentages of delivered defects by severity level for a system equivalent
in size to FP..

Table 6.7 Delivered Defects by Severity Level for a System Equivalent in Functional Size to FP

Severity 1
(critical)

Severity 2
(significant)

Severity 3
(minor)

Severity 4
(cosmetic)

Percentage of
delivered defects

0.0185 0.1206 0.3783 0.4826

The total percentage of Severity 1 (critical faults) and Severity 2 (significant faults) is:
 0.0185 0.1206 0.1391 (6.3)

Table 6.8 presents the partitioned defects (based on the severity level) for APP.

66

Table 6.8 Partitioned Defects (Based on Severity Level) for APP Using BLOC

Total Number
of Defects

Defects
(Critical)

Defects
(Significant)

Defects
(Minor)

Defects
(Cosmetic)

Defects
(Critical +
Significant)

95 1.7575 11.457 38.9385 45.847 13.2

6.4 RePS Construction from BLOC

The probability of success-per-demand is obtained using Musa’s exponential model [Musa,
1990] [Smidts, 2004]:

 (6.4)

where

Reliability estimation for the APP system using the Bugs per Line of
Code (BLOC) measure.

 Fault Exposure Ratio, in failure/defect.

 Number of defects estimated using the BLOC measure.

 Average execution-time-per-demand, in seconds/demand.

 Linear execution time of a system, in seconds.

Since a priori knowledge of the defects’ location and their impact on failure probability is
unknown, the average K value given in [Musa, 1979] [Musa, 1990] [Smidts, 2004] (4.210 /) must be used.

The linear execution time, TL, is usually estimated as the ratio of the execution time and the
software size on a single microprocessor basis [Musa, 1987] [Musa, 1990] [Smidts, 2004].
However, in the case of the APP system, there are three parallel subsystems, each having a
microprocessor executing its own software. Each of these three subsystems has an estimated
linear execution time. Therefore, there are several ways to estimate the linear execution time for
the entire APP system such as using the average value of these three subsystems.

For a safety-critical application, like the APP system, the UMD research team suggests making a
conservative estimation of TL by using the minimum of these three values. Namely:

 min 1 , 2 ,
 min 0.018, 0.009, 0.021 0.009 seconds

67

where 1
Linear execution time of Microprocessor 1 (μp1) of the APP system. TL
(μp1) = 0.018 seconds (refer to Chapter 17). 2
Linear execution time of Microprocessor 2 (μp2) of the APP system. TL
(μp2) = 0.009 seconds (refer to Chapter 17).

Linear execution time of Communication Microprocessor (CP) of the
APP system. TL (CP) = 0.021 seconds (refer to Chapter 17).

Similarly, the average execution-time-per-demand, τ, is also estimated on a single
microprocessor basis. Each of the three subsystems in APP has an estimated average execution-
time-per-demand. To make a conservative estimation, the average execution-time-per-demand
for the entire APP system is the maximum of the three execution-time-per-demand values.
Namely:

 max 1 , 2 ,

 max 0.082, 0.129, 0.016
 0.129 seconds/demand
where 1

Average execution-time-per-demand of Microprocessor 1 (μp1) of the
APP system. τ(μp1) = 0.082 seconds/demand (refer to Chapter 17). 2
Average execution-time-per-demand of Microprocessor 2 (μp2) of the
APP system. τ(μp2) = 0.129 seconds/demand (refer to Chapter 17).

Average execution-time-per-demand of Communication
Microprocessor (CP) of the APP system. τ(CP) = 0.016
seconds/demand (refer to Chapter 17).

Thus the reliability for the APP system using the BLOC measure is given by:

. . . .

 0.999920539

6.5 Lessons Learned

It is well known that the lines of code measurement can be easily conducted because tools are
available to support such measurements. BLOC measurement based on Equation 6.1 requires a
clear definition of “module,” which the author of BLOC did not provide. The existence of
multiple definitions of the module concept [Schach, 1993] [IEEE, 1990] and the lack of
consensus make its accurate measurement difficult. The research team explored two
interpretations of “module” and conducted corresponding measurements as shown in Section 6.3.
Based on the two sets of measurement results, a more meaningful interpretation was selected.
The RePS based on BLOC is straightforward once the average execution-time-per-demand and
the linear execution time are quantified.

68

6.6 References

[APP, Y1] “APP Module SF1 System Software code,” Year Y1.
[APP, Y2] “APP SF1 Flux/Delta Flux/Flow Application code,” Year Y2.
[APP, Y3] “APP Module μp2 System Software Source Code Listing,” Year Y3.
[APP, Y4] “APP μp2 Flux/Delta Flux/Flow Application Software Source Code

Listing,” Year Y4.
[APP, Y5] “APP CP Source Code,” Year Y5.
[Gaffney, 1984] J.E. Gaffney. “Estimating the Number of Faults in Code.” IEEE

Transactions on Software Engineering, vol. 10, pp. 459–64, 1984.
[Halstead, 1977] M.H. Halstead. Elements of Software Science. New York: Elsevier, 1977.
[IEEE, 1990] “IEEE Standard Glossary of Software Engineering Terminology,” Std.

610.12-1990, 1990.
[Jones, 1995] C. Jones. “Backfiring Converting Lines of Code to Function Point,”

Computer, vol. 28, pp. 87–88, 1996.
[Musa, 1987] J.D. Musa, A. Iannino, and K. Okumoto. Software Reliability:

Measurement, Prediction, Applications. New York: McGraw-Hill, 1987.
[Musa, 1990] J.D. Musa. Software Reliability: Measurement,
Prediction, Application. New York: McGraw-Hill, 1990.

[Rosenberg, 1997] J. Rosenberg. “Some Misconceptions about Lines of Code,” in Proc. 4th
International Software Metrics Symposium, 1997, pp. 137–142.

[Schach, 1993] S.R. Schach. Software Engineering. Homewood, IL: Aksen Associates
Inc., 1993.

[Smidts, 2000] C. Smidts and M. Li, “Software Engineering Measures for Predicting
Software Reliability in Safety Critical Digital Systems,” NRC, Office of
Nuclear Regulatory Research, Washington DC NUREG/GR-0019, 2000.

[Smidts, 2004] C. Smidts and M. Li, “Validation of a Methodology for Assessing
Software Quality,” NRC, Office of Nuclear Regulatory Research,
Washington DC NUREG/CR-6848, 2004.

69

7. CAUSE-EFFECT GRAPHING

Cause-effect graphing (CEG) is a formal translation of a natural-language specification into a
graphical representation of its input conditions and expected outputs. The graph depicts a
combinatorial logic network. It illustrates the logical relationship between inputs and outputs
along with the constraints among the inputs and outputs. Therefore, it could aid in identifying
requirements that are incomplete and ambiguous in the SRS [Myers, 1976] [Myers, 1979]
[Nuisimulu, 1995].

According to IEEE [IEEE, 1988], this measure explores the inputs and expected outputs of a
program and identifies the ambiguities. Once these ambiguities are eliminated, the specifications
are considered complete and consistent.

CEG can also be used to generate test cases in any type of computing application where the
specification is clearly stated (that is, no ambiguities) and combinations of input conditions can
be identified. It is used in developing and designing test cases that have a high probability of
detecting faults that exist in programs. It is not concerned with the internal structure or behavior
of the program [Elmendorf, 1973].

This measure can be applied as soon as the requirements are available. As listed in Table 3.3, the
applicable life cycle phases for CEG are Requirements, Design, Coding, Testing, and Operation.

7.1 Definition

There are four primitives in this measure defined in [IEEE, 1988]:

1. List of causes: distinct input conditions
2. List of effects: distinct output conditions or system transformation (effects are caused by

changes in the state of the system)
3. : number of ambiguities in a program remaining to be eliminated
4. : total number of ambiguities identified

Then, the measure is computed as follows:
 % 100 1 (7.1)

Cause effect graphing measures CE%, the percentage of the number of ambiguities remaining in
a program over the total number of identified ambiguities through cause and effect graphing. The
RePS which uses this measure is not based on the value of CE% but, rather, on the defects that
were found in the SRS using an “inspection approach” based on cause and effect graphing. The
impact of these defects is assessed using the PIE concept and, more specifically, an EFSM. The

70

defects themselves are characterized by their type and their location in the application. “Defect
types” can be measured according to a nominal scale and “defect locations” can be measured
according to an interval scale.

The detailed definitions of cause and effect are shown in the following subsections.

7.1.1 Definition of Cause

In the SRS, any functional event is identified as either an effect or a cause. A cause represents a
distinct input condition or an equivalence class of input conditions. It is defined as an input
event, typically triggered by a user.

A cause only has two mutually exclusive statuses: enabled (represented by “1”) or disabled
(represented by “0”).

7.1.2 Definition of Effect

An effect might be a system output or a system action. There are two types of effects: user-
observable effects and user-unobservable effects. User-observable effects, also called “primary
effects,” are those effects that can be noticed by users. For example, the statuses of LEDs, either
on or off, are user-observable effects. The user-unobservable effects will be treated as
intermediate effects.

An effect only has three mutually exclusive statuses: present (represented by “1”), absent
(represented by “0”), or non-existent (represented by “NULL”).

7.1.3 Definition of Logical Relationship and External Constraints

While constructing a cause-effect graph, both the cause-effect logical relationship and the
external constraints can be identified by applying the so-called “pattern-matching method.”

There are four basic patterns of cause-effect logical relationships, which are shown in Table 7.1
[Myers, 1979]:

A constraint is a limitation (syntactic, environmental, or other) among causes or effects. There
are five possible patterns of external constraints, which are shown in Table 7.2 [Myers, 1979].

71

Table 7.1 Cause-Effect Logical Relationships

Logical
Relationship

Pattern

IDENTITY IF cause C1 THEN effect E1

NOT IF NOT cause C1 THEN effect E1

AND IF cause C1 AND C2 THEN effect E1

OR IF cause C1 OR C2 THEN effect E1

Table 7.2 Cause-Effect Constraints

External
Constraints

Patterns

EXCLUSIVE AT MOST ONE OF a, b CAN BE INVOKED

INCLUSIVE AT LEAST ONE OF a, b MUST BE INVOKED

ONE-ONLY-ONE ONE AND ONLY ONE OF a, b CAN BE INVOKED

REQUIRES IF a IS INVOKED THEN b MUST BE INVOKED

MASKS EFFECT a MASKS OBSERVANCE OF EFFECT b

7.2 Measurement Rules

The measurement rules for identifying causes, effects, logical relationships, and constraints are
described in the following subsections, respectively.

7.2.1 Rule for Identifying Causes

To identify causes, one should read the specification carefully, underlining words or phrases that
describe causes. Any distinct input condition or equivalence class of input conditions should be
considered causes.

Only functional events in the specification are considered. Each cause is assigned to a unique
number. None of the descriptive specifications are considered in identifying causes.

72

7.2.2 Rule for Identifying Effects

Effects can be identified by reading the specification carefully and underlining words or phrases
that describe effects. Some intermediate effects are important for determining the status of the
system. So both the primary effects and the intermediate effects are required to be considered.

Only functional events in the specification are considered. All the descriptive specifications are
not considered in identifying effects. Each effect is assigned to a unique number.

7.2.3 Rule for Identifying Logical Relationship

The logical relationship between causes and effects can be identified by analyzing the semantic
content of the specification linking the causes with the effects. Keywords such as “not,” “or,”
“and” usually act as indicators of logical relationships. Other words denoting logical
relationships, such as “both” and “neither” also should be addressed.

The logical relationships are primarily found in function specifications, but can also be found in
some descriptive specifications. To ensure complete identification of all logical relationships
between causes and effects, both function and descriptive specifications should be analyzed. The
four basic logical relationships are shown in Table 7.1.

7.2.4 Rule for Identifying External Constraints

The external constraints among causes can be identified by checking for the occurrence of
related causes specified in the SRS. The external constraints among effects can be identified by
checking for the occurrence of related effects specified in the SRS. As with the logical
relationships, the external constraints could be specified in both functional specifications and
descriptive specifications. In order to identify all external constraints, both functional and
descriptive specifications need to be analyzed. The five basic external constraints among causes
and the external constraints among effects are shown in Table 7.2.

The following example shows how to apply the above measurement rules to a SRS:

Example #1: An application of these measurement rules

The following paragraph is excerpted from an APP requirement specification document for μp1
system software:

“Upon power-up or a module reset, the first safety microprocessor shall perform the
initialization algorithm. Below are the functional requirements performed in the sequence given
unless stated otherwise. Refer to Figure 7.1 for high level flow chart.”

73

Figure 7.1 Initialization Flow Chart

1. “Upon power-up or a module reset, the first safety microprocessor shall perform the

initialization algorithm” is a functional specification; below are the functional
requirements performed in the sequence given unless stated otherwise. Refer to Fig. 7.1
[APP, Y1].

2. “Power-up” and “module reset” are two causes in the functional specification.
3. “The first safety μp shall perform the initialization algorithm” is the only identifiable

effect from this specification. It is then necessary to determine if this effect is a prime
effect or not. Because it is neither user-observable nor a system action, we consider it an
intermediate effect (the prime effect is the detailed initialization algorithm). With this in
mind, several prime effects can be identified from the figure.

4. The only logical relationship here is identifiable by the use of the keyword “or.”
5. There are no constraints.

Based on the above rules, the CEG measurement results for this example are shown in Table 7.3.

74

Table 7.3 CEG Measurement Results Table for the Example

Causes Relationships Constraints Effects

C1. Power up

C1 or C2 N/A

E1. Define interrupt
E2. Initialize global variables
E3. Initialize status table

C2. Module reset

E4. Reset outputs
E5. Read ID from PROM
E6. Send Module ID to DPM
E7. Wait for response from CP

7.2.5 Rules for Constructing an Actual Cause-Effect Graph

An Actual Cause-Effect Graph (ACEG) is an implemented cause-effect graph constructed
according to the SRS. The following steps show how to construct an ACEG based on an SRS:

1. Identify all requirements of the system and divide them into separate identifiable entities.
2. Carefully analyze the entities to identify all the causes and effects in the SRS and discern

all the cause-effect logical relationships and constraints.
3. Represent each cause and each effect by a node identified by its unique number. For

example, E1 for effect one or C1 for cause one.
4. Interconnect the cause and effect nodes by analyzing the semantic content of the

specification and transforming it into a Boolean graph. Each cause and effect can be in
one of two states: true or false. Using Boolean logic, set the possible states of the causes
and determine under what conditions each effect will be present.

5. Annotate the graph with constraints describing combinations of causes and effects that
are impossible because of semantic or environmental constraints.

6. Identify any defects in the SRS and map them to the ACEG.

7.2.6 Rules for Identifying Defects in ACEG

Defects can be any cause that does not result in a corresponding effect, any effect that does not
originate with a cause, and effects that are inconsistent with the requirements specification or
impossible to achieve. There are five main types of defects that can be found through
constructing an ACEG:

1. Missing effect
2. Extra effect
3. Missing constraint
4. Extra constraint

75

5. Wrong Boolean function
a. Missing cause in a Boolean function
b. Extra cause in a Boolean function
c. Wrong Boolean Operator

The detailed rules for identifying each type of defect are shown in the following

1. Missing effect:

While some missing effects may be obvious, in general, finding obscure missing effects requires
mastery of the system. Thus, there is no straightforward process by which to identify missing
effects.

2. Extra effect:

Extra effects are unnecessary effects. Therefore, to identify extra effects, an inspector must
understand the physical meaning of the effect and determine whether or not it is necessary.

3. Missing constraint(s):

To identify missing constraints, the inspector should be capable of understanding the physical
meaning of all the causes and effects in the ACEG.

The process for identifying missing constraints is:

a. Sequentially arrange all causes.
b. The REQUIRES constraint must be applied if two cause events occur sequentially. If it

has not been applied, then it is a missing constraint.
c. For causes that occur simultaneously, examine if EXCLUSIVE, INCLUSIVE, or ONE-

ONLY-ONE constraints were neglected.
d. Sequentially arrange all effects.
e. The MASKS constraint must be applied to effects that can occur simultaneously and if

there is a risk for their co-existence. If it is missing, then it is a missing constraint.

4. Extra constraint(s):

To identify extra constraints, the inspector should be capable of understanding the physical
meaning of all causes or effects in a constraint and determining whether the constraint is
necessary or not.

The process for identifying extra constraints is:

a. Sequentially arrange all causes.
b. If two cause events do not occur sequentially, the REQUIRES constraint should not be

applied to them. If applied, it is an extra constraint.

76

c. If two or more events do not occur simultaneously, EXCLUSIVE, INCLUSIVE or ONE-
ONLY-ONE constraints should not be applied to them. If applied, it is an extra
constraint.

d. Individually examine the MASKS constraints and determine if each is necessary or not. If
not, it is an extra constraint.

5. Wrong Boolean function:

To identify a Wrong Boolean function, the inspector should be capable of understanding the
physical meaning of all causes or effects. In addition, the inspector should have mastered the
operation mechanism of the system to determine what logical relationships should be applied to
the causes.

The process for identifying extra constraints is:

1. Consider one Boolean function at a time.
2. Individually check the causes in the Boolean function and determine whether or not a

cause is necessary. An unnecessary cause is an extra cause in a Boolean function.
3. Consider the remaining causes in the ACEG. If any cause should have been involved in

the Boolean function, it is a missing cause.
4. Consider other possible causes not included in the ACEG. If any cause should have been

involved in the Boolean function, it is a missing cause.
5. Check all Boolean operators in the Boolean function to identify incorrect one(s).

7.2.7 Rules for Constructing a Benchmark Cause-Effect Graph

The Benchmark Cause-Effect Graph (BCEG) is constructed by removing all identified defects
from an ACEG. Example #2 illustrates how to apply these rules for constructing an ACEG and
its corresponding BCEG.

Example #2: An application of the ACEG and the BCEG and associated defects found by
measurement rules

The following paragraph is excerpted from the APP requirement specification document for μp1
system software:

“After completing all of the diagnostic tests, the Power-Up Self Tests algorithm shall reset the
Power-Up Active flag and determine the integrity of each of the diagnostic test’s results. If all
tests passed, then the algorithm shall turn ON front panel LEDs, refresh the status relays and
turn ON the μp status LED before proceeding to the Main Program.”

Step 1: Apply measurement rules to the specification.

The measurement results table for this example is shown in Table 7.4:

77

Table 7.4 CEG Measurement Results for the Example

Causes Relationships Constraints Effects

C1. RAM (DPM, Data bus line) test passed All tests passed:

C1 and C2 and
C3 and C4 and
C5 and C6 and
C7 and C8

N/A E1. Turn ON
front panel
LEDs

C2. Address bus line test passed

C3. PROM checksum test passed

C4. EEPROM checksum test passed E2. Refresh the
status relays C5. Boards test passed

C6. Algorithm test passed E3. Turn ON the
μp status LED C7. Analog input circuits test passed

C8. Discrete input circuits test passed

Step 2: Draw the ACEG: the ACEG is shown in Figure 7.2.

Figure 7.2 ACEG for Example #211

Step 3: Check Defects:

Upon system inspection, an inspector would find that C4 is not the necessary cause for
proceeding to the main program. Even if the EEPROM test fails in the power-on self test, the
system can go into the main program. There is a special function in the main program to check
the status of the EEPROM test. In summary, C4 is an extra cause.

Step 4: Draw the BCEG: By removing the defect from the ACEG, Figure 7.3 shows the BCEG
for this example.

11 A “–” mark indicates “IDENTIFY,” a “^” mark indicates “AND,” a “v” mark indicates “OR,” and a “~” mark indicates
“NOT.”

78

Figure 7.3 BCEG for Example #212

7.3 Measurement Results

In this research, CEG measurement results are based only on the APP SRSs—the cause-effect
structures in the SDD and the code have not been analyzed. However, the CEG method can be
applied to those stages. If so, the reliability of the software in different stages can be obtained.
The measurement rules for CEG in those stages have not been generated because that was out of
the scope of this research.

A list of the defects found in the APP SRSs is shown in Table 7.5.

Table 7.5 List of Defects Found by CEG Based On the APP SRSs

Defect
No.

Location
Defect Description

Cross-

Reference

1 μp1
Extra cause (C11) in deciding whether to enter the main
program.

Figure 7.4

2 μp1
Missing cause (C12) for setting the EEPROM test failure
flag.

Figure 7.5

3 μp2
Extra cause (C10) in deciding whether to enter the main
program.

Figure 7.6

4 μp2
Wrong Boolean function in setting the EEPROM test
failure flag.

Figure 7.7

5 μp2 Wrong Boolean function in the RAM diagnostics test. Figure 7.8

6 μp2 Missing effect (E3) for turning on TRIP LED. Figure 7.9

7 CP Missing cause (C16) in checking the diagnostics results. Figure 7.10

The following figures show the ACEG and corresponding BCEG related to the above defects.
On the left are the ACEGs and on the right are the BECGs.

12 A solid line indicates “IDENTIFY,” a ^ mark indicates “AND,” a v mark indicates “OR,” and a ~ mark indicates “NOT.”

79

Figure 7.4 ACEG and BCEG for Defect #113

Figure 7.5 ACEG and BCEG for Defect #2

13 A “–” mark indicates “IDENTIFY,” a “^” mark indicates “AND,” a “v” mark indicates “OR,” and a “~” mark indicates
“NOT.”

80

Figure 7.6 ACEG and BCEG for Defect #314

Figure 7.7 ACEG and BCEG for Defect #4

14 A “–” mark indicates “IDENTIFY,” a “^” mark indicates “AND,” a “v” mark indicates “OR,” and a “~” mark indicates
“NOT.”

81

Figure 7.8 ACEG and BCEG for Defect #515

Figure 7.9 ACEG and BCEG for Defect #6

Figure 7.10 ACEG and BCEG for Defect #7

15 A “–” mark indicates “IDENTIFY,” a “^” mark indicates “AND,” a “v” mark indicates “OR,” and a “~” mark indicates
“NOT.”

82

As previously stated, all the above defects can be found in the SRS. Table 7.6 shows whether the
defects found in the SRS were fixed (either in the SDD or in the code).

 Table 7.6 Checking Results for Defects Found by CEG

Defect
No.

Location Defect Description
Fixed in
SDD or
in code?

1 μp1 Extra cause in deciding whether to enter the main program. Y

2 μp1 Missing cause for setting the EEPROM test failure flag. Y

3 μp2 Extra cause in deciding whether to enter the main program. Y

4 μp2
Wrong Boolean function in setting the EEPROM test failure
flag.

Y

5 μp2 Wrong Boolean function in the RAM diagnostics test. Y

6 μp2 Missing effect for turning on TRIP LED. Y

7 CP Missing cause in checking the diagnostics results. N

As specified in Table 7.6, six out of seven defects found were fixed. Only Defect No. 7 remains
in the code. If the corresponding cause is triggered, the system will experience a catastrophic
failure.

According to the CEG definition (Equation 7.1):
 % 100 1 100 1 17 85.71%

The calculated value of % will not be used for reliability estimation. Section 7.4 shows the
RePS construction from the CEG measure.

Because twelve measures are selected to evaluate the reliability of the system, an alternative to
assigning an experienced analyst is to perform the measure during the later stages of the
measurement. Usually, an analyst can gain knowledge of a system by performing other
measurements such as the requirements traceability measure.

Cause-effect graphing is time-consuming work. For a large-scale application, it is only necessary
to draw the defect-related portion(s). Doing so will save a great deal of time. The necessary
documents are:

1. Complete list of causes and effects with their relationships and constraints in a table;
2. Defect-related ACEG and BCEG; and
3. Failure-relevant table for defects.

83

7.4 RePS Constructed from Cause-Effect Graphing

7.4.1 Reliability Prediction Based On CEG

Software reliability is estimated by first calculating the failure probability. Failure probability of
an ACEG is assessed by comparing it with a corresponding BCEG and using a reduced-ordered
binary-decision diagram (ROBDD) [Bryant, 1986] [Brace, 1990]. Figure 7.11 shows the generic
fault tree for an ACEG.

An ACEG fails if one of the ACEG effects differs from its peer effect in the BCEG under a
given cause-state combination. A complete nomenclature for CEG is given in the following:

Actually implemented Cause-Effect Graph, constructed according to the SRS. , , ,

 The cause set of the

 The observable effect set of the

 The Boolean function set of the

 The constraint set of the

......

... ...

......

()

, , ,

 () () ()

(Conditional)

ACEG fails

 +

 +

Figure 7.11 The Generic Fault Tree for an ACEG

84

Benchmark Cause-Effect Graph, constructed by removing all indentified defects
from an . , , ,

 The cause set of the

 The observable set of the

 The Boolean function set of the

 The constraint set of the

 The j-th distinct observable effect in the ; i.e., , 1,2, … ,

 The number of distinct effects in the union set

 The peer observable effect in the corresponding to

 A Boolean function in corresponding to

 A Boolean function in corresponding to

 The set of causes appearing in

 The set of causes appearing in

 The union set of and ; i.e.,

 The number of distinct causes in

 An empty set

 A cause state vector that represents a state combination of all causes in

The k-th vector of

, , , , … , , where

, 1 if occurs, 1,2, … , , 1,2, … ,0 otherwise 1,2, … , 2

A three-step procedure is created to calculate the failure probability.

Step 1: Identify failure-relevant events for each effect pair.

If an effect relates to n causes, then compare the results from the ACEG with the results from the
BCEG for 2 times. It requires significant effort to draw the table and perform the comparison.
Some of the causes are failure-irrelevant, which means changing their value will not affect the
comparison results. So identifying the failure-relevant events is critical.

Step 2: Draw a decision table for every effect that is different between the ACEG and the BCEG.

A decision table is helpful for judging the equivalence of two effects with simple Boolean
functions (nj ≤ 10). A sample decision table based on Boolean functions f1

A = c1c2 + c3, and f1
B =

85

c1 + c2c3, general constraints CON1
A = {(c1 requires c2)}, CON1

B = {(c2 requires c3)} is shown in
Table 7.7 below:

Table 7.7 Sample Decision Table for Judging Equivalence of Two Effects

k
Cj

k Conflict
with

CON1
A

Conflict
with

CON1
B

f1
A f1

B e1
A e1

B e1
A = e1

B?
c1 c2 c3

1 0 0 0 N N 0 0 0 0 Y

2 0 0 1 N N 1 0 1 0 N

3 0 1 0 N Y 0 0 0 NULL N

4 0 1 1 N N 1 1 1 1 Y

5 1 0 0 Y N 1 1 NULL 1 N

6 1 0 1 Y N 1 1 NULL 1 N

7 1 1 0 N Y 1 1 1 NULL N

8 1 1 1 N N 1 1 1 1 Y

Step 3: Create a ROBDD for calculating the total system-failure probability.

In the field of reliability it is common knowledge that a BDD is a directed acyclic graph. The
graph has two sink nodes labeled 0 and 1, representing the Boolean functions 0 and 1. Each non-
sink node is labeled with a Boolean variable v and has two out-edges labeled 1 (or “then”) and 0
(or “else”). Each non-sink node represents the Boolean function corresponding to its edge “1,” if
v = 1, or the Boolean function corresponding to its edge “0,” if v = 0.

An Ordered BDD (OBDD) is a BDD in which each variable is encountered no more than once in
any path and always in the same order along each path. A Reduced OBDD (ROBDD) is an
OBDD in which no nodes have equivalent behavior.

The operational profile is required to do the calculation, and only the operational profile for
defect-related causes is required. A revised recursive algorithm for calculating the probability of
a ROBDD is shown in Figure 7.12.

86

 bddProbCal(X)
/* X = ite (xi, H,L),
 H = “High” branch of node xi
 L = “Low” branch of node xi
 PH = Probability of “High” branch reach terminal node “1”
 PL = Probability of “Low” branch reach terminal node “1” */
{
 /*Consider “True” branch*/
 If H is terminal node “1”
 PH = 1.0
 else if H is terminal node “0”
 PH = 0.0
 else
 /*Go deeper to find the probability of H by calling this function itself*/
 PH = bddProbCal(H)

 /*Consider “False” branch*/
 If L is terminal node “1”
 PL = 1.0
 else if “False” branch is terminal node “0”
 PL = 0.0
 else
 /*Go deeper to find the probability of L by calling this function itself*/
 PL = bddProbCal(L)

 Probability[X] = Probability[xi] PH + (1- Probability[xi]) PL
 Return (Probability[X])
}

Figure 7.12 Algorithm for Calculating the Probability of a ROBDD

7.4.2 Reliability Prediction Results

Based on Table 7.5, the probability of failure is 0.9963. Therefore, the reliability is 0.0037. Table
7.8 shows detailed results for each operational mode.

Table 7.8 Reliability Prediction Results for Four Distinct Operational Modes

Mode
Probability of Failure

(per year)
Reliability
(per year)

Power-on 0.000012 0.999988

Normal 0.99624 0.00376

Calibration 0.15376 0.84624

Tuning 0.15376 0.84624

87

The reliability of the APP system is low because all defects found in the SRS have been
considered as the actual defects remaining in the APP system. Therefore, through the CEG
measure based on the SRS, the reliability has been underestimated.

As shown in Table 7.6, six out of seven defects found in the SRS have been corrected (either in
the SDD or in the code). Using this information, the system reliability can be updated. The
probability of failure is calculated to be 6.732 × 10-13 per demand. Therefore, the reliability is
0.999999999999327 per demand. This reliability estimate is closer to the actual reliability than
the previous estimate based only on SRS information.

It should be noted that the prediction of the probability of failure based on the CEG metric
changes from 0.9963 to 6.732 × 10-13 per demand while the number of defects only changed
from seven to one. This is due to the characteristics of the defects. As explained in chapter 5, the
probability of a defect leading to a system failure depends on the defect execution, infection, and
propagation probabilities. The defects that are more likely to lead to system failure were fixed
either in the SDD or in the source code. The only defect remaining in the code actually has a
fairly low probability to lead to failure.

7.5 Lessons Learned

It should be noted that if the CEG measurement is performed manually, the results depend on the
ability of the individual performing the measurement. It is strongly recommended to assign an
analyst who knows the software structure sufficiently well to perform the CEG measure. This is
mainly because:

1. It is difficult to differentiate the prime effects from the intermediate effects if the analyst

is unfamiliar with the system.
2. It is difficult to identify logical relationships between the causes and the constraints

without adequate knowledge of the system. Consequently, defects found through CEG
measurements may not be correctly interpreted and the final reliability estimation may
not be very meaningful.

88

7.6 References

[APP, Y1] “APP Module First μp SRS,” Year Y1.
[APP, Y2] “APP Flux/Delta Flux/Flow Application SRS for SF1,” Year Y2.
[APP, Y3] “APP Module μp2 System Software SRS,” Year Y3.
[APP, Y4] “APP μp2 Flux/Delta Flux/Flow Application Software SRS,” Year Y4.
[APP, Y5] “APP Module Communication Processor SRS,” Year Y5.
[APP, Y6] APP Instruction Manual.
[Brace, 1990] B.R. Rudell and R. Bryant. “Efficient Implementation of a BDD

Package,” in Proc. 27th ACM/IEEE Design Automation Conference, 1990.
[Bryant, 1986] R.E. Bryant. “Graph-Based Algorithms for Boolean Function

Manipulation.” IEEE Transactions on Computers, vol. C-35, no. 8, pp.
677–691, 1986.

[Elmendorf, 1973] W.R. Elmendorf. “Cause-Effect Graphs in Functional Testing.” TR-
00.2487, 1073; IBM Systems Development Division, 1973.

[IEEE, 1988] “IEEE Guide for the Use of IEEE Standard Dictionary of Measures to
Produce Reliable Software,” IEEE Std. 982.2-1988, 1988.

[Myers, 1976] G.J. Myers. Software Reliability: Principle and Practices. New York:
Wiley-Interscience, pp. 218–227, 1976.

[Myers, 1979] G.J. Myers. The Art of Software Testing. New York: Wiley-Interscience,
pp. 56–76, 1979.

[Nuisimulu, 1995] K. Nursimulu and R.L. Probert. “Cause-Effect Graphing Analysis and
Validation of Requirements,” in Proc. Conference of the Centre for
Advanced Studies on Collaborative Research, 1995, pp. 15–64.

89

8. CAPABILITY MATURITY MODEL

The software Capability Maturity Model (CMM) is a framework that describes key elements of
an effective software process. It covers practices for planning, engineering, and managing
software development and maintenance. When followed, these key practices improve the ability
of organizations to meet goals for cost, schedule, functionality, and product quality [IEEE,
1988].

The goals of this measure are to describe the principles and practices underlying software-
process maturity and to help software organizations improve the maturity of their software
processes [IEEE, 1988].

The CMM was replaced in 2001 with the Capability Maturity Model Integrated (CMMI) [Royce,
2002]. While CMM was developed to account for management and software engineering
activities, CMMI extends the CMM by including systems engineering and integrated product
development activities. Although CMMI has superseded CMM, the research published in this
report focuses on the measures ranked in NUREG/GR-0019. Since NUREG/GR-0019 pre-dated
the introduction of CMMI, the report did not evaluate the latter metric. In addition, evidence
linking CMMI to fault content remains sparse. Once available, such evidence can be used to
revise the models presented in this chapter.

The CMM measure can be applied as soon as requirements are available for review. As listed in
Table 3.3, the applicable life cycle phases for CMM are Requirements, Design, Coding, Testing,
and Operation.

8.1 Definition

Continuous process improvement is based on small, evolutionary steps rather than on
revolutionary innovations. The CMM provides a framework for organizing these evolutionary
steps into five maturity levels that lay successive foundations for continuous improvement.16

8.1.1 Definition of the Five Maturity Levels

These five maturity levels define an ordinal scale for measuring the maturity of an organization’s
software process and for evaluating its software process capability [Paulk, 1995].13

16 Carnegie Mellon University, Software Engineering Institute, THE CAPABILITY MATURITY MODEL:
GUIDELINES FOR IMPROVING THE SOFTWARE PROCESS, pp. 15–19, © 1995 Addison-Wesley Publishing
Company Inc. Reproduced by permission of Pearson Education, Inc.

90

The five levels can be described as the following:

1. Initial: The software process is characterized as ad hoc, and occasionally even chaotic.

Few processes are defined, and success depends on individual effort and “heroic” efforts
by individuals.17

 At the Initial Level, the organization typically does not provide a stable environment for

developing and maintaining software. During a crisis, projects typically abandon planned
procedures and revert to coding and testing. Success depends entirely on having an
exceptional manager and a seasoned and effective software team. Occasionally, capable
and forceful software managers can resist the pressures to take shortcuts in the process;
but when they leave the project, their stabilizing influence leaves with them. Even a
strong engineering process cannot overcome the instability created by the absence of
sound management practices.14

 The software process capability of Level 1 organizations is unpredictable because the

software process is constantly being changed or modified as the work progresses (i.e., the
process is ad hoc). Schedules, budgets, functionality, and product quality are generally
unpredictable. Performance depends on the capabilities of individuals and varies with
their innate skills, knowledge, and motivations. Few stable software processes are evident
and performance can be predicted only by individual capability.

2. Repeatable: Basic project management processes are established to track cost, schedule,

and functionality. The necessary discipline exists to repeat earlier successes on projects
with similar applications.14

At the Repeatable Level, policies for managing a software project and procedures to
implement those policies are established. Planning and managing new projects are based
on experience with similar projects. In Level 2 effective management processes for
software projects are institutionalized, which allow organizations to repeat successful
practices developed on earlier projects, even if the specific processes implemented by the
projects may differ. An effective process should be practiced, documented, enforced,
trained, measured, and capable of improvement.

 Projects in Level 2 organizations have installed basic software management controls.

Realistic project commitments are based on the results observed in previous projects and
on the requirements of the current project. 14 The software managers for a project track
software costs, schedules, and functionality; problems in meeting commitments are
identified when they arise. Software requirements and the products developed to satisfy
them are baselined and their integrity is controlled. Software project standards are
defined and the organization ensures they are faithfully followed. The software project
works with its subcontractors, if any, to establish a strong customer-supplier
relationship.14

17 Carnegie Mellon University, Software Engineering Institute, THE CAPABILITY MATURITY MODEL:
GUIDELINES FOR IMPROVING THE SOFTWARE PROCESS, pp. 15–19, © 1995 Addison-Wesley Publishing
Company Inc. Reproduced by permission of Pearson Education, Inc.

91

 The software process capability of Level 2 organizations can be summarized as
disciplined, because the planning and tracking of the software project is stable and earlier
successes can be repeated. The project’s process is under the effective control of a project
management system, following realistic plans based on the performance of previous
projects.18

3. Defined: The software process for both management and engineering activities is

documented, standardized, and integrated into a standard software process for the
organization. All projects use an approved, tailored version of the organization’s standard
software process for developing and maintaining software. 15

 At the Defined Level, the standard process for developing and maintaining software

across the organization is documented, including both software engineering and
management processes. These processes are integrated into a coherent whole. This
standard process is referred to throughout the CMM as the organization’s standard
software process. Processes established at Level-3 are used (and changed, as appropriate)
to help the software managers and technical staff perform more effectively. The
organization exploits effective software engineering practices when standardizing its
software processes. There is a group that is responsible for the organization’s software-
process activities, e.g., a software engineering-process group. An organization-wide
training program is implemented to ensure that the staff and managers have the
knowledge and skills required to fulfill their assigned roles.

 The software-process capability of Level-3 organizations can be summarized as standard

and consistent, because both software engineering and management activities are stable
and repeatable. Within established product lines, cost, schedule, and functionality are
under control, and software quality is tracked. This process capability is based on a
common, organization-wide understanding of the activities, roles, and responsibilities in
a defined software process.15

4. Managed: Detailed measures of the software process and product quality are collected.

Both the software process and products are quantitatively understood and controlled.15

At the Managed Level, the organization sets quantitative quality goals for both software
products and processes. Productivity and quality are measured for important software-
process activities across all projects as part of an organizational measurement program.
An organization-wide software-process database is used to collect and analyze the data
available from the projects’ defined software processes. Software processes are
implemented with well-defined and consistent measurements at Level 4. These
measurements establish the quantitative foundation for evaluating the projects’ software
processes and products.

18 Carnegie Mellon University, Software Engineering Institute, THE CAPABILITY MATURITY MODEL:
GUIDELINES FOR IMPROVING THE SOFTWARE PROCESS, pp. 15–19, © 1995 Addison-Wesley Publishing
Company Inc. Reproduced by permission of Pearson Education, Inc.

92

 The software-process capability of Level 4 organizations can be summarized as
predictable, because the process is measured and operates within measurable limits. This
level of process capability allows an organization to predict trends in process and product
quality within the quantitative bounds of these limits. When these limits are exceeded,
action is taken to correct the situation. Software products are of predictably high quality.

5. Optimizing: Continuous process improvement results from quantitative feedback and

from piloting innovative ideas and technologies.19

At the Optimizing Level, the entire organization is focused on continuous process
improvement. The organization has the means to identify weaknesses and strengthen the
process proactively, with the goal of preventing the occurrence of defects. Data on the
effectiveness of the software process is used to perform cost-benefit analyses of new
technologies and proposed changes to the organization’s software process. Innovations
that exploit the best software engineering practices are identified and transferred
throughout the organization.

 Software project teams in Level 5 organizations analyze defects to determine their

causes. Software processes are evaluated to prevent known types of defects from
recurring, and lessons learned are disseminated to other projects.

 The software-process capability of Level 5 organizations can be characterized as

continuously improving, because Level 5 organizations are continuously striving to
improve the range of their process capability, thereby improving the process performance
of their projects. Improvement occurs both by incremental advancements in the existing
process and by innovations using new technologies and methods.

Organizing the CMM into the five levels shown in Figure 8.1 prioritizes improvement actions for
increasing software process maturity. The labeled arrows in Figure 8.1 indicate the type of
process capability being institutionalized by the organization at each step of the maturity
framework [Paulk, 1993].16

19 Carnegie Mellon University, Software Engineering Institute, THE CAPABILITY MATURITY MODEL:
GUIDELINES FOR IMPROVING THE SOFTWARE PROCESS, pp. 15–19, © 1995 Addison-Wesley Publishing
Company Inc. Reproduced by permission of Pearson Education, Inc.

93

Figure 8.1 The Five Levels of Software Process Maturity20

8.1.2 Definition of the Key Process Areas (KPAs)

Each maturity level except for Level 1 (Initial) is divided into Key Process Areas (KPAs). Each
KPA identifies a cluster of related activities that, when performed collectively, achieve a set of
goals considered important for establishing process capability at that maturity level [Paulk,
1993]. The KPAs have been defined to reside at a single maturity level.

Figure 8.2 represents the KPAs by maturity levels.

20 Carnegie Mellon University, Software Engineering Institute, THE CAPABILITY MATURITY MODEL: GUIDELINES FOR
IMPROVING THE SOFTWARE PROCESS, pp. 15–19, © 1995 Addison-Wesley Publishing Company Inc. Reproduced by
permission of Pearson Education, Inc.

Initial
(1)

Repeatable
(2)

Defined
(3)

Managed
(4)

Optimizing
(5)

Standard,
Consistent

Process

Predictable
Process

Continuously
Improving

Process

Disciplined
Process

94

Figure 8.2 The Key Process Areas by Maturity Levels21

8.1.2.1 KPAs for Level 2

The KPAs at Level 2 focus on the software project’s concerns related to establishing basic,
project-management controls. Descriptions of each of the KPAs for Level 2 are given below:

1. Requirements Management: The purpose of Requirements Management is to establish

a common understanding between the customer and the software project of the
customer’s requirements that will be addressed by the software project. This agreement
with the customer is the basis for planning (as described in Software Project Planning)
and managing (as described in Software Project Tracking and Oversight) the software

21 Carnegie Mellon University, Software Engineering Institute, THE CAPABILITY MATURITY MODEL: GUIDELINES FOR
IMPROVING THE SOFTWARE PROCESS, pp. 15–19, © 1995 Addison-Wesley Publishing Company Inc. Reproduced by
permission of Pearson Education, Inc.

Initial (1)

Software configuration management
Software quality assurance
Software sub-contract management
Software project tracking and oversight
Software project planning
Requirements management

Repeatable (2)

Peer reviews
Intergroup coordination
Software product engineering
Integrated software management
Training program
Organization process definition
Organization process focus

Defined (3)

Software quality management
Quantitative process management

Managed (4)

Process change management
Technology change management
Defect prevention

Optimizing (5)

95

project. Control of the relationship with the customer depends on following an effective
change control process (as described in Software Configuration Management).

2. Software Project Planning: The purpose of Software Project Planning is to establish

reasonable plans for performing the software engineering and for managing the software
project. These plans are the necessary foundation for managing the software project (as
described in Software Project Tracking and Oversight). Without realistic plans, effective
project management cannot be implemented.

3. Software Project Tracking and Oversight: The purpose of Software Project Tracking

and Oversight is to establish adequate insight into actual progress, so that management
can take effective actions if the software project’s performance deviates significantly
from the software plans.

4. Software Subcontract Management: The purpose of Software Subcontract

Management is to select qualified software subcontractors and manage them effectively.
It combines the concerns of Requirements Management, Software Project Planning, and
Software Project Tracking and Oversight for basic management control, with the
necessary coordination of Software Quality Assurance and Software Configuration
Management, and applies these standards to the subcontractor as appropriate.

5. Software Quality Assurance: The purpose of Software Quality Assurance is to provide

management with appropriate visibility into the process being used by the software
project and of the products being built. Software Quality Assurance is an integral part of
most software engineering and management processes.

6. Software Configuration Management: The purpose of Software Configuration

Management is to establish and maintain the integrity of the products of the software
project throughout the project’s software life cycle. Software Configuration Management
is an integral part of most software engineering and management processes.

8.1.2.2 KPAs for Level-3

The KPAs at Level-3 address both project and organizational issues, as the organization
establishes an infrastructure that institutionalizes effective software engineering and management
processes across all projects. Each of the KPAs for Level-3 is described below:

1. Organization Process Focus: The purpose of Organization Process Focus is to establish

the organizational responsibility for software process activities that improve the
organization’s overall software-process capability. The primary result of the Organization
Process Focus activities is a set of software process assets, which are described in
Organization Process Definition. These assets are used by the software projects, as
described in Integrated Software Management.

96

2. Organization Process Definition: The purpose of Organization Process Definition is to
develop and maintain a usable set of software process assets that improve process
performance across the projects and provide a basis for cumulative, long-term benefits to
the organization. These assets provide a stable foundation that can be institutionalized via
mechanisms such as training, which is described in Training Program.

3. Training Program: The purpose of the Training Program is to develop the skills and

knowledge of individuals, so they can perform their roles effectively and efficiently.
Training is an organizational responsibility, but each software projects should identify
required skill sets and provide necessary training when the project’s requirements are
unique.

4. Integrated Software Management: The purpose of Integrated Software Management is

to integrate the software engineering and management activities into a coherent, defined
software process that is tailored from the organization’s standard software process and
related process assets, which are described in Organization Process Definition. This
tailoring is based on the business environment and technical needs of the project, as
described in Software Product Engineering. Integrated Software Management evolves
from Software Project Planning and Software Project Tracking and Oversight at Level 2.

5. Software Product Engineering: The purpose of Software Product Engineering is to

consistently perform a well-defined engineering process that integrates all the software
engineering activities to produce correct, consistent software products effectively and
efficiently. Software Product Engineering describes the technical activities of the project,
e.g., requirements analysis, design, code, and testing.

6. Intergroup Coordination: The purpose of Intergroup Coordination is to establish a

means for the software engineering group to participate actively with the other
engineering groups, so the project is better able to satisfy the customer’s needs effectively
and efficiently. Intergroup Coordination is the interdisciplinary aspect of Integrated-
Software Management not only should the software process be integrated, but the
software engineering group’s interactions with other groups must be coordinated and
controlled.

7. Peer Reviews: The purpose of Peer Reviews is to remove defects from the software

work products early and efficiently. An important corollary effect is to develop a better
understanding of the software work products and of the defects that can be prevented.
The peer review is an important and effective engineering method that is implemented in
Software Product Engineering area by reviews and structured walkthroughs.

8.1.2.3 KPAs for Level 4

The KPAs at Level 4 focus on establishing a quantitative understanding of both the software
process and the software work products being built. The two KPAs at this level, Quantitative

97

Process Management and Software Quality Management, are highly interdependent, as described
below:

1. Quantitative Process Management: The purpose of Quantitative-Process Management

is to quantitatively control the process performance of the software project. Software-
process performance represents the actual results achieved from following a software
process. The focus is on identifying special causes of variation within a measurably stable
process and correcting, as appropriate, the circumstances that caused the transient
variation to occur. Quantitative-Process Management adds a comprehensive
measurement program to the practices of Organization-Process Definition, Integrated-
Software Management, Intergroup Coordination, and Peer Reviews.

2. Software Quality Management: The purpose of Software Quality Management is to

develop a quantitative understanding of the quality of the project’s software products.
Software Quality Management applies a comprehensive measurement program to the
software work products described in Software Product Engineering.

8.1.2.4 KPAs for Level 5

The KPAs at Level 5 cover the issues that both the organization and the projects must address to
implement continuous and measurable software-process improvement. Descriptions of each of
the KPAs for Level 5 are given below:

1. Defect Prevention: The purpose of Defect Prevention is to identify the causes of defects

and prevent them from recurring. The software project analyzes defects, identifies their
causes, and changes its defined software process, as is described in Integrated-Software
Management. Process changes of general value are communicated to other software
projects, as is described in Process Change Management.

2. Technology Change Management: The purpose of Technology Change Management is

to identify beneficial new technologies (i.e., tools, methods, and processes) and
incorporate them into the organization in an orderly manner, as is described in Process
Change Management. The focus of Technology-Change Management is on introducing
innovation efficiently in an ever-changing world.

3. Process Change Management: The purpose of Process Change Management is to

continually improve the software processes used in the organization with the intent of
improving software quality, increasing productivity, and decreasing the cycle time for
product development. Process Change Management takes the incremental improvements
of Defect Prevention and the innovative improvements of Technology Change
Management and makes them available to the entire organization.

98

8.2 Measurement Rules

8.2.1 Standard SEI-CMM Assessment

The Software Engineering Institute (SEI) assessment method used with the Capability Maturity
Model for Software (SW-CMM) is named Capability Maturity Model-Based Appraisal for
Internal Process Improvement (CBA IPI). This method is used by organizations to provide an
accurate picture of the strengths and weaknesses of the organization’s current software process,
using the CMM as a reference model, and to identify KPAs for improvement.

The CBA IPI method is an assessment of an organization’s software process capability by a
trained group of professionals who work as a team to generate findings and ratings relative to the
CMM KPAs within the assessment scope. The findings are generated from data collected from
questionnaires, document review, presentations, and in-depth interviews with middle managers,
project leaders, and software practitioners [Dunaway, 2001].

The CBA IPI method satisfies requirements established in the CMM Appraisal Framework
(CAF), Version 1.0 [Masters, 1995]. Figure 8.3 illustrates the basic CAF activities.

Planning and preparation are the key to success of any appraisal. As illustrated in Figure 8.3,
planning and preparation involve analyzing the appraisal’s requirements, selecting and preparing
the appraisal team, selecting and preparing the appraisal participants, and developing and
documenting the appraisal plan.

Conducting an appraisal focuses on collecting and recording data in the form of notes,
consolidating data into a manageable set of observations, determining their validity as findings,
and their coverage of the appraisal scope and using those findings to produce ratings of the
appraised entity’s software process with respect to the CMM.

CAF Compliant Appraisal

Plan and Prepare for
Appraisal

Conduct Appraisal Report Result

Analyze
Requirements

Select and Prepare
Team

Select and Prepare
Participants

Develop Appraisal
Plan

Collect and
Record Data

Consolidate and
Validate Data

Make Rating
Judgement

Report Appraisal
Results

Protect
Confidentiality

Preserve Records

Figure 8.3 CMM Appraisal Framework Activities

99

The Reporting phase of an appraisal involves reporting appraisal results to sponsors, the
appraisal method owner, the SEI, and, optionally, the appraised entity; and preserving appraisal
records. In this research, this phase was not required.

The following are some general rules when conducting an appraisal:

1. The appraisal team must come to consensus on the ratings that it provides to an appraised

entity. This consensus is one step in assuring that the entire team supports the appraisal
report. Without consensus, the appraisal team cannot expect the appraised entity to have a
high level of confidence in the contents of the report.

2. All ratings must be based on the CMM and only on the CMM. A CMM-based appraisal,
by definition, is using the CMM as a framework for evaluating an appraised entity’s
software process. The appraisal team must, therefore, maintain fidelity to the model in its
rating process. An appraisal method cannot add new KPAs to the model or delete existing
KPAs.

3. Ratings must be based on the data the appraisal team collects during the appraisal
process. By basing ratings on findings that have been validated by the team, and directly
or indirectly by the appraised entity, the appraisal team can achieve a high level of
confidence in their accuracy.

Lead Assessors are authorized by SEI to market and perform CBA IPI assessments either for
third-party organizations or for their own organization’s internal use. A list of SEI authorized
Lead Assessors can be found at the SEI website [SEI, 2006]. The cost of a formal assessment
conducted by an authorized lead assessor would be of the order of $50,000.

The key step of the assessment is to make rating judgments and determine the maturity level
based on the collected data. Four rating values are provided for goals and KPAs: satisfied,
unsatisfied, not applicable, or not rated. If a KPA is determined to be not applicable in the
organization’s environment, then all of the goals for that KPA are deemed not applicable.
Conversely, if a KPA is determined to be applicable in the organizations environment, then all of
the goals for that KPA are applicable.

In the following subsections, the detailed measurement rules are provided when conducting an
appraisal.

8.2.1.1 Rules for Judging Satisfaction of Goals

1. Rate the goal “satisfied” if the associated findings indicate that this goal is implemented

and institutionalized either as defined in the CMM with no significant weaknesses or that
an adequate alternative exists.

2. Rate the goal “unsatisfied” if the associated findings indicate that there are significant
weaknesses in the appraised entity’s implementation and institutionalization of this goal
as defined in the CMM and no adequate alternative is in place.

3. Rate the goal “not applicable” if the goal is not applicable in the organization’s
environment.

100

4. Rate the goal “not rated” if the associated findings do not meet the method’s defined
criteria for coverage or if the goal falls outside of the scope of the appraisal.

8.2.1.2 Rules for Judging Satisfaction of KPAs

1. Rate the KPA “satisfied” if all of the goals are rated “satisfied.”
2. Rate the KPA “unsatisfied” if one or more goals are rated as “unsatisfied.”
3. Rate the KPA “not applicable” if the KPA is not applicable in the organization’s

environment.
4. Rate the KPA “not rated” if any of the goals are rated “not rated” or if the KPA falls

outside of the scope of the appraisal.

8.2.1.3 Rules for Determining Maturity Level

1. Maturity level ratings depend exclusively on KPA ratings. The appraisal team bases

maturity level ratings solely on the KPA ratings. No additional team judgments are
required.

2. A maturity level is satisfied if all KPAs within that level and each lower level are
satisfied or not applicable. For example, rating of maturity level-3 requires that all KPAs
within levels 2 and 3 be satisfied or not applicable.

3. The maturity level rating is that of the highest maturity level satisfied.

8.2.2 UMD-CMM Assessment

As far as the APP is concerned, a standard CMM level assessment had not been performed for
the organization that developed the APP system. Furthermore, the APP system was 10 years old.
As a consequence, any results of an assessment would have been post-mortem and as such, not
qualify for a formal assessment.

To obtain an informal assessment, the SW-CMM Maturity Questionnaire [Zubrow, 1994] was
provided to the remaining personnel involved in the development of the APP system.

UMD-CMM assessment followed the procedure defined in Section 8.2.1. The only discrepancy
was in the composition of the team.

In order to conduct appraisals, a team of assessors who had gone through a complete training
program and a lead assessor who had significant experience in the field of CMM appraisal was
required. To become a SEI authorized assessor, normally the person should first attend a five-day
course offered by SEI. After attending the course, participants would be qualified as candidate
lead appraisers. To become authorized, candidate lead appraisers must be observed by a qualified
observing lead appraiser and receive a satisfactory recommendation. Lead appraisers may
provide appraisal services for their own organization or other organizations and deliver appraisal
training to appraisal teams.

101

One UMD graduate student with experience in software engineering was sent to the five-day
training course, was qualified as candidate lead appraiser, and performed the assessment.

8.3 Measurement Results

The Maturity Questionnaire was distributed to the APP development team members. Table 8.1
provides the summary of the answers to questions to this Questionnaire. The results in Table 8.1
show the ratio of the number of satisfied goals over the total applicable goals.

It should be noted that the summary was based on one respondent’s answers since he was the
manager of the APP development team. The respondent was explained the design of the
questionnaire and told what KPAs meant and how the CMM levels are defined. He also had
some prior knowledge about the CMM in general given his experience in the software field (22
years).

Table 8.1 Summary of the Answers to the Questions in the Maturity Questionnaire

CMM Level No. KPAs Results

Repeatable (2)

1 Requirement Management 6/6

2 Software Project Planning 7/7

3 Software Project Tracking and Oversight 7/7

Repeatable (2)

4 Software Subcontract Management Not Applicable

5 Software Quality Assurance 7/7

6 Software Configuration Management 8/8

Defined (3)

1 Organization Process Focus 2/7

2 Organization Process Definition 4/6

3 Training Program 7/7

4 Integrated Software management 4/6

5 Software Product Engineering 6/6

6 Intergroup Coordination 6/7

7 Peer Reviews 5/6

102

Table 8.2 shows the results obtained after the application of the measurement rules stated in
Section 8.2.2.2 to the responses to the questions for each of the KPAs.

Table 8.2 Result of Application of KPA Satisfaction Level Measurement Rules

CMM Level No. KPAs
KPA Satisfaction

Level

Repeatable (2)

1 Requirement Management Satisfied

2 Software Project Planning Satisfied

3 Software Project Tracking and Oversight Satisfied

4 Software Subcontract Management Not Applicable

5 Software Quality Assurance Satisfied

6 Software Configuration Management Satisfied

Defined (3)

1 Organization Process Focus Unsatisfied

2 Organization Process Definition Unsatisfied

3 Training Program Satisfied

4 Integrated Software management Unsatisfied

5 Software Product Engineering Satisfied

6 Intergroup Coordination Unsatisfied

7 Peer Reviews Unsatisfied

On analyzing the answers to the questions in the maturity questionnaire for the APP the
following observations were made:

1. From the respondent’s answers, it was clear the APP could not be assessed at CMM

level-3. CMM level-3 focuses on having a generalized organizational level policy for all
the activities in the software development process and that a project must tailor its own
software process from these generalized organizational level policies. In this regard the
respondent believed that the developer had some organizational level policies for both
hardware and software systems developed by them. However, according to the rules,
developer still did not reach CMM level-3.

103

2. The main focus of CMM level four is the collection of detailed measures of the software
process and product. Both the software process and products are quantitatively
understood and controlled. The developer did not have this kind of data collected across
projects. This is why it could not be assessed above level-3.

According to the analysis, it is clear that all the KPAs in CMM level 2 are satisfied and five out
of seven KPAs in CMM level-3 are not satisfied. Therefore, the APP is CMM level 2.

8.4 RePS Construction from CMM

In order to estimate reliability using CMM as the base measure, it is required to construct a
model that links CMM to the number of defects in the software. Once there is a model to
estimate the number of defects in the software using CMM as the base measure, then the
exponential model can be applied to estimate the reliability of the software.

8.4.1 CMM Maturity Levels vs. Number of Defects

Historical industry data collected by Software Productivity Research Inc. [Jones, 1995] links the
CMM level to the number of defects per function point. Table 8.3 presents this data.

Table 8.3 CMM Levels and Average Number of Defects Per Function Point

CMM level Average Defects/Function Point

Defects for SEI CMM level 1 0.75

Defects for SEI CMM level 2 0.44

Defects for SEI CMM level 3 0.27

Defects for SEI CMM level 4 0.14

Defects for SEI CMM level 5 0.05

The CMM level of the APP is assessed to be CMM level 2. The functional size of the APP is 301
function points. Table 8.4 presents the estimation of defects for the APP.

Table 8.4 Defect Estimation for the APP Using CMM

CMM
Level

Average Defects/Function Point FP Total Number of Defects

Level 2 0.44 301 132.44

The next step is the partitioning of the defects based on the criticality of the defects. Using
Table 6.7, the partitioned number of defects (based on the severity level) for the APP using

104

CMM is presented in Table 8.5. The Table 6.7 values are listed in parentheses for each defect
category.

Table 8.5 Partitioned Number of Defects (Based On Severity Level) for the APP Using CMM

Total Number of
Defects

Defects
(Critical)
(0.0185)

Defects
(Significant)

(0.1206)

Defects
(Minor)
(0.3783)

Defects
(Cosmetic)

(0.4826)

Defects
(Critical +

Significant)
(0.1391)

132.44 2.45 15.97 50.10 63.92 18.42

8.4.2 Reliability Estimation

The probability of success-per-demand is obtained using Musa’s exponential model [Musa,
1990] [Smidts, 2004]:

 (8.1)

and , , 18.42 (8.2)

where

 Reliability estimation for the APP system using the CMM measure.

 Fault Exposure Ratio, in failure/defect.

 Number of defects estimated using the CMM measure.

 Average execution-time-per-demand, in seconds/demand.

 Linear execution time of a system, in seconds. , Number of delivered critical defects (severity 1). , Number of delivered significant defects (severity 2).

Since a priori knowledge of the defects’ location and their impact on failure probability is not
known, the average K value given in [Musa, 1987] [Musa, 1990] [Smidts, 2004], which is 4.2 10 / must be used.

The linear execution time, TL, is usually estimated as the ratio of the execution time and the
software size on a single microprocessor basis [Musa, 1987] [Musa, 1990] [Smidts, 2004]. In the
case of the APP system, however, there are three parallel subsystems, each of which has a
microprocessor executing its own software. Each of these three subsystems has an estimated
linear execution time. Therefore, there are several ways to estimate the linear execution time for
the entire APP system, such as using the average value of these three subsystems.

105

For a safety-critical application, like the APP system, the UMD research team suggests to make a
conservative estimation of TL by using the minimum of these three subsystems’ . Namely,

 min 1 , 2 ,
 0.018, 0.009, 0.021 (8.3)
 0.009 seconds
Where
 1 Linear execution time of Microprocessor 1 (μp1) of the APP system. TL

(μp1) = 0.018 seconds (refer to Chapter 17). 2 Linear execution time of Microprocessor 2 (μp2) of the APP system. TL
(μp2) = 0.009 seconds (refer to Chapter 17).

 Linear execution time of Communication Microprocessor (CP) of the
APP system. TL (CP) = 0.021 seconds (refer to Chapter 17).

Similarly, the average execution-time-per-demand, τ, is also estimated on a single
microprocessor basis. Each of the three subsystems in APP has an estimated average execution-
time-per-demand. To make a conservative estimation, the average execution-time-per-demand
for the entire APP system is the maximum of the three subsystems’ . Namely:

 max 1 , 2 ,
 max 0.082, 0.129, 0.016 (8.4)
 0.129 seconds/demand
Where
 1 Average execution-time-per-demand of Microprocessor 1 (μp1) of the

APP system. τ(μp1) = 0.082 seconds/demand (refer to Chapter 17). 2 Average execution-time-per-demand of Microprocessor 2 (μp2) of the
APP system. τ(μp2) = 0.129 seconds/demand (refer to Chapter 17).

 Average execution-time-per-demand of Communication
Microprocessor (CP) of the APP system. τ(CP) = 0.016
seconds/demand (refer to Chapter 17).

Thus the reliability for the APP system using the CMM measure is given by:

 (8.5)
 0.999889118

A more accurate estimation of reliability using CMM for the APP system can be obtained by
enhancing the estimation of K. A value of K for the safety-critical system, rather than the
average value 4.2 10 failure/defect, should be used in Equation 8.1.

106

8.5 Lessons Learned

The standard CMM-level assessment was not performed for the company that developed the
software module. Furthermore, the software module was more than ten years old and most of the
members of the development team were no longer working with the company. The CMM
assessment could only be conducted based on the “surviving” team member’s answers to the
Maturity Questionnaire. As a consequence, any results of an assessment are post-mortem and as
such do not qualify for a formal assessment. The research team had to take an alternative
informal approach as described in Section 8.2.2.

For recently developed software, the issues encountered during this research should not apply
since more and more companies/organizations are encouraged to obtain a CMM (now CMMI)
certification.

107

8.6 References

[Dunaway, 2001] D.K. Dunaway and S. Masters. “CMM-Based Appraisal for Internal

Process Improvement (CBA IPI) Version 1.2 Method Description,”
Software Engineering Institute, CMU/SEI-2001-TR-033. Available:
http://www.sei.cmu.edu/publications/documents/01.reports/01tr033.html
[Nov. 2001].

[Jones, 1995] C. Jones. Measuring Global Software Quality. Burlington, MA: Software
Productivity Research, 1995.

[Jones, 1997] C. Jones. Applied Software Measurement: Assuring Productivity and
Quality. McGraw Hill, Inc., 1997.

[Masters, 1995] S. Masters and C. Bothwell. “CMM Appraisal Framework, Version 1.0,”
Software Engineering Institute, CMU/SEI-95-TR-001. Available:
http://www.sei.cmu.edu/publications/documents/95.reports/95-tr-001/95-
tr-001-abstract.html [Feb. 1995].

[Musa, 1987] J.D. Musa, A. Iannino, and K. Okumoto. Software Reliability:
Measurement, Prediction, Applications. New York: McGraw-Hill, 1987.

[Musa, 1990] J.D. Musa. Software Reliability: Measurement, Prediction, Application.
New York: McGraw-Hill, 1990.

[Paulk, 1995] M.C. Paulk et al. The Capability Maturity Model: Guidelines to improving
the Software Process. CMU: Addison-Wesley, 1995.

[Paulk, 1993] M.C. Paulk et al. Key Practices of the Capability Maturity Model, Version
1.1. CMU/SEI-93-TR-25, 1993.

[Royce, 2002] W. Royce. “CMM vs. CMMI: From Conventional to Modern Software
Management,” Available: http://www.cdainfo.com/down/1-
Desarrollo/CMM2.pdf [Jul. 2010].

[SEI, 2006] Software Engineering Institute at Carnegie Mellon University. “SEI
Appraisal Program Directories,” Available:
http://www.sei.cmu.edu/appraisal-program/directory/index.html
[Jan. 2006].

[Smidts, 2004] C. Smidts and M. Li. “Validation of a Methodology for Assessing
Software Quality,” NRC, Office of Nuclear Regulatory Research,
Washington DC NUREG/CR-6848, 2004.

[Zubrow, 1994] D. Zubrow et al. “Maturity Questionnaire.” Software Engineering
Institute, CMU/SEI-94-SR-7. Available:
http://www.sei.cmu.edu/publications/documents/94.reports/94.sr.007.html
[Jun. 1994].

109

9. COMPLETENESS

The completeness measure, COM, determines the completeness of the SRS.

The COM measure provides a systematic guideline to identify the incompleteness defects in the
SRS. Also, the values determined for the primitives associated with the COM measure can be
used to identify problem areas within the software specification.

The COM measure can be applied as soon as the requirements are available. As listed in Table
3.3, the applicable life cycle phases for the COM measure are Requirements, Design, Coding,
Testing, and Operation.

9.1 Definition

The COM measure is the weighted sum of ten derived measures, D1 through D10 [IEEE, 1988]
[Murine, 1985]:

 ∑ (9.1)
where
 completeness measure,
 the weight of the i-th derived measure,
 the i-th derived measure,

Where for each i = 1, ..., 10, each weight wi has a value between 0 and 1, the sum of the weights
is equal to 1, and each Di is a derived measure with a value between 1 and 0.

The weighting factor is dependent on the characteristics of the project. For example, a database
project would be weighted heavily for the data-reference attribute. For each project, the
weighting factors (wi) should be determined by survey or expert opinion.

Since the value of the COM is subjectively determined, the RePS that uses the COM measure is
based on the incompleteness defects identified in the SRS during the measurement but not on the
value of COM (refer to Section 9.4).

110

Each derived measure is determined as follows:
 / fraction of functions satisfactorily defined / fraction of data references having an origin / fraction of defined functions used / fraction of referenced functions defined /

fraction of decision points whose conditions and condition
options are all used / fraction of condition options having processing /
fraction of calling routines whose parameters agree with the
called routines defined parameters / fraction of condition options that are set / fraction of set condition options processed / fraction of data references having a destination

where B1 to B18 are primitives defined as follows:

 number of functions not satisfactorily defined.

 number of functions.

 number of data references not having an origin.

 number of data references.

 number of defined functions not used.

 number of defined functions.

 number of referenced functions not defined.

 number of referenced functions.

 number of decision points missing condition(s).

 number of decision points.

 number of condition options having no processing.

 number of condition options.

number of calling routines whose parameters are not agreeing with the called
routines defined parameters.

 number of calling routines.

 number of condition options not set.

 number of set condition options having no processing.

 number of set condition options.

 number of data references having no destination.

111

Assessment of some of the derived measures (Di) may be more reliable at the design and coding
level since they refer to design and coding characteristics described at a high level in the SRS.
However, high-level estimates of Di should be available during the requirements phase.

The following definitions were used while counting primitives:

Called Routine: a routine referred by another routine.
Called Routines Parameter: a prerequisite data used in the called routine in order to perform its
required functions.
Calling Routine: a routine making reference to another routine.
Condition: a leaf-level expression which cannot be broken down into a simpler one.
Condition Option: one of the possible results determined by the condition.
Data Reference Origin: the source of the data manipulated by the data reference.
Data Reference: a data reference is a function which manipulates either internal or external
data.
Data Reference Destination: the destination of the data manipulated by the data reference.
Decision Point: a process element that routes the system to one of several alternative outgoing
paths, depending on its condition.
Defined Function: a function that is explicitly described in the SRS.
Function: a defined objective or characteristic action in the software requirement specification
(SRS), usually involved in processing input(s) and/or generating output(s).
Processed Condition Option: a condition option is processed if a function is satisfactorily
defined to process this condition option.
Referenced Function: a function that is implied or referred by another function.
Routine: a set of sequential functions. A routine is usually bulleted as a functional section in the
SRS.
Satisfactorily Defined Function: a defined function that is correct, unambiguous, unique, and
verifiable.
Set Condition: a condition is set if it is defined before it is used.
Set Condition Option: a condition option is set if all conditions are set.
Used Function: a function that is employed in the control flow or referred by other function(s)
employed in the control flow.

9.2 Measurement Rules

The following measurement rules were tailored for the purpose of identifying defects
(incomplete functional requirements) in the SRS and estimating software reliability.

9.2.1 B1: Number of Functions Not Satisfactorily Defined

Within the context of the COM measurement, a satisfactorily defined function is a function
meeting the criteria specified in [IEEE, 1998].

Refer to Section 9.2.6 for the definition of a defined function.

112

More specifically, a function is a satisfactorily defined function if it is defined and has all of the
following attributes:

1. unambiguous: so that the customer, software analysts and other design stakeholders

would have the same interpretation.
2. complete: there is sufficient information for the design of the software. Also, input

functions should define responses to valid and invalid input values.
3. verifiable: so that a test case can be written for it.
4. unique: it is not redundant.
5. consistent: it does not contradict other requirements.
6. correct: the function should be approved by the customer or in agreement with a higher-

level document, such as a project charter or high-level requirements.

The counting rule for B1 (the number of functions not satisfactorily defined) is to count all of the
non-satisfactorily defined functions identified by the above rules.

The following are samples of satisfactorily defined and non-satisfactorily defined functions:

“Upon the μp addressing a board, a decoding chip on the board shall send a code back via the
data bus lines.” ([APP, Y5], Page 42) is a satisfactorily defined function;

“If all diagnostic tests are passed, then this algorithm shall light the MAINT LED for
approximately one second” ([APP, Y5], Page 45) is a satisfactorily defined function;

“There shall be a delay between updates to give the communication μp time to access the Dual
Port Ram” ([APP, Y1], Page 39) is a non-satisfactorily defined function since the duration of the
delay time is not specified.

9.2.2 B2: Number of Functions

Within the context of the COM measurement, a function is a defined objective or characteristic
action in the software requirement specification (SRS) that is usually involved in processing
input(s) and/or generating output(s).

The defined objective or characteristic action is identified by analyzing the functional
specifications at the word phrase level.

The following rules apply when identifying individual functions:

1. The Functional Requirements Section of the SRS is used to identify functions for this

measure.
2. If there is no separate Functional Requirements Section, then use the requirements in the

SRS that describe the inputs, processing, and outputs of the software. These are usually
grouped by major functional description, sub-functions, and sub-processes.

113

3. Functions may also be displayed in data-related or object-oriented diagrams. In flow
diagrams, functions are usually shown as ovals with arrows showing data flow or
function inputs and outputs.

4. Each functional requirement is counted as a function. A functional requirement has the
following characteristics:
1. A function is the lowest-level characteristic of the software that usually has an

input, processing, and an output.
2. It is the most fundamental and testable characteristic and action that takes place in

processing the inputs and generating the outputs. The inputs or outputs may be
other functions, or inputs or outputs to the software system

3. A functional requirement generally takes the form of a “noun-modal verb-action
verb-object” sentence segment. The modal verb is usually a “shall,” “should,”
“may,” or “will” statement.

4. A descriptive statement whose prototypical verb is a descriptive word, such as
“contain,” “indicate,” “consider,” and “include,” is NOT a function.

5. Compound sentence segments (joined with and, or, etc.) may describe separate
functions.

6. A chart or graphic may define one or more functions.
7. A function may be implied. Such a function would not meet the requirement for a

satisfactorily defined function.

Each functional specification is expressed as a fundamental and uncomplicated statement. Each
function must be uniquely identified (usually numbered). Uniqueness is facilitated by the use of
a consistent and logical scheme for assigning identification to each functional specification
statement within the requirements document.

Non-functional requirements, as described in [IEEE, 1988], do not describe what the software
will do, but how the software will perform the functions. Most of the non-functional
requirements are not as important as the functional requirements. Typical non-functional
requirements include:

 Performance Requirements (throughput, response time, transit delay, latency, etc.)
 Design Constraints
 Availability Requirements
 Security Requirements
 Maintainability Requirements
 External Interface Requirements
 Usability requirements (ease-of-use, learnability, memorability, efficiency, etc.)
 Configurability requirements
 Supportability requirements
 Correctness requirements
 Reliability requirements
 Fault tolerance requirements
 Operational scalability requirements (including support for additional users or

sites, or higher transaction volumes)
 Localizability requirements (to make adaptations due to regional differences)

114

 Extensibility requirements (to add unspecified future functionality)
 Evolvability requirements (to support for new capabilities or ability to exploit

new technologies)
 Composability requirements (to compose systems from plug-and-play

components)
 Reusability—requirements
 System Constraints. (e.g., hardware and OS platforms to install the software, or

legacy applications, or in the form of organizational factors or the process that the
system will support.)

 User Objectives, Values and Concerns.

Normally, non-functional requirements are not considered while counting functions. However, in
certain cases, non-functional requirements hide what really are functional requirements and may
describe characteristics that are critical to safety and reliability, such as response time. These
special cases should be identified by the analyst and included in the function count. Following
are rules for counting functions implied in the non-functional requirements:

 A function in the non-functional requirements generally takes the form of a
“noun-modal verb-action verb-object” sentence segment. The modal verb is
usually a “shall,” “should,” “may,” or “will” statement.

 A descriptive statement whose prototypical verb is a descriptive word, such as
“contain,” “indicate,” “consider,” and “include,” is NOT a function.

 Compound sentence segments (joined with and, or, etc.) may describe separate
functions.

 A chart or graphic may define one or more functions.

The counting rule for B2 (the number of functions) is to count all of the individual functions
identified by the above rules.

The following are samples of functional and non-functional requirements:

“After power-up or reset, the CPU begins code execution from location 0000H” ([APP, Y5],
Page 22) is a functional requirement;

“Upon a module power-up all table contents shall be reset to zero and then copied to specified
locations in external RAM” ([APP, Y5], Page 25) is a functional requirement which defines two
functions;

“This algorithm shall send a refresh signal to the watchdog timer” ([APP, Y5], Page 52) is a
functional requirement;

“Time update variable shall contain eight bytes of data that represent the current data and time”
([APP, Y5], Page 54) is NOT a functional requirement since it is a descriptive statement;

115

“Memory mapping of the Dual Port Rams memory locations shall be specified in both safety μp
and the communication Software Design Documents” ([APP, Y5], page 52) is NOT a functional
requirement since it is a design requirement.

9.2.3 B3: Number of Data References Not Having an Origin

Within the context of the COM measurement, a data reference origin is the source of the data
that is manipulated by the data reference. The origin of a data is either a system input or an
outcome of other functions.

A data reference has an origin if and only if all data manipulated by this data reference have an
identified source(s).

The counting rule for B3 (the number of data references not having an origin) is to count all of
the identified individual data references that do not have an origin.

The following are samples of data references with and without data origin:

“The algorithm shall restore the data back to the two tested memory locations” ([APP, Y5], Page
33) is a data reference with an origin since the data is provided by another function. “Contents of
the two data memory locations shall be stored in two CPU registers” ([APP, Y5], Page 33);

The data reference “Contents of the two data memory locations shall be stored in two CPU
registers” ([APP, Y5], Page 33) has no data origin since no source provides the data “contents of
the two data memory locations” (there is no statement to specify how to determine the memory
locations).

9.2.4 B4: Number of Data References

Within the context of the COM measurement, a data reference is a function that manipulates
either internal or external data.

The counting rule for B4 (the number of data references) is to count all of the individual data
references identified by the above rules.

The following are samples of data references:

“The next step is to write the complement of the first byte to the first memory location and the
complement of the second byte to the second location” ([APP, Y5], Page 33) is a data reference
since it manipulates four data items: “the complement of the first byte,” “the complement of the
second byte,” “the first memory location,” and “the second location;”

“The algorithm shall restore the data back to the two tested memory locations” ([APP, Y5], Page
33) is a data reference;

116

“After power-up or reset, the CPU begins code execution from location 0000H” ([APP, Y5],
Page 22) is NOT a data reference since it does not manipulate any data.

9.2.5 B5: Number of Defined Functions Not Used

Within the context of the COM measurement, a used function is a function that is either
employed in the control flow or referenced by other used functions. Contrast this with a non-used
function that is defined but neither employed in the control flow nor referenced by any other
used function.

Refer to Section 9.2.2 for the definition of a function.

The counting rule for B5 (the number of defined functions not used) is to count all of the
identified individual non-used functions.

The following are samples of used and non-used functions:

“This algorithm shall enter a loop which attempts to access the rights to the Semaphores for both
Dual Port RAMs” ([APP, Y5], Page 45) is a used function since it is employed in the control
flow;

The implied function “Allocate two separate bytes in external RAM” is a used function since it is
referred by the used function “This algorithm shall read the hardwired code (one byte) and store
the value in two separate bytes in external RAM” ([APP, Y5], Page 29);

“Next, the algorithm shall compare the lower five bits of the two safety μp to the hardware code
stored in RAM and the identification code obtained from the Identity Chip visible on the module
font panel” ([APP, Y5], Page 45) is a used function since it is referred by the used function “if
the codes corresponds, then this algorithm shall write 55H to the 1 Function ID Status and 2
Function ID Status in the APP status table” ([APP, Y5], Page 45–46).

“Steps have to be taken to ensure that the program keeps track of which bank is being used.”
([APP, Y5], Page 24) is a non-used function since it is neither employed in the control flow nor
referred by any used function.

9.2.6 B6: Number of Defined Functions

Within the context of the COM measurement, a defined function is a function that is explicitly
stated in the SRS. Contrast this with an implied function that is referenced but not defined.

Refer to Section 9.2.2 for the definition of a function.

The counting rule for B6 (the number of defined functions) is to count all defined functions
identified by the above rules.

The following are samples of defined and implied functions:

117

In statement “This algorithm shall read the hardwired code (one byte) and store the value in two
separate bytes in external RAM” ([APP, Y5], Page 29) there are two defined functions: “read the
hardwired code (one byte)” and “store the value in two separate bytes in external RAM;”

The statement “This algorithm shall read the hardwired code (one byte) and store the value in
two separate bytes in external RAM” ([APP, Y5], Page 29) implies an undefined function
“Allocate two separate bytes in external RAM” since this function is not stated, but is required.

9.2.7 B7: Number of Referenced Functions Not Defined

Refer to Section 9.2.6 for the definition of a defined function and Section 9.2.8 for the definition
of a referenced function.

The counting rule for B7 (the number of referenced functions not defined) is to count all of the
individual referenced and non-defined functions.

9.2.8 B8: Number of Referenced Functions

Within the context of the COM measurement, a referenced function is a function that is
referenced by any other functions within the same SRS.

Refer to Section 9.2.2 for the definition of a function.

The counting rule for B8 (the number of referenced functions) is to count all of the individual
referenced functions identified by the above rules.

The following are samples of referenced functions:

In statement “If all diagnostic tests are passed, then this algorithm shall light the MAINT LED
for approximately one second” ([APP, Y5], Page 45), “diagnostic tests” are referred functions
since they are referred by the function “this algorithm shall light the MAINT LED for
approximately one second;”

In statement “Upon completing the Initialization procedures above, the code execution shall
proceed to the Power-Up Self Tests.” ([APP, Y5], Page 30) There are two functions which are
referred: the “Initialization” function and the “Power-Up Self Tests” function.

9.2.9 B9: Number of Decision Points Missing Any Conditions

Refer to Section 9.2.10 for the definition of a decision point and to Section 9.2.12 for the
definition of a decision point condition.

The counting rule for B9 (the number of decision points missing any condition) is to count all of
the identified individual decision points in which a condition is missing.

118

9.2.10 B10: Number of Decision Points

Within the context of the COM measurement, a decision point is a process element that routes
the system to one of several alternative outgoing paths, depending on its condition(s). In the
requirement statements, the keywords, such as “ = ”, “ < ,” “ > ”, “compare,” “verify” and
“check,” usually imply the existence of a decision point.

The counting rule for B10 (the number of decision points) is to count all of the identified
individual decision points.

The following are samples of decision points:

“This algorithm shall compare the 5-bit codes sent from the safety μp to the code stored in the
Identity Chip and the code hardwired to the module backplane connector” ([APP, Y5], Page 31)
is a decision point;

“This algorithm shall read back the data in the data in the failure address line and then the base
address data and compare the two values to check if the data are complements of each other”
([APP, Y5], Page 36) is a decision point.

9.2.11 B11: Number of Condition Options Having No Processing

Within the context of the COM measurement, a condition option is processed if a function is
defined to take over the control flow given that the condition option is taken. Contrast this with
an unprocessed condition option that no function is not defined to be in charge of the control
flow.

Refer to Section 9.2.12 for the definition of a condition option.

The counting rule for B11 (the number of condition options having no processing) is to count all
of the unprocessed condition options.

The following is an example of processed and unprocessed condition options:

The statements “This algorithm shall read the status flags generated by the On-Line Diagnostics.
If a test status flag contains the value 55H, this shall...” ([APP, Y5], Page 49) imply four decision
points, corresponding to the values taken by each of four test status flags: RAM Diagnostic Test
Status Flag, Data Bus Lines Diagnostic Test Status Flag, Address Bus Lines Diagnostic Test
Status Flag, and PROM Checksum Diagnostic Test Status Flag. The condition related to each
decision point is “if the value of the test status flag is 55H.” The options within each condition
are “55H” and “other values.” Option “55H” is processed since descendant functions are defined
to handle this option (e.g., “read trip outputs”). However, option “other values” is unprocessed
since there is no function defined to handle this option.

119

9.2.12 B12: Number of Condition Options

For the COM measure, a condition in a decision point is a leaf-level expression that cannot be
broken down into a simpler expression. A condition option is one of the possible results
determined by the condition.

The counting rule for B12 (the number of condition options) is to count the condition options of
all identified individual conditions.

The following are samples of conditions and their condition options:

In the decision point “This algorithm shall compare the 5-bit codes sent from the safety μp to the
code stored in the Identity Chip and the code hardwired to the module backplane connector”
([APP, Y5], Page 31), the condition is “if the two codes match or not;” the condition options are
“the two codes match” and “the two codes mismatch;”

The statements “This algorithm shall read the status flags generated by the On-Line Diagnostics.
If a test status flag contains the value 55H, this shall...” ([APP, Y5], Page 49) imply four decision
points, corresponding to the values taken by each of four test status flags: RAM Diagnostic Test
Status Flag, Data Bus Lines Diagnostic Test Status Flag, Address Bus Lines Diagnostic Test
Status Flag, PROM Checksum Diagnostic Test Status Flag. The condition related to each
decision point is “if the value of the test status flag is 55H.” The options within each condition
are “55H” and “other values.”

9.2.13 B13: Number of Calling Routines Whose Parameters Do Not Agree with the
Called Routines Defined Parameters

Refer to Section 9.2.14 for the definitions of a calling routine, a called routine.

The counting rule for B13 is to count the number of calling routines which can be separately
identified and whose parameters do not agree with the parameters defined in the routines being
called.

9.2.14 B14: Number of Calling Routines

Within the context of the COM measurement, a routine is a set of sequential functions. A routine
is usually bulleted as a functional section in the SRS. A calling routine is a routine referring to
other routine(s). A called routine is a routine referred by other routine(s).

The counting rule for B14 (the number of calling routines) is to count the calling routines which
can be separately identified.

The following are samples of routines, calling routines and called routines:

“Check Diagnostic Test Status” ([APP, Y5], Page 49) is a routine since it consists of quite a few
defined functions, such as “read the status flags generated by the On-Line Diagnostics,” and

120

“stay in a loop which refreshes the watchdog timer and responds to the master station when
polled;” However, it is neither a calling routine nor a called routine.

In routine “On-Line Diagnostics” ([APP, Y5], Page 53), a function is defined as “bring the
system program CPU operation back to the Main Program.” Obviously, the routine “Main
Program” ([APP, Y5], Page 47) is called. Therefore, “On-Line Diagnostics” is a calling routine,
and “Main Program” is the called routine.

9.2.15 B15: Number of Condition Options Not Set

Within the context of the COM measurement, a condition option is set if it is defined (explicitly
stated) in the SRS. Contrast this with an unset condition option that is not defined.

Refer to Section 9.2.12 for the definition of a condition option.

The counting rule for B15 (the number of condition options not set) is to count the number of
unset condition options of all identified conditions.

The following is an example of set and unset condition options:

The statements “This algorithm shall read the status flags generated by the On-Line Diagnostics.
If a test status flag contains the value 55H, this shall...” ([APP, Y5], Page 49) imply four decision
points, corresponding to the values taken by each of four test status flags: RAM Diagnostic Test
Status Flag, Data Bus Lines Diagnostic Test Status Flag, Address Bus Lines Diagnostic Test
Status Flag, and PROM Checksum Diagnostic Test Status Flag. The condition related to each
decision point is “if the value of the test status flag is 55H.” The options within each condition
are “55H” and “other values.” Option “55H” is set since it is explicitly stated, and option “other
values” is unset since it is implied by using common sense.

9.2.16 B16: Number of Set Condition Options Having No Processing

Refer to Section 9.2.17 for the definition of a set condition option and Section 9.2.11 for .the
definition of a processed condition option.

The counting rule for B16 (the number of set condition options having no processing) is to count
the number of unprocessed condition options which are set.

9.2.17 B17: Number of Set Condition Options

Refer to Section 9.2.15 for the definition of a set condition option.

The counting rule for B17 (the number of set condition options) is to count the number of
condition options related to all the conditions identified. B17 = B12 - B15.

121

9.2.18 B18: Number of Data References Having No Destination

Within the context of the COM measurement, a data reference destination is a place to which the
outcome of the data reference is sent. The destination of a data is either a system output or an
input of other functions.

A data reference has a destination if and only if all output data generated by this data reference
have destination(s).

The counting rule for B18 (the number of data references having no destination) is to count the
number of data references having no destination.

The following are samples of data references with and without destination:

The data reference “Contents of the two data memory locations shall be stored in two CPU
registers” (CP System SRS document, Page 33) has a destination since its outcome is used by
another function “The algorithm shall restore the data back to the two tested memory locations”
(CP System SRS document, Page 33);

The data reference “Read data block size” ([APP, Y5], Page 57) has no destination since the
“data block size” is not used by any other function.

9.2.19 Measurement Procedure

The purpose of the COM measurement is to identify defects (incomplete functional
requirements) in the SRS and thereby estimate the software reliability.

An incompleteness defect in a software requirement specification (SRS) is one of the following:

1. An incomplete function:
 An unsatisfactorily defined function; or
 A defined function which is not used; or
 A referenced function which is not defined; or
 A data reference not having an origin; or
 A data reference not having a destination.

2. An incomplete decision point:

 A decision point missing a condition(s); or
 A condition option not set; or
 A condition option not processed.

3.
3. An incomplete calling routine:

 A calling routine whose parameters disagree with the called routine’s defined
parameters.

Incompleteness defects in an SRS can be identified using the procedure shown in Figure 9.1.

122

Figure 9.2 presents the procedure to be followed to identify incomplete functions.

Figure 9.3 presents the procedure to be followed to identify incomplete decision points. The
procedure to be followed to identify incomplete calling routines is shown in Figure 9.4

Figure 9.1 Procedure for Identifying Incompleteness Defects in the SRS

Read the SRS (general description sections)

Parse the functional sections of the SRS and
identify all defined/referenced functions,

decisions points, and calling routines

Parse the non-functional sections of the SRS
and identify all defined/referenced

functions

For each function, determine if it is complete or not.
An incomplete function is a defect.

For each decision point, determine if it is complete or not.
An incomplete decision point is a defect.

For each calling routine, determine if its parameters
disagree with those defined by the called routine or not.

An incomplete calling routine is a defect.

Document the results

End

Start

123

No

Yes

This is an incomplete
function

Is it defined ?

Is it satisfactorily
defined ?

Start

End

Is it used /
referred?

Yes

Is it a data
reference ?

Yes

This is a complete
function

No

Yes
Are all data defined before they
are used by this data reference ?

Are its outputs used by
other function ?

Yes

Yes No

No

No

No

Figure 9.2 Procedure for Identifying Incomplete Functions in the SRS

Yes

No

This is an incomplete decision point

Is any condition
missing?

Are all conditions set?

Start

End

Are all condition options
processed?

Yes

This is a complete decision point

Yes

No

No

Figure 9.3 Procedure for Identifying Incomplete Decision Points in the SRS

124

No

The calling routine is incomplete

Are all parameters defined in the
called routine ?

Start

End

Yes

The calling routine is complete

No

Identify all parameters needed to perform the called routine

Are all parameters defined before the calling
routine makes a call to the called routine?

Yes

Figure 9.4 Procedure for Identifying Incomplete Calling Routines in the SRS

9.3 Measurement Results

 The following documents were used to measure requirement completeness:

 APP Module μp1 System SRS [APP, Y1]
 APP Module μp1 Flux/Delta Flux/Flow Application SRS [APP, Y2]
 APP Module μp2 System SRS [APP, Y3]
 APP Module μp2 Flux/Delta Flux/Flow Application SRS APP Y4]
 APP Module Communication Processor SRS [APP, Y5]

The primitives are presented in Table 9.1.

125

Table 9.1 Primitives for APP Modules

Primitive

APP Module

CP
System

μp1
System

μp1
Application

μp2
System

μp2
Application

B1 14 19 3 5 4

B2 190 301 61 218 29

B3 2 8 0 4 0

B4 138 225 60 184 25

B5 9 8 0 0 0

B6 182 292 60 218 25

B7 7 4 1 0 4

B8 125 93 40 74 20

B9 2 1 0 0 0

B10 28 28 11 52 6

B11 2 1 1 0 0

B12 63 57 34 110 20

B13 0 1 0 0 0

B14 18 26 1 7 0

B15 2 1 2 0 0

B16 0 1 0 0 0

B17 63 56 32 110 20

B18 3 5 0 0 0

Table 9.2 lists the weights, derived measures, and COM measures for the APP modules.

126

Table 9.2 Weights, Derived Measures, and COM Measures for the APP Modules

Weight,
wi

22
Derived
Measure

APP Module

CP
System

μp1
System

μp1
Applicatio

n

μp2
System

μp2
Applicatio

n

w1 = 0.2 D1 0.926316 0.93688 0.95082 0.97706 0.862069

w2 = 0.1 D2 0.985507 0.96444 1 0.97826 1

w3 = 0.05 D3 0.950549 0.9726 1 1 1

w4 = 0.1 D4 0.944 0.95699 0.975 1 0.8

w5 = 0.1 D5 0.928571 0.96875 1 1 1

w6 = 0.05 D6 0.968254 0.98508 0.970588 1 1

w7 = 0.2 D7 1 0.96154 1 1 1

w8 = 0.05 D8 0.968254 0.95522 0.941176 1 1

w9 = 0.05 D9 1 0.98438 1 1 1

w10 = 0.1 D10 0.978261 0.97778 1 1 1

COM 0.96325 0.9613 0.98325 0.99315 0.95241

The value of COM can be used as an indicator of the quality of an SRS. However, it should be
made clear that the value of COM is partly subjective since the weights and the primitives are
determined subjectively.

The identified incompleteness defects with severity level 1 and level 2 are summarized in
Table 9.3. These defects are also categorized according to the operational modes to which they
belong.

22 These weights were obtained through expert opinion elicitation. The experts consisted of two software developers and a
software reliability expert.

127

Ta
bl

e
9.

3
Su

m
m

ar
y

of
 D

ef
ec

ts
 w

ith
 S

ev
er

ity
 L

ev
el

 1
 a

nd
 2

 F
ou

nd
 in

 th
e

SR
Ss

 o
f t

he
 A

PP
 S

ys
te

m

D
ef

ec
t

N
o.

S

R
S

S

ec
ti

on

In
d

ex

in
 S

R
S

O
p

er
at

in
g

M
od

e
F

u
n

ct
io

n

D
es

cr
ip

ti
on

In

co
m

p
le

te
n

es
s

T
yp

e
S

ev
er

it
y

le
ve

l

D
ef

ec
t

F
ix

ed
 in

 t
h

e
co

d
e?

W
h

er
e

is
 t

he
 d

ef
ec

t
fi

xe
d

 in
 t

h
e

so
u

rc
e

co
d

e?

1

C
P

S

ys
te

m

S
R

S

3.
1.

6
P

ow
er

-o
n

A
ll

oc
at

e
tw

o
se

pa
ra

te
 b

yt
es

in

 e
xt

er
na

l
R

A
M

R
ef

er
en

ce
d

fu
nc

ti
on

 is
 n

ot

de
fi

ne
d

2
Y

es

 [
A

P
P

, Y
10

],
 P

ag
e

13
, l

in
e

7–
8

2
3.

2.
1

P
ow

er
-o

n

S
ta

rt
 f

ro
m

 th
e

to
p

m
em

or
y

ad
dr

es
s

to

pe
rf

or
m

 R
A

M

te
st

D
at

a
re

fe
re

nc
e

do
es

 n
ot

 h
av

e
or

ig
in

2

N
o

 (
In

 th
e

so
ur

ce
 c

od
e,

 R
A

M

te
st

in
g

st
ar

ts
 f

ro
m

 th
e

lo
w

es
t

ad
dr

es
s.

)
[A

P
P

, Y
10

],
 P

ag
e

18
,

li
ne

 1
3

3
3.

2.
3

P
ow

er
-o

n

S
ta

rt
 a

t t
he

lo

w
es

t a
dd

re
ss

li

ne
s

to
 p

er
fo

rm

A
dd

re
ss

 L
in

e
te

st

D
at

a
re

fe
re

nc
e

do
es

 n
ot

 h
av

e
or

ig
in

2

Y
es

 [

A
P

P
, Y

10
],

 P
ag

e
18

, l
in

e
14

4
3.

2.
8

P
ow

er
-o

n
Ju

dg
e

if
 b

ot
h

sa
fe

ty
 f

un
ct

io
ns

ar

e
ch

ec
ke

d

R
ef

er
en

ce
d

fu
nc

ti
on

 is
 n

ot

de
fi

ne
d

1
Y

es

 [
A

P
P

, Y
10

],
 P

ag
e

20
, l

in
e

30
–5

4

5
3.

3.
1

N
or

m
al

Ju

dg
e

if
 a

ll

fl
ag

s
ar

e
re

ad

or
 n

ot

R
ef

er
en

ce
d

fu
nc

ti
on

 is
 n

ot

de
fi

ne
d

1
Y

es

 [
A

P
P

, Y
10

],
 P

ag
e

26
, l

in
e

11
–1

6

128

Ta
bl

e
9.

3
 S

um
m

ar
y

of
 D

ef
ec

ts
 w

ith
 S

ev
er

ity
 L

ev
el

 1
 a

nd
 L

ev
el

 2

Fo
un

d
in

 th
e

SR
Ss

 o
f t

he
 A

PP
 S

ys
te

m
 (c

on
tin

ue
d)

D
ef

ec
t

N
o.

S

R
S

S

ec
ti

on

In
d

ex
 in

S

R
S

O
p

er
at

in
g

M
od

e
F

u
n

ct
io

n

D
es

cr
ip

ti
on

In

co
m

p
le

te
n

es
s

T
yp

e
S

ev
er

it
y

le
ve

l

D
ef

ec
t

F
ix

ed
 in

 t
h

e
co

d
e?

W
h

er
e

is
 t

he
 d

ef
ec

t
fi

xe
d

 in

th
e

so
u

rc
e

co
d

e?

6

C
P

S

ys
te

m

S
R

S

3.
3.

1
N

or
m

al

If
 n

ot
 a

ll
 f

la
gs

ar

e
re

ad
, r

ea
d

ne
xt

 f
la

g

R
ef

er
en

ce
d

fu
nc

ti
on

 is
 n

ot

de
fi

ne
d

1
N

o
 [

A
P

P
, Y

10
],

 P
ag

e
26

, l
in

e
11

–1
6

7
3.

3.
1

C
al

ib
ra

ti
on

/
T

un
in

g

If
 a

 T
es

t s
ta

tu
s

fl
ag

 c
on

ta
in

s
th

e
va

lu
e

55
H

,
th

is
 s

ha
ll

in

di
ca

te
 th

at
 th

e
te

st
 h

as
 p

as
se

d.

C
on

di
ti

on

op
ti

on
 h

as
 n

o
pr

oc
es

si
ng

1

N
o

In
 B

in
de

r
#4

, C
P

 s
ou

rc
e

co
de

do

cu
m

en
t,

pa
ge

 2
6,

 li
ne

 1
1–

16
, o

nl
y

T
es

t s
ta

tu
s

fl
ag

 =
=

B

B
H

 is
 c

he
ck

ed
; n

am
el

y,
 a

ny

va
lu

e
12

8
de

fi
ne

d)
 is

 to
 c

ou
nt

al

l o
f

th
e

in
di

vi
du

al
 r

ef
er

en
ce

d
an

d
no

8
3.

3.
3

C
al

ib
ra

ti
on

/
T

un
in

g

If
 s

w
it

ch
 li

ne

re
se

t,
ju

dg
e

w
hi

ch
 m

od
e

se
le

ct
ed

R
ef

er
en

ce
d

fu
nc

ti
on

 is
 n

ot

de
fi

ne
d

1
Y

es

 [
A

P
P

, Y
10

],
 P

ag
e

26
, l

in
e

20
–2

1

9
3.

3.
3

C
al

ib
ra

ti
on

/
T

un
in

g

Ju
dg

e
if

 th
e

C
yc

le
 M

on
it

or

fl
ag

 =
 5

5H

C
on

di
ti

on

op
ti

on
 h

as
 n

o
pr

oc
es

si
ng

1

Y
es

 [

A
P

P
, Y

10
],

 p
ag

e
26

, l
in

e
47

129

Ta
bl

e
9.

3
Su

m
m

ar
y

of
 D

ef
ec

ts
 w

ith
 S

ev
er

ity
 L

ev
el

 1
 a

nd
 L

ev
el

 2

Fo
un

d
in

 th
e

SR
Ss

 o
f t

he
 A

PP
 S

ys
te

m
 (c

on
tin

ue
d)

D
ef

ec
t

N
o.

S

R
S

S

ec
ti

on

In
d

ex
 in

S

R
S

O
p

er
at

in
g

M
od

e
F

u
n

ct
io

n

D
es

cr
ip

ti
on

In

co
m

p
le

te
n

es
s

T
yp

e
S

ev
er

it
y

le
ve

l
D

ef
ec

t
F

ix
ed

in

 t
h

e
co

d
e?

W
h

er
e

is
 t

he
 d

ef
ec

t
fi

xe
d

 in

th
e

so
u

rc
e

co
d

e?

10

C
P

S

ys
te

m

S
R

S

3.
3.

3
C

al
ib

ra
ti

on
/

T
un

in
g

Ju
dg

e
if

 k
ey

lo

ck
 s

w
it

ch
 is

m

ov
ed

 f
ro

m
 th

e
T

E
S

T
 p

os
it

io
n

R
ef

er
en

ce
d

fu
nc

ti
on

 is
 n

ot

de
fi

ne
d

1
Y

es

 [
A

P
P

, Y
10

],
 p

ag
e

26
, l

in
e

10
0–

10
1

11

μp
1

S
ys

te
m

S

R
S

3.
2

P
ow

er
-o

n
C

al
l a

di

ag
no

st
ic

 te
st

N
o

pa
ra

m
et

er
 is

de

fi
ne

d
fo

r
C

al
li

ng
 r

ou
ti

ne

1
Y

es

 [
A

P
P

, Y
6]

,
μp

1
sy

st
em

so

ur
ce

 c
od

e
do

cu
m

en
t,

pa
ge

23

, l
in

e
13

12

3.
2.

1
P

ow
er

-o
n

S
ta

rt
 f

ro
m

 th
e

to
p

m
em

or
y

ad
dr

es
s

to

pe
rf

or
m

 R
A

M

te
st

D
at

a
re

fe
re

nc
e

do
es

 n
ot

 h
av

e
an

or

ig
in

2

N
o

 (
In

 th
e

so
ur

ce
 c

od
e,

 R
A

M

te
st

in
g

st
ar

ts
 f

ro
m

 th
e

lo
w

es
t

ad
dr

es
s.

)
[A

P
P

, Y
6]

, p
ag

e
25

,
li

ne
 3

6
an

d
pa

ge
 9

2,
 li

ne
 1

0

13

3.
2.

4
P

ow
er

-o
n

S
ta

rt
 f

ro
m

 th
e

lo
w

es
t m

em
or

y
ad

dr
es

s
to

pe

rf
or

m

A
dd

re
ss

 L
in

e
te

st

D
at

a
re

fe
re

nc
e

do
es

 n
ot

 h
av

e
an

or

ig
in

2

Y
es

 [

A
P

P
, Y

6]
, p

ag
e

29
, l

in
e

18
–

24

130

Ta
bl

e
9.

3
Su

m
m

ar
y

of
 D

ef
ec

ts
 w

ith
 S

ev
er

ity
 L

ev
el

 1
 a

nd
 L

ev
el

 2

Fo
un

d
in

 th
e

SR
Ss

 o
f t

he
 A

PP
 S

ys
te

m
 (c

on
tin

ue
d)

D
ef

ec
t

N
o.

S

R
S

S

ec
ti

on

In
d

ex
 in

S

R
S

O
p

er
at

io
n

al
M

od
e

F
u

n
ct

io
n

D

es
cr

ip
ti

on

In
co

m
p

le
te

n
es

s
T

yp
e

S
ev

er
it

y
le

ve
l

D
ef

ec
t

F
ix

ed
 in

 t
h

e
co

d
e?

W
h

er
e

is
 t

he
 d

ef
ec

t
fi

xe
d

 in

th
e

so
u

rc
e

co
d

e?

14

μp
1

S
ys

te
m

S

R
S

3.
2.

4
P

ow
er

-o
n

In
cr

ea
se

 s
ta

tu
s

co
un

te
r

D
at

a
re

fe
re

nc
e

do
es

 n
ot

 h
av

e
an

or

ig
in

1

Y
es

 [

A
P

P
, Y

6]
, p

ag
e

17
, l

in
e

31

15

3.
2.

7
P

ow
er

-o
n

If
 n

ot
 a

ll
 b

oa
rd

s
te

st
ed

, i
de

nt
if

y
ne

xt
 b

oa
rd

D
at

a
re

fe
re

nc
e

do
es

 n
ot

 h
av

e
an

or

ig
in

1

Y
es

 [

A
P

P
, Y

6]
, p

ag
e

37
, l

in
e

6–
49

16

3.
2.

9
P

ow
er

-o
n

C
om

pa
re

m

ed
ia

n
w

it
h

pr
e-

st
or

ed

va
lu

e

D
at

a
re

fe
re

nc
e

do
es

 n
ot

 h
av

e
an

or

ig
in

1

Y
es

 [

A
P

P
, Y

6]
, p

ag
e

38
, t

he
 la

st

tw
o

li
ne

s

17

3.
3.

1
N

or
m

al

“A
 B

B
H

 te
st

re

su
lt

 s
ho

ul
d

in
di

ca
te

 a
 te

st

fa
il

ur
e

w
hi

ch
 is

co

ns
id

er
ed

 to

be
 f

at
al

fa

il
ur

e.
”

C
on

di
ti

on

op
ti

on
 h

as
 n

o
pr

oc
es

si
ng

1

N
o

 [
A

P
P

, Y
6]

, p
ag

e
22

, l
in

e
20

–
28

, o
nl

y
T

es
t s

ta
tu

s
fl

ag
 !

=

55
H

 is
 c

he
ck

ed
; n

am
el

y,
 a

ny

va
lu

e
ot

he
r

th
an

 5
5H

 is
 tr

ea
te

d
as

 B
B

H
 b

y
de

fa
ul

t.
H

ow
ev

er
,

th
is

 tr
ea

tm
en

t i
s

re
ga

rd
ed

 a
s

a
fa

il
-s

af
e

de
si

gn
.

131

Ta
bl

e
9.

3
Su

m
m

ar
y

of
 D

ef
ec

ts
 w

ith
 S

ev
er

ity
 L

ev
el

 1
 a

nd
 L

ev
el

 2

Fo
un

d
in

 th
e

SR
Ss

 o
f t

he
 A

PP
 S

ys
te

m
 (c

on
tin

ue
d)

D
ef

ec
t

N
o.

S

R
S

S

ec
ti

on

In
d

ex
 in

S

R
S

O
p

er
at

in
g

M
od

e

F
u

n
ct

io
n

D

es
cr

ip
ti

on

In
co

m
p

le
te

n
es

s
T

yp
e

S
ev

er
it

y
le

ve
l

D
ef

ec
t

F
ix

ed
 in

 t
h

e
co

d
e?

W
h

er
e

is
 t

he
 d

ef
ec

t
fi

xe
d

 in

th
e

so
u

rc
e

co
d

e?

18

μp
1

S
ys

te
m

S

R
S

3.
3.

2
N

or
m

al

C
he

ck
 if

 a
ny

S

em
ap

ho
re

av

ai
la

bl
e

R
ef

er
en

ce
d

fu
nc

ti
on

 is
 n

ot

de
fi

ne
d

1
Y

es

 [
A

P
P

, Y
6]

, p
ag

e
67

, l
in

e
9

19

3.
3.

3
C

al
ib

ra
ti

on
/

T
un

in
g

Ju
dg

e
if

 p
or

t
li

ne
 is

 r
es

et

R
ef

er
en

ce
d

fu
nc

ti
on

 is
 n

ot

de
fi

ne
d

1
Y

es

 [
A

P
P

, Y
6]

, p
ag

e
10

, l
in

e
44

20

3.
3.

3
A

C

al
ib

ra
ti

on
/

T
un

in
g

O
bt

ai
n

ac
ce

ss

ri
gh

ts
 to

 th
e

D
P

R

R
ef

er
en

ce
d

fu
nc

ti
on

 is
 n

ot

de
fi

ne
d

1
Y

es

 [
A

P
P

, Y
6]

, p
ag

e
10

, l
in

e
42

an

d
67

, l
in

e
13

21

μp
1

A
pp

li
ca

-
ti

on
 S

R
S

3.

2
N

or
m

al

C
he

ck
 if

 a
 T

ri
p

ha
s

oc
cu

rr
ed

an

d
re

m
ov

ed

R
ef

er
en

ce
d

fu
nc

ti
on

 is
 n

ot

de
fi

ne
d

1
Y

es

 [
A

P
P

, Y
7]

, p
ag

e
10

, l
in

e
13

–
20

22

μp
2

S
ys

te
m

S

R
S

3.
1.

2
P

ow
er

-o
n

Ju
dg

e
if

 to
ta

l
su

m
 =

pr

ed
et

er
m

in
ed

su

m

(P
R

O
M

)

D
at

a
re

fe
re

nc
e

do
es

 n
ot

 h
av

e
an

or

ig
in

1

Y
es

 [
A

P
P

, Y
8]

, p
ag

e
31

, l
in

e
9

23

3.
1.

2
P

ow
er

-o
n

Ju
dg

e
if

 to
ta

l
su

m
 =

 p
re

-
de

te
rm

in
ed

su

m

(E
E

P
R

O
M

)

D
at

a
re

fe
re

nc
e

do
es

 n
ot

 h
av

e
an

or

ig
in

1

Y
es

 [
A

P
P

, Y
8]

, p
ag

e
32

, l
in

e
13

132

Ta
bl

e
9.

3
Su

m
m

ar
y

of
 D

ef
ec

ts
 w

ith
 S

ev
er

ity
 L

ev
el

 1
 a

nd
 L

ev
el

 2

Fo
un

d
in

 th
e

SR
Ss

 o
f t

he
 A

PP
 S

ys
te

m
 (c

on
tin

ue
d)

D
ef

ec
t

N
o.

S

R
S

S

ec
ti

on

In
d

ex
 in

S

R
S

O
p

er
at

in
g

M
od

e
F

u
n

ct
io

n

D
es

cr
ip

ti
on

In

co
m

p
le

te
n

es
s

T
yp

e
S

ev
er

it
y

le
ve

l
D

ef
ec

t
F

ix
ed

in

 t
h

e
co

d
e?

W
h

er
e

is
 t

he
 d

ef
ec

t
fi

xe
d

 in

th
e

so
u

rc
e

co
d

e?

24

μp
2

S
ys

te
m

S

R
S

3.
1.

2
P

ow
er

-o
n

C
om

pa
re

 th
e

ge
ne

ra
te

d
va

lu
es

 to

kn
ow

n
st

or
ed

va

lu
es

(A

lg
or

it
hm

)

D
at

a
re

fe
re

nc
e

do
es

 n
ot

 h
av

e
an

or

ig
in

1

Y
es

 [
A

P
P

, Y
8]

, p
ag

e
33

, l
in

e
7

an
d

B
in

de
r

#3
, μ

p2

ap
pl

ic
at

io
n

so
ur

ce
 c

od
e

do
cu

m
en

t,
pa

ge
 1

1,
 li

ne
 2

–2
4

25

3.
1.

2
P

ow
er

-o
n

C
om

pa
re

va

lu
es

 to
 s

to
re

d
va

lu
es

(A

na
lo

g
in

pu
t)

D
at

a
re

fe
re

nc
e

do
es

 n
ot

 h
av

e
an

or

ig
in

1

Y
es

 [

A
P

P
, Y

8]
, p

ag
e

34
, l

in
e

13

26

μp
2

A
pp

li
ca

-
ti

on
 S

R
S

3.
1.

3
N

or
m

al

C
al

cu
la

te
 Φ

U

R
ef

er
en

ce
d

fu
nc

ti
on

 is
 n

ot

de
fi

ne
d

1
Y

es

 [
A

P
P

, Y
9]

, p
ag

e
8,

 li
ne

 5

27

3.
1.

3
N

or
m

al

C
al

cu
la

te
 Φ

L

R
ef

er
en

ce
d

fu
nc

ti
on

 is
 n

ot

de
fi

ne
d

1
Y

es

 [
A

P
P

, Y
9]

, p
ag

e
8,

 li
ne

 6

28

3.
1.

3
N

or
m

al

C
al

cu
la

te
 Δ

P
A

R

ef
er

en
ce

d
fu

nc
ti

on
 is

 n
ot

de

fi
ne

d
1

Y
es

 [

A
P

P
, Y

9]
, p

ag
e

8,
 li

ne
 7

29

3.
1.

3
N

or
m

al

C
al

cu
la

te
 Δ

P
B

R

ef
er

en
ce

d
fu

nc
ti

on
 is

 n
ot

de

fi
ne

d
1

Y
es

 [

A
P

P
, Y

9]
, p

ag
e

8,
 li

ne
 8

133

9.4 RePS Construction Using Completeness Measurement

The APP system has four distinct operational modes: Power-on, Normal, Calibration,
and Tuning [APP, 01]. The reliability of the APP system was estimated for each
operational mode using a different Extended Finite State Machine (EFSM) model for
each operational mode as defined in [Smidts, 2004].

The EFSM approach proceeds in three steps:

1. Construction of an EFSM model representing the user’s requirements and

embedding of the user’s operational profile information.
2. Mapping of the identified defects into the EFSM model.
3. Execution of the EFSM model to evaluate the impact of the defects in terms of

failure probability.

Figure 9.5 describes the approach used to estimate reliability. It should be noted that a
defect belongs to only one operational mode.

Figure 9.5 Approach used to estimate Reliability

Start

End

Completeness
Measure

RePS for
Completeness
Measure

Identify incompleteness defects in the five SRSs

Construct four EFSM models that represent the four
operational modes of the system

Divide the incompleteness defects into four categories
according to the operational modes

Map the categorized incompleteness defects into the relevant
EFSM models

Map the OP into the four EFSM models

In TestMaster, run the EFSM models to estimate the reliability
of the system for each of the operational modes

Document the results

134

Reliability estimation per operational mode is shown in Table 9.4 (Column 2 and
Column 3).

Moreover, since some of the defects identified in the SRSs during the COM
measurement might be fixed in later development phases, i.e., design phase and
coding phase, one can use the approach described in Figure 9.5 to estimate software
reliability based on the defects remaining in the source code, as shown in Table 9.4
(Column 4 and Column 5). All the values listed in the table were based on the EFSM
analyses.

Table 9.4 Reliability Estimation for the Four Distinct Operational Modes

Mode

Based on all Severity Level
1 and Level 2 defects found

in SRSs

Based on Severity Level 1 and Level 2
defects found in SRSs and remaining

in the source codes
Pf R Pf R

Power-on 1.000 0.000 0.000 1.000
Normal 2.582e-2 9.742e-1 0.000 1.000

Calibration 1.370e-2 9.863e-1 3.340e-11 1.00023
Tuning 1.370e-2 9.863e-1 3.340e-11 1.00024

Metrics used in the early phases of the development life cycle such as the COM
measure and its derived measures can aid in detecting and correcting requirement
defects.

The value of the COM measure is scaled between 0 and 1 by the appropriate weights.
A score near 1 is considered to be better than a score near 0. Those values near zero
should be highlighted and corresponding areas should be modified accordingly.

Also, the reliability based on Severity Level 1 and Level 2 defects found in SRSs and
remaining in the source code is stated as 1 for the Power-on and Normal modes. This
is because defects will not be triggered in Power-on and Normal mode and will only
be triggered in Calibration and Tuning mode. The reliability based on Severity Level 1
and Level 2 defects found in SRSs and remaining in the source code is also stated as
being 1 for the Calibration and Tuning. This is due to the need for a uniform number
of significant figures in the measurements. The actual value is 0.9999999999666.

23 This is the rounded up number. The actual number is 0.9999999999666.
24 This is the rounded up number. The actual number is 0.9999999999666.

135

9.5 Lessons Learned

As a SRS-based measurement, the measurement process for COM is time-consuming.
A considerable amount of time was spent in manually “parsing” the natural language
of the SRS documents. Table 9.5 summarizes the effort expended to perform this
measurement. The process of manually parsing the SRS is error-prone. The accuracy
of the COM measure is highly dependent on the inspectors. A two-week period of
training on the measurement and significant domain knowledge are required.

Some primitives are subjective, e.g., the number of satisfactorily defined functions.
Repeatability of measurements is not guaranteed. The domain knowledge, physical
status, and other subjective factors, to some extent, highly affect the inspector’s
judgment. Therefore, it is more appropriate to apply this measurement for identifying
defects remaining in the SRS than for quantitatively assessing the quality of the SRS.
Revisiting the defects found through the COM measurement and mapping them to the
source code may significantly increase the chance of finding defects remaining in the
source code.

136

Ta
bl

e
9.

5
Ef

fo
rt

 E
xp

en
de

d
to

 P
er

fo
rm

 th
e

M
ea

su
re

m
en

t o
f C

O
M

 a
nd

 D
er

iv
ed

 M
ea

su
re

s

S
R

S

P
ag

es
 o

f
S

R
S

P
ag

es
 o

f
fu

nc
ti

on
al

S

R
S

T
im

e
fo

r

T
ot

al
 ti

m
e

T
ot

al

nu
m

be
r

of

in
co

m
pl

et
en

es
s

de
fe

ct
s

id
en

ti
fi

ed

in
 th

e
fu

nc
ti

on
al

S

R
S

T
ot

al
 n

um
be

r
of

id

en
ti

fi
ed

in

co
m

pl
et

en
es

s
de

fe
ct

s
re

m
ai

ni
ng

 in
 th

e
so

ur
ce

 c
od

e

R
ea

di
ng

 S
R

S
’

ge
ne

ra
l

de
sc

ri
pt

io
n

se
ct

io
ns

Id
en

ti
fy

in
g

an
d

do
cu

m
en

ti
ng

fu

nc
ti

on
s,

 d
ec

is
io

n
po

in
ts

, a
nd

 c
al

li
ng

ro

ut
in

es

Id
en

ti
fy

in
g

an
d

do
cu

m
en

ti
ng

in

co
m

pl
et

e-
ne

ss
 d

ef
ec

ts

C
P

 S
ys

te
m

S

R
S

72

53

2.

5
hr

s
37

.5
 h

rs

19
.0

 h
rs

59

.0
 h

rs

41
 (

10
)

1
(1

)

μp
1

S
ys

te
m

S

R
S

10

6
70

3.

5
hr

s
56

.0
 h

rs

21
.5

 h
rs

81

.0
 h

rs

48
 (

10
)

0
(0

)

μp
1

A
pp

li
ca

ti
on

S

R
S

23

12

1.

0
hr

s
12

.5
 h

rs

7.
5

hr
s

21
.0

 h
rs

7

(1
)

0
(0

)

μp
2

S
ys

te
m

S

R
S

65

53

1.

5
hr

s
39

.0
 h

rs

18
.0

 h
rs

58

.5
 h

rs

9
(4

)
0

(0
)

μp
2

A
pp

li
ca

ti
on

S

R
S

23

13

1.

0
hr

s
9.

5
hr

s
5.

5
hr

s
16

.0
 h

rs

8
(4

)
0

(0
)

S
u

m

28
9

20
1

9.
5

h
rs

15

4.
5

h
rs

71

.5
 h

rs

23
5.

5
h

rs
11

3
(2

9)

1
(1

)

N
ot

e:

1.
 I

n
C

ol
um

n
8

an
d

C
ol

um
n

9,
 th

e
nu

m
be

rs
 w

it
hi

n
th

e
pa

re
nt

he
se

s
re

pr
es

en
t t

he
 n

um
be

r
of

 d
ef

ec
ts

 o
f

S
ev

er
it

y
L

ev
el

 1
 a

nd
 L

ev
el

 2
,

w
hi

le
 th

e
nu

m
be

rs
 o

ut
si

de
 th

e
pa

re
nt

he
se

s
re

pr
es

en
t t

he
 n

um
be

r
of

 d
ef

ec
ts

 o
f

al
l s

ev
er

it
y

le
ve

ls
.

137

9.6 References

[APP, 01] APP Instruction Manual.
[APP, Y1] “APP Module First μp SRS,” Year Y1.
[APP, Y2] “APP Flux/Delta Flux/Flow Application SRS for SF1,” Year Y2.
[APP, Y3] “APP Module μp2 System Software SRS,” Year Y3.
[APP, Y4] “APP μp2 Flux/Delta Flux/Flow Application Software SRS,” Year Y4.
[APP, Y5] “APP Module Communication Processor SRS,” Year Y5.
[APP, Y6] “APP Module SF1 System Software code,” Year Y6.
[APP, Y7] “APP SF1 Flux/Delta Flux/Flow Application code,” Year Y7.
[APP, Y8] “APP Module μp2 System Software Source Code Listing,” Year Y8.
[APP, Y9] “APP μp2 Flux/Delta Flux/Flow Application Software Source Code

Listing,” Year Y9.
[APP, Y10] “APP Communication Processor Source Code,” Year Y10.
[IEEE, 1988] “IEEE Guide for the Use of IEEE Standard Dictionary of Measures to

Produce Reliable Software,” IEEE Std. 982.2-1988, 1988.
[IEEE, 1998] “IEEE Recommended Practice for Software Requirements

Specifications,” IEEE Std. 830-1998, 1998.
[Murine, 1985] E.G. Murine. “On Validating Software Quality Metrics,” in Proc. 4th

Annual IEEE Conference on Software Quality, 1985.
[Smidts, 2004] C. Smidts and M. Li, “Preliminary Validation of a Methodology for

Assessing Software Quality,” NUREG/CR-6848, 2004.

139

10. COVERAGE FACTOR

A central problem in the validation of fault-tolerant systems such as those found in nuclear
power plant safety systems is the evaluation of the efficiency of fault-tolerant mechanisms.

One parameter used to quantify this efficiency is the coverage factor (CF), which is defined as
the probability of system recovery given that a fault exists. The sensitivity of dependability
measures (such as reliability and availability) to small variations in the coverage factor is well
known [Bouricius, 1969] [Arnold, 1973]. Consequently, it is important to determine coverage as
accurately as possible [Powell 1993].

The CF reflects the ability of a system to automatically recover from the occurrence of a fault
during normal operation. Fault-injection techniques can be used to determine the CF. Based on
the fault-injection experiment results, the reliability of a fault-tolerant system can be estimated
using the Markov chain modeling technique.

This chapter includes a definition of the CF, the introduction of Markov chain and fault-injection
techniques, the application of Markov chain modeling and fault-injection techniques to the APP,
and the process of calculating the reliability of the APP system.

This measure can only be applied when the source code is available. As listed in Table 3.3, the
applicable life cycle phases for CF are Coding, Testing, and Operation.

10.1 Definition

CF is the probability that a system can recover from a fault given that a fault occurs
[NUREG/GR - 0019]. A formal definition of the CF of a fault-tolerance mechanism is given as
follows [Cukier, 1999]:

 Pr 1| (10.1)
where

 the probability of H(g) = 1 when

 a variable characterizing the handling of a particular fault/activity pair, 1, ⁄ ;0,
 the global (i.e., complete) input space of a fault-tolerance mechanism, G = F × A;

 fault space;

140

 activity space, or activation space, in which a single “activity” is a trajectory in
the system’s state space;

 a fault/activity pair, or a point in space G.

The CF is a function of the complete input space and is equal to the probability that a particular
fault/activity pair is correctly handled given that a fault/activity pair is in the complete input
space of a fault-tolerance mechanism. Actually, “H = 1” means that the system responds to the
fault and recovers from the fault, “g G” indicates that a fault has happened, so the definition is
the same as that in [NUREG/GR - 0019].

Mathematically, because H is a random variable that can take the values 1 or 0 for each element
of the fault/activity space G, the CF can be the product of the probability of occurrence of g and
of the value of H (0 or 1). Equation 10.1 can be expressed as [Cukier, 1999]:
 ∑ (10.2)
where

 The probability of occurrence of g;

 The value of H for a given point g (g G),
 H(g) = 1 (if the system recovers) or 0 (if the system fails to recover).

Furthermore, the coverage can be viewed as the expected value of H from Equation 10.2 [Cukier,
1999], which means that Equation 10.2 can be transformed to:

 (10.3)
where
 expected value of H.

Without knowing the distribution p(g), the best that can be done is to assume all fault/activity
pairs in G are equally probable, i.e.: 1

and to use the Coverage Proportion, 1| |

to describe the effectiveness of a given fault-tolerant mechanism.

141

10.2 Measurement Rules

Several techniques, such as testing and field data-collection, have been adopted to evaluate the
dependability of a system. Fault/error injection has been recognized as the best approach to
evaluate the behavior and performance of complex systems under faults and to obtain statistics
on parameters such as coverage and latencies [Benso, 2003].

Especially for a highly dependable system, fault injection is a preferred method to accelerate the
process of the quantitative evaluation of dependability since an unreasonable amount of time
could be required to collect operating history results of statistical relevance. So the value of c is
usually obtained by fault-injection experiments [Arlat, 1990] [Brombacher, 1999].

For the fault-injection approach, the most accurate way to determine c is to submit the system to
all g G, and to observe all values of H(g).

However, such exhaustive testing is rarely possible. In practice, the CF evaluation is carried out
by submitting the system to a subset G*, obtained by random sampling in the space G and then
using statistics to estimate c.

The random sampling in space G is decomposed into two concurrent sampling processes:
sampling a fault in space F and an activity in space A. Whereas the fault-space sampling process
is explicit, the activity-sampling process is often achieved implicitly: the target system executes
its operational workload and selected faults are injected asynchronously at random points in the
workload execution. The activity-sampling process is distinct in this chapter.

An approximation of the CF is given by [Choi, 2000]:
 (10.4)

Generally, four basic steps are required for CF Measurement:

1) Select a fault-injection technique;
2) Determine the sample input space;
3) Execute the fault-injection experiments;
4) Determine the CF applying Equation 10.4.

142

10.2.1 Selection of Fault-Injection Techniques

There are three kinds of fault-injection techniques:

1. Hardware-based (physical fault injection) which themselves can be classified into:

 a. Hardware fault injection with contact: the injector has direct physical contact with target

system.
 b. Hardware fault injection without contact: the injector has no direct physical contact with

the target system (radiation, air pressure, temperature, magnetism, humidity).

Hardware-based fault injection involves exercising a system under analysis with specially
designed test hardware to allow the injection of faults into the target system and to examine the
effects. Traditionally, these faults are injected at the integrated circuit (IC) pin level [Benso,
2003].

2. Software-based

Software-implemented fault injection (SWIFI): data is altered and/or timing of an application is
influenced by software while running on real hardware.

Traditionally, software-based fault injection involves the modification of software executing on
the system under analysis in order to provide the capability to modify the system state according
to the programmer’s view of the system. This is generally used on code that has communicative
or cooperative functions so that there is enough interaction to make the fault injection useful
[Benso, 2003].

3. Simulation-based

Simulation-based fault injection (SBFI): the whole system behavior is modeled and imitated
using simulation.

Compared with the other two methods, simulation-based fault injection has the following
advantages [Benso, 2003]:

 Simulation-based fault injection can support all system abstraction levels: axiomatic,
empirical, and physical.

 There is no intrusion into the real system.
 Full control of both fault models and injection mechanisms is secured.
 Maximum observability and controllability are achieved.

For these reasons, simulation-based fault injection (SBFI) is selected to estimate the coverage
factor of the APP system.

143

10.2.2 Determination of Sample Input Space

According to the definition in Equation 10.1, an input space is characterized by a fault space and
an activity space. Therefore, the sampling of the input space for the fault-injection experiments
consists of determining fault space and activity space, respectively.

10.2.2.1 Fault Space

One of the difficulties in fault injection is determining the fault-injection space (the set of faults
that should be injected), since exhaustive testing of all possible faults that a system may
encounter during its lifetime is impractical.

Generally, the fault space for a microprocessor-based embedded system has four dimensions:

Type: which kind of faults are injected

 a bit, bits, byte, word, or words
 permanent or transient

Location: where a fault is injected

 IU (Integer Unit)
 FPU (Float Point Unit)
 Data Unit (Data/Data Address)
 Register Array
 Instruction Unit (Code/Code Address)

Time: when a fault is injected.

 Pre-runtime
 Runtime (the number of executed instructions before the fault injection)

Duration: how long an injected fault lasts. (The duration is usually expressed in terms of the
number of instructions executed after the fault was injected.)

Because the variables in the source code are stored in the RAM, fault injection was performed in
the APP RAM. When hardware faults occur in the RAM, the values of variables will be changed,
which injects faults into the system and may lead to system failure. Therefore, one can change
the values of the variables to simulate faults in the RAM.

Many researchers have found that transient faults can be up to 100 times more frequent than
permanent faults, and they are much more significant in terms of dependability simulation
[Benso, 2003].

144

According to [Gil, 2002], the most used fault model is bit-flip for transient fault, which is
produced in the memory circuit, so bit flip was selected as the fault type. In addition, pre-runtime
fault injection was only suitable for a limited number of fault classes such as permanent faults
[Hexel, 2003]. Therefore, runtime was taken as fault-injection time.

The fault space of the APP system is listed as follows:

Location: RAM
Type: Bit flip, Transient
Time: Runtime
Duration: Within a single execution cycle

10.2.2.2 Activity Space

The effect of an injected fault is dependent on system activity at the moment of its occurrence.
So a sample space consists of the combination of the set of faults and system “activity.”

The activity space for the APP system is divided into two categories: outside the “Barn shape”
and inside the “Barn shape,” as described in Chapter 4.

10.2.3 Applying the Simulation-Based Fault Injection Technique to the APP

There are two safety function processors in the APP System: one is an Intel 80c32 (μp1), and the
other is a z80180 (μp2). Two simulated environments were set up to execute the fault injection
experiments using KEIL μversion 2 and IAR, respectively.

1. KEIL μversion 2 (for μp1)

The processor of μp1 is the Intel 80c32, which belongs to the Intel 8051 family. KEIL develops
C compilers, macro assemblers, real-time kernels, debuggers, simulators, integrated
environments, and evaluation boards for the 8051, 251, ARM, and XC16x/C16x/ST10
microcontroller families. The KEIL μVision2 IDE provides control for the Compiler, Assembler,
Real-Time OS, Project Manager, and Debugger in a single, intelligent environment.

The fault injection experiments for μp1 were carried out following the steps described below:

a. Install the KEIL μversion 2 software into the computer. The software was installed on
the computer before the experiment began. KEIL μversion 2 was installed according to
[KEIL, 2001] step-by-step instructions.

b. Create a project of KEIL μversion 2 for μp1. KEIL μversion 2 is designed for the 8051
family instead of only for Intel 80c32. Therefore an appropriate project had to be created
for μp1 by setting up the appropriate configurations. This included selecting the type of

145

processor (Intel 80c32), the Memory model, and other configurations per the [KEIL,
2001] instructions.

c. Added μp1 source code to KEIL μversion 2 environment per [KEIL, 2001] instructions.
d. Executed fault-injection experiments for μp1. Injected the faults one after another by

modifying the value of the variables in the watch window. Then, after running the
system for at least one cycle, observed the system outputs. The outputs were the values
of the indicator variables in the source code, which indicated whether the system sent a
trip signal or intentionally halted. By comparing these results with the outputs obtained
without the fault injected, the researchers determined in which state the system
remained.

e. Collected the experimental results.

2. IAR Simulated Environment

IAR Systems provide a range of development tools for embedded systems: integrated
development environments (IDE) with C/C++ compilers and debuggers, starter kits, hardware
debug probes, and state machine design. The IAR C compiler for the Z80 offers the standard
features of the C language, plus many extensions designed to take advantage of specific features
of the Z80.

The fault-injection experiments for μp2 can be performed following these steps:

a. Install IAR on the computer following [IAR, 1997] instructions.
b. Create a project of IAR for μp2. IAR is designed for a range of different target

processors. A project has to be created for μp2 to specify the processor under study. The
steps are shown in [IAR, 1997].

c. Compile and link the project. It is necessary to compile and link the source files of μp2
with IAR before running μp2 in the environment. The steps are shown in [IAR, 1997].

d. Execute fault-injection experiments for μp2. Similar to step (4) of μp1.
e. Collect the results of all the experiments.

10.2.4 Determination of the CF

Table 10.1 presents six distinct states within which APP may reside. These six states describe the
system in terms of the functional capabilities of its components at different instances of time;
that is, the state in which the APP system is in at a particular time reflects whether the system is
operational or whether it has failed.

If the experiments are separately executed based on each microprocessor, then the reliability of
APP can be calculated based on the reliability value obtained for the two microprocessors (μp1
and μp2).

146

 Table 10.1 Definition of States for Each Microprocessor

Name of State Definition

Normal State
A fault-free state in which all outputs are correct with respect to the
input.

Failure State 1 The Trip signal fails to be activated when it should be activated.

Failure State 2 The Trip signal is activated when it should not be activated.

Failure State 3
Other failures, which are indicated by other system outputs, such as
LED, Semaphore, and Board ID sent from μp1 and μp2 to CP
(Communication Microprocessor).

Recoverable State A faulty state in which all outputs are correct with respect to the input.

Fail-safe State
The system is intentionally blocked by the FTM (Fault-tolerant
mechanism), after trying to recover the error without success. The Trip
signal is also activated.

It should be noted that it is impossible for the system to miss a trip signal when the analog input
is inside the “Barn shape” because the system is not in a trip state. So from the definition of
Failure State 1 in Table 10.1, it can occur only when the analog input is outside the “Barn
shape.” Similarly, Failure State 2 can occur only when the analog input is inside the “Barn
shape.” Failure State 3 can occur with analog input inside the “Barn shape” or outside the “Barn
shape.”

Table 10.2 shows the experimental results for the fault injection experiments. This table lists the
number of occurrences of the states in which the APP remains for at least one cycle after a fault
is injected. The number of occurrences of a state will be used to measure the CF (See Section
10.4).

The CF is the weighted sum of the probabilities of recovering from a fault with analog input
inside the “Barn shape” and with analog input outside the “Barn shape:”

 (10.5)

where

 the number of occurrences of the Normal State for an experiment such that the
analog input is inside the “Barn shape” (e.g., as shown in Table 10.2 for μp1,
N1 = 1195);

 the number of occurrences of the Fail-safe State for an experiment such that the
analog input is inside the “Barn shape” (e.g., as shown in Table 10.2 for μp1,
N2 = 355);

147

 the number of occurrences of the Normal State for an experiment such that the
analog input is outside the “Barn shape” (e.g., as shown in Table 10.2 for μp1,
N3 = 1165);

 the number of occurrences of the Fail-safe State for an experiment such that the
analog input is outside the “Barn shape” (e.g., as shown in Table 10.2 for μp1,
N4 = 350);

 the total number of experiments with analog input inside the “Barn shape” (e.g., as
shown in Table 10.2 for μp1, Nt1 = 2025);

 the total number of experiments with analog input outside the “Barn shape” (e.g.,
as shown in Table 10.2 for μp1, Nt2 = 2025);

 the weight of experiments such that the analog input is inside the “Barn shape,” 0.9999999943, as determined in Chapter 4;

 the weight of experiments such that the analog input is outside the “Barn shape,” 5.7 10 , as determined in Chapter 4.

Table 10.2 Fault Injection Experimental Results

Safety
System

Number of
experiments

Normal
State

Fail-
safe

State

Failure
State 1

Failure
State 2

Failure
State 3

Recover
-able
State

μp1

Analog input
inside the

“Barn shape”

Nt1 N1 N2 N9 N10 N5

2025 1195 355 0 40 255 180

Analog input
outside the
“Barn shape”

Nt2 N3 N4 N7 N8 N6

2025 1165 350 70 0 275 165

μp2

Analog input
inside the

“Barn shape”

Nt1 N1 N2 N9 N10 N5

3830 2210 510 0 95 630 385

Analog input
outside the

“Barn shape”

Nt2 N3 N4 N7 N8 N6

3830 2175 480 155 0 610 410

148

10.3 Measurement Results

In order to obtain the experimental results, the following documents were used to measure the
coverage factor:

 APP Module μp1 System SRS [APP, Y1]
 APP Module μp1 Flux/Delta Flux/Flow Application SRS [APP, Y2]
 APP Module μp2 System SRS [APP, Y3]
 APP Module μp2 Flux/Delta Flux/Flow Application SRS [APP, Y4]
 APP Module Communication Processor SRS [APP, Y5]
 APP Module μp1 System source code [APP, Y6]
 APP Module μp1 Flux/Delta Flux/Flow Application source code [APP, Y7]
 APP Module μp2 System source code [APP, Y8]
 APP Module μp2 Flux/Delta Flux/Flow Application source code [APP, Y9]
 APP Module Communication Processor System source code [APP, Y10]

The fault-injection experiments were performed to discover the effect of faults on the system
given the existence of FTMs (fault-tolerant mechanisms) using the requirements and source code
documents.

When a fault is injected, the APP system enters a Recoverable State. In most experiments, the
system will come back to a Normal State from the Recoverable State or remain in the
Recoverable State. A few injected faults will lead to Failure State 1, Failure State 2, or Failure
State 3.

Experiments in which the Failure State was observed are presented in Table 10.3.

From Table 10.3, it can be seen that when the analog input condition is inside the “Barn shape,”
if a bit-flip fault occurs in the variable SA_TRIP_1_DEENRGZE (for μp1) and Trip_condition
(for μp2) controlling the trip signal, the system will send a trip signal and enter a Failure State 2.

Referring to Table 10.3, when the analog input condition is outside the “Barn shape” the system
should send a trip signal if no fault occurs. If a bit-flip fault occurs in the variable
fAnalog_Input_6 (for μp1) and AIN[4] (for μp2) controlling one of the analog inputs, the system
could miss a trip signal and enter a Failure State 1.

If a bit-flip fault occurs in the variable chLEDs_Outputs (for μp1), which indicates the status of
the LED, and have_dpm (for μp2), which indicates whether the semaphore is available, the
system will enter a Failure State 3.

149

Table 10.3 Example Experiments Leading to the System Failure

Safety
system

Input condition
Variable in which a
fault was injected

Time at which the fault is
injected

μp1

Analog input
inside the “Barn

shape”

SA_TRIP_1_DEENRG
ZE

During RAM test of Diagnostic

SA_TRIP_1_DEENRG
ZE

During PROM test of Diagnostic

SA_TRIP_1_DEENRG
ZE

During Analog input test of
Diagnostic

SA_TRIP_1_DEENRG
ZE

During the execution of Main
and after status checking

SA_TRIP_1_DEENRG
ZE

During calculating analog input
of Main

Analog input
outside the

“Barn shape”

fAnalog_Input_6
During the execution of Main

and after status checking

SA_TRIP_1_DEENRG
ZE

During the execution of Main
and after status checking

chLEDs_Outputs
During the execution of Main

and after status checking

μp2

Analog input
inside the “Barn

shape”

Trip_condition Before RAM test of Diagnostic

Trip_condition During RAM test of Diagnostic

Trip_condition
During the execution of Main

and after status checking

Analog input
outside the

“Barn shape”

AIN[4]
During the execution of Main

and after status checking

have_dpm During update DPM of Main.

150

10.4 RePS Construction Using Coverage Factors of μp1 and μp2

The APP system has three microprocessors: μp1, μp2, and CP (Communication Processor).
According to [APP, 01], the entire APP system has four distinct operational modes: Power-on,
Normal, Calibration, and Tuning. Moreover, most fault-tolerant mechanisms (such as RAM Test
and Address Bus Line Test) are only available during the Normal Operation Mode, in which CP
is not involved. Therefore, the RePS for APP was constructed only for the Normal Operation
Mode, and CP is not considered in this chapter.

Three steps are required to estimate the reliability of APP based on the coverage measurements:

 Construct CTMC (Continuous-time Markov Chain) Models for μp1 and μp2
 Estimate the reliability of μp1 and μp2 based on the CTMC Models, respectively
 Calculate the reliability of the APP based on the reliability estimates of μp1 and μp2

10.4.1 Construction of Continuous-Time Markov Chain Model for a
Microprocessor

There are several different models found in the literature that help predict reliability using the
coverage factor for a fault-tolerant system, such as ESPN (Extended Stochastic Petri Net), and
DTMC (Discrete Time Markov Chain) [Smidts, 2000].

The CTMC (Continuous-time Markov Chain) model, defined by a discrete state space and
continuous time parameter, is a stochastic model suitable for describing the behavior of complex
fault-tolerant systems. It can represent hardware, software, and their combined interactions in a
single model to provide various information. Furthermore, it can represent the rate at which the
state changes occur, rather than simply probabilities as in the DTMC (Discrete Time Markov
Chain) [Kaufman, 1999].

The statistical basis for this model is that of a Markov process whose fundamental premises,
which are referred to as the memory-less property, are:

1. All past state information is irrelevant; that is, state memory is not required.

2. The length of time during which the current process has been in a given state is
irrelevant; that is, state age memory is not required.

The CTMC models for μp1 and μp2 are similar to each other because both microprocessors
implement the same fault-tolerant mechanisms, such as RAM Test, PROM Test, and EEPROM
Test. The only difference between these two CTMC models lies in the values of the model
parameters. The CTMC model for either μp1 or μp2 is shown in Figure 10.1.

151

Figure 10.1 CTMC Model for μp1 or μp2

The state transition parameters that are required by such a Markov chain model are listed in
Table 10.4.

Table 10.4 APP State Transition Parameters

Name of State
Transition Parameter

Definition

The rate at which an error occurs in the system (e.g., bit-flip
in memory), independently of whether or not it is detected
by the FTM (unit: per second)

The rate at which the system deals with the fault injected
and generates the result which indicates whether the fault
can be recovered (unit: per second)

 The coverage factor

The probability that the system is brought back to the
Normal State when an erroneous state is recovered

The probability that the system remains in the Recoverable
State when an erroneous state cannot be recovered

The probability that the system enters the Failure State 1
when an erroneous state leads to the system failure

The probability that the system enters the Failure State 2
when an erroneous state leads to the system failure

2 1(1)c

Normal State

Failure State 3
(Other Failures)

Failure State 1
(Type 1 Failure)

Fail-safe State
Recoverable

State

Failure State 2
(Type 2 Failure)

1 1c

1 1(1)c

2 3 1(1)(1)c

2 4 1(1)(1)c

2 3 4 1(1)(1)(1)c

152

The steps to calculate the state transition parameters are:

1. Determining the Failure Rate of a microprocessor, , and the rate at which the system
responds with the fault injected and generates the result that indicates whether or not the
system can recover from the fault, 1.

The failure rate of a microprocessor, , is usually estimated by summing up the failure rates of
all primary components:
 ∑ (10.6)
where

 the failure rate of a microprocessor; and
 the failure rate of the i-th primary component.

The primary components for μp1 and μp2 are: CPU (Central Processing Unit), RAM (Random
Access Memory), PROM (Programmable Read Only Memory), EEPROM (Electrical Erasable
PROM), DPM (Dual Port RAM), and ABL (Address Bus Line). The failure rates of these five
primary components are estimated by [Chu, 2005], as summarized in Table 10.5.

Table 10.5 Component Failure Rates

Failure Rate Description Value, in failure/hour

 Failure rate of RAM 3.3E-07

 PROM 2.6E-08

 EEPROM 2.46E-09

 DPM 1.7E-08

 Address Bus Line 5.22E-07

 CPU register 6.1E-8

The number of CPU registers in these two safety microprocessors are: 20 (μp1) [Dallas, 1995],
and 22 (μp2) [ZiLOG, 2000].

Therefore, according to Equation 10.6, the failure rate of microprocessor μp1 is:
 3.3 0.26 0.0246 0.17 5.22 0.61 20 10 hour⁄2.117 10 hour⁄ 5.883 10 second⁄

153

The failure rate of microprocessor μp2 is:
 3.3 0.26 0.0246 0.17 5.22 0.61 22 10 hour⁄2.340 10 hour⁄ 6.500 10 second⁄

The rate at which the system deals with the fault injected and generates the result depends on
the time required to tolerate the fault or experience a failure. In this chapter, an injected fault is
generally recovered or causes the microprocessor failure in one program cycle time, otherwise it
is regarded as latent in the Recoverable State. The rate 1 is the average rate for all the faults
injected into the APP.

The time required to recover from the Recoverable State to the Normal State is one program
cycle time, 0.129 s, therefore: 10.129 second 7.75 second⁄

2. Determining the Transition Parameters , , , and .

The state transition parameters , , , and can be determined using the data in Table 10.2

and Equations 10.7 through 10.10:

 (10.7)

 (10.8)

 (10.9)

 (10.10)

Where
 , , , , , , , and are the same as those in Equation 10.5;

 the number of occurrences of the Recoverable State for an experiment such that
the
analog input is inside the “Barn shape” (shown in Table 10.2);

 the number of occurrences of the Recoverable State for an experiment such that
the analog input is outside the “Barn shape” (shown in Table 10.2);

154

 the number of occurrences of the Failure State 1 for an experiment such that the
analog input is outside the “Barn shape” (shown in Table 10.2);

 the number of occurrences of the Failure State 3 for an experiment such that the
analog input is outside the “Barn shape” (shown in Table 10.2);

 the number of occurrences of the Failure State 2 for an experiment such that the
analog input is inside the “Barn shape” (shown in Table 10.2);

 the number of occurrences of the Failure State 3 for an experiment such that the
analog input is inside the “Barn shape” (shown in Table 10.2).

Table 10.6 summarizes the transition parameters for μp1 and μp2 based on Table 10.2 and
Equation 10.5 through Equation 10.10.

Table 10.6 Transition Parameters (Probability)

Safety
 system

μp1 0.7654 5.883E-10/s 7.75/s 0.7710 0.3789 1.3525E-9 0.1356

μp2 0.7102 6.5E-10/s 7.75/s 0.8125 0.3468 1.2186E-9 0.1310

The parameter of μp1 is the same as that of μp2 due to the fact that the failure rates of the
hardware components, such as RAM, PROM, DPM, Address Bus Line, and EEPROM, are
assumed to be the same for the two microprocessors.

10.4.2 Estimate the Reliabilities of μp1 and μp2

The CTMC (Continuous-time Markov Chain) can be used to estimate the probability of each
state.

The steps of applying CTMC are:

 Construct the differential equations governing a microprocessor’s behavior

According to [Carsten, 1973], the differential equation governing the relationship in the model
is:

 (10.11)

where

155

 a column vector whose elements are the system state probabilities at time t, , , … ,

 the probability that the system is in a state i at time t, i = 1, 2, 3, ..., n

 a finite and countable number of states for a state space

 the matrix of the transition rates

The following notations are used for the CTMC model shown in Figure 10.1:

 the probability that the system is in “Normal State” at time t

 the probability that the system is in “Recoverable State” at time t

 the probability that the system is in “Fail-safe State” at time t

 the probability that the system is in “Failure State 1” at time t

 the probability that the system is in “Failure State 2” at time t

 the probability that the system is in “Failure State 3” at time t

From Figure 10.1, one obtains Equation 10.12 and Equation 10.13:

 (10.12)

and

156

 0 0 0 01 1 0 0 0 00 1 0 0 0 00 1 1 0 0 0 00 1 1 0 0 0 00 1 1 1 0 0 0 0
 (10.13)

 Solve the differential equations to obtain the probability in each state

As the number of system components and their failure modes increases, there is an exponential
increase in system states, making the resulting reliability model more difficult to analyze. The
large number of system states makes it difficult to solve the resulting model, to interpret state
probabilities, and to conduct sensitivity analyses. However, this is not the case for the APP since
the level of abstraction is such that the number of states is limited.

Knowing the initial conditions given by the state vector 0 the set of simultaneous
differential equations can be solved:
 0 (10.14)

For a microprocessor, when it starts to work, the system is assumed to be in the Normal State, so
the initial condition is:
 0 1, 0 0, 0 0, 0 0, 0 0, 0 0

namely, 0 1,0,0,0,0,0

Based on Table 10.6 and Equation 10.14, using the initial condition one obtains probabilities of
the six states of μp1 and μp2 with t = 0.129 seconds, as listed in Table 10.7:

From Table 10.7, the probability of the Normal state is larger than that of other states because its
failure rate is low and the FTMs in the microprocessor can recover most faults. In addition, the
probability of Failure State 2 is much greater than that of Failure State 1 because most analog
inputs are inside the “Barn shape” (Chapter 4).

157

Table 10.7 Probabilities of Six States of μp1 and μp2 with t = 0.129 Seconds

μp1 9.99999999924109E-1 4.98E-11 5.02E-12 5.6415E-21 5.65E-13 3.61E-12

μp2 9.99999999916156E-1 5.53E-11 4.2258E-12 7.3204E-21 7.8695E-13 5.2203E-12

 Calculate the reliability of a safety microprocessor

In this experiment, the Normal State, the Recoverable State, and the Fail-safe State are regarded
as reliable states because no failure occurs. The reliability of a safety microprocessor is the sum
of the probabilities of these three states. Therefore:
 ∑ (10.15)
where

 the reliability of a microprocessor

 the probability that the microprocessor remains in the i-th reliable state, i = 1, 2,
and 3, corresponding to the Normal State, the Recoverable State, and the Fail-safe
State, respectively

From Table 10.7, based on Equation 10.15, the reliabilities of the two safety microprocessors at
t =0.129 seconds are presented in Table 10.8.

Table 10.8 Reliabilities of μp1 and μp2 with t = 0.129 Seconds

Microprocessor Reliability,

μp1 0.999999999978936

μp2 0.999999999975681

10.4.3 Reliability Calculation for the APP

For the whole APP system, there are also three types of independent failures: Type 1 Failure,
Type 2 Failure, and Type 3 Failure (see Table 10.1). Therefore:
 1 ∑ (10.16)
where

 the reliability of the whole APP system

158

 the probability of the i-th type of failure, i = 1, 2, and 3

For Failure State 1, the APP system will miss a trip signal only when both microprocessors miss
the trip signal, that is, APP will enter Failure State 1 only when both microprocessors enter
Failure State 1. Therefore, μp1 and μp2 are logically in parallel. Then, the probability of Failure
State 1 at t = 0.129 seconds for APP is:

 5.64 10 7.32 10 4.13 10

For Failure State 2, the APP system will send a trip signal once either microprocessor generates a
trip signal, that is, APP will enter Failure State 2 when either safety system enters Failure State 2.
So μp1 and μp2 are logically in series and the probability of Failure State 2 at t = 0.129 seconds
for APP is:

 1 1 5.65 10 1 7.87 10 1.3526 10

The APP system will enter Failure State 3 when a microprocessor failure occurs, which is
indicated by LED, Semaphore, or Board ID sent from μp1 and μp2 to CP. Therefore, μp1 and
μp2 are logically in series and the probability of Failure State 3 at t = 0.129 seconds for the APP
is:

 1 1 3.61 10 1 5.22 10 8.83 10

Based on Equation 10.16, the reliability of the whole APP system at t =0.129 seconds is:

 1 4.13 10 1.35 10 8.83 10 0.9999999999898

Fault-Tolerant Mechanisms (FTMs) are one of the major concerns of system design. A powerful
FTM will increase the reliability and safety of the system, and decrease the probability of system
failure. The CF is used to quantify the efficiency of the system FTM, which is a central problem
in the validation of fault-tolerant systems [Powell, 1993]. By this measurement, the reliability of
the system exceeds 0.999999999 per demand, which coincides with actual experience at the
plant from which the operating data was obtained.

10.5 Lessons Learned

Fault-injection techniques have long been recognized as necessary to validate the dependability
of a system. Artificial faults are injected into a system and the resulting behaviors are observed.
Compared with other measurements, fault-injection techniques are useful in speeding up the
occurrence and the propagation of faults into the system in order to observe the effects on the
system performance. Fault injection techniques can be performed on either simulations and
models or working prototypes and systems in the field. In this manner, the weaknesses of

159

interactions can be discovered. This approach is frequently used to test the resilience of a fault-
tolerant system against known faults, and thereby measure the effectiveness of the fault-tolerant
measures [Alfredo, 2003].

One difficulty of fault injection involves the simulation of temporary faults, which are the faults
most likely to occur in a computer system. The nature of these temporary faults makes
exhaustive testing exceedingly time-consuming. As a result, coverage evaluation is a problem of
statistical estimation, where inferences about a population are based on sample observations.

When calculating the probability for each failure type (Type 1, Type 2, and Type 3), common
cause failures were not considered. Common cause failure is a specific kind of dependent failure
that arises in redundant components where simultaneous (or concurrent) multiple failures result
in different channels from a single shared cause [Mauri, 2000] [Vesely, 2001] [Breakers, 2003].
Research on quantifying the impact of common-cause failures on fault-tolerant systems is
beyond the scope of this report and is identified as a follow-on issue in Chapter 19.

160

10.6 References

[APP, 01] APP Instruction Manual.
[APP, Y1] “APP Module First SFP SRS,” Year Y1.
[APP, Y2] “APP Flux/Delta Flux/Flow Application SRS for SF1,” Year Y2.
[APP, Y3] “APP Module μp2 System Software SRS,” Year Y3.
[APP, Y4] “APP μp2 Flux/Delta Flux/Flow Application Software SRS,” Year Y4.
[APP, Y5] “APP Module Communication Processor SRS,” Year Y5.
[APP, Y6] “APP Module SF1 System Software code,” Year Y6.
[APP, Y7] “APP SF1 Flux/Delta Flux/Flow Application code,” Year Y7.
[APP, Y8] “APP Module μp2 System Software Source Code Listing,” Year Y8.
[APP, Y9] “APP μp2 Flux/Delta Flux/Flow Application Software Source Code

Listing,” Year Y9.
[APP, Y10] “APP Comm. Processor Source Code,” Year Y10.
[Arlat, 1990] J. Arlat, M. Aguera and L. Amat. “Fault Injection for Dependability

Validation: A Methodology and Some Applications.” IEEE Transactions
on Software Engineering, vol. 16, no. 2, pp. 166–182, 1990.

[Arnold, 1973] T.F. Arnold. “The Concept of Coverage and its Effect on the Reliability
Model of a Repairable System.” IEEE Transactions on Computers, vol. C-
22, pp. 251–254, 1973.

[Benso, 2003] A. Benso. Fault Injection Techniques and Tools for Embedded Systems
Reliability Evaluation, 2003.

[Bouricius, 1969] W.G. Bouricius, W.C. Carter and P.R. Schneider. “Reliability Modeling
Techniques for Self-repairing Computer Systems,” in Proc. 24th Nut.
Con., ACM, 1969, pp. 295–309.

[Breakers, 2003] C. Breakers. “Common-Cause Failure Event Insights,” US NRC,
NUREG/CR-6819, vol. 4, 2003.

[Brombacher, 1999] A.C. Brombacher. “RIFIT: Analyzing Hardware and Software in
Safeguarding Systems,” Reliability Engineering and System Safety, pp.
149–156, 1999.

[Carsten, 1973] B. Carsten and T. Heimly. “A Reliability Model Using Markov Chains for
Utility Evaluation of Computer Systems Onboard Chips,” Winter
Simulation Conference, 1973.

[Chu, 2005] T.L. Chu et al. Collection of Failure Data and Development of Database
for Probabilistic Modeling of Digital Systems, 2005.

[Choi, 2000] J.G. Choi et al. “Reliability Estimation of Nuclear Digital I&C System
using Software Functional Block Diagram and Control Flow,” in Proc.
International Symposium on Software Reliability Engineering, 2000.

[Cukier, 1999] M. Cukier and D. Powell. “Coverage Estimation Methods for Stratified
Fault-Injection,” IEEE Transactions on Computers, vol. 48, no. 7, pp.
707–723, 1999.

[Dallas, 1995] Dallas Semiconductor, DS80C320/DS80C323 High-Speed/Low-Power
Micro, 1995.

161

[Dugan, 1989] J.B. Dugan. “Coverage Modeling for Dependability Analysis of Fault-
Tolerant Systems,” IEEE Transactions on Computers, vol. 38, No. 6, pp.
775–787, 1989.

[Gil, 2002] P. Gil and J. Arlat. “DBench - Fault Representativeness, Chapter 3,
Deliverable from Dependability Benchmarking,” European IST project
(IST-2000-25425), 2002.

[Hexel, 2003] R. Hexel. “FITS - A Fault Injection Architecture for Time-Triggered
Systems,” in Proc. 26th Australian Computer Science Conference, 2003.

[IAR, 1997] IAR Systems. IAR Embedded Workbench Interface Guide, 1997.
[Kaufman, 1999] L.M. Kaufman and B.W. Johnson. “Embedded Digital System Reliability

and Safety Analyses,” NUREG/GR-0020, UVA Technical Report, 1999.
[KEIL, 2001] Keil Elektonik GmbH and Keil Software, Inc. Getting Started with

μversion 2 and the C51 Microcontroller Development Tools, 2001.
[Mauri, 2000] G. Mauri. “Integrating Safety Analysis Techniques, Supporting

Identification of Common Cause Failures,” Ph.D. dissertation, Department
of Computer Science, The University of York, 2000.

[NRC, 1990] “A Cause-Defense Approach to the Understanding and Analysis of
Common-cause Failures,” US NRC, NUREG/CR-5460, 1990.

[Powell, 1993] D. Powell, E. Martins and J. Arlat. “Estimators for Fault Tolerance
Coverage Evaluation,” IEEE Transactions on Computers, vol. 42, no. 8,
pp. 775–787, 1993.

 [Vesely, 2001] W.E. Vesely, F. Hsu and M. Stewart, “Common Cause Failure Analysis
Guideline for the Space Shuttle Probabilistic Risk Assessment,”
SAIC/NASA, JSC PRA Documentation, 2001.

[ZiLOG, 2000] ZiLOG Worldwide Headquarters, Z8018x Family MPU User Manual,
2000.

163

11. CYCLOMATIC COMPLEXITY

This measure determines the structural complexity of a coded module.

The resulting measurement can then be used to inform the developer’s decision to redesign the
module to limit its complexity, thereby promoting understandability of the module and
minimizing the number of logical testing paths [IEEE 982.2, 1988]. A module’s cyclomatic
complexity (CC) is also a strong indicator of its testability.

Based on this measure, a set of derived measures for the cyclomatic complexity of the entire
software product was proposed in this chapter, which may be used to estimate the fault content in
the delivered source code.

This measure can only be applied when detailed design information is available. As listed in
Table 3.3, the applicable life cycle phases for CC are Design, Coding, Testing, and Operation.

11.1 Definition

The CC of a module is the number of linearly independent paths through a module. This is an
indication of how much effort is required to test a module if the test plan is to supply diverse
inputs so that all combinations of branches are executed.

The CC for the i-th module is defined by McCabe [McCabe, 1976] [McCabe, 1982] as: 2 (11.1)
where

 is the cyclomatic complexity measure of the i-th module,
 is the number of edges of the i-th module (program flows between

nodes)
 is the number of nodes of the i-th module (sequential groups of

program statements).

A module corresponding to a single function or subroutine in a typical language has a single
entry and exit point and is able to be used as a design component via a call/return function. In C
language, a module is a function. This definition is different from that of the BLOC measure, in
which a module is defined as a .c file together with all user defined .h files it includes (refer to
Chapter 6).

164

A node is a sequential group of program statements.

An edge is the program flow between nodes.

McCabe’s definition (Equation 11.1) applies to a representation of the model’s control flow
graph in which there is no edge between the exit node and the entry node [Jones, 1991] and as
such is a non-strongly connected graph.

As an example, consider a module’s control flow graph shown in Figure 11.1. Each node is
numbered 0 through 6 and edges are displayed using solid lines connecting the nodes. The
module’s cyclomatic complexity is 4 (9 edges minus 7 nodes plus 2).

Figure 11.1 Control Flow Graph

When one uses a strongly connected graph to represent the module’s control flow—where one
fictitiously adds an edge from the exit node to the entry node—the Cyclomatic Complexity
measure for the i-th module is [IEEE 982.2, 1988]:
 1 (11.2)

For the example above, the program-control-flow graph is not strongly connected. However, if
we add a “virtual edge” to connect node 0 and node 6 (the dashed line in Figure 11.2), the flow
graph becomes strongly connected. The number of nodes remains seven. The number of edges is
now 10, thus the CC remains 4 (10 edges minus 7 nodes plus 1).

165

Figure 11.2 Control Flow Graph with a Virtual Edge

It should be noted that CC is a measure used for a single-coded module and not for an entire
software product.

One way to characterize the cyclomatic complexity25 of a software product is to use the
following derived measures, which were proposed by the UMD research team based on
Chapman’s research [Chapman, 2002]:
 % Percentage of modules with CC < 4. % Percentage of modules with 4 ≤ CC < 10. % Percentage of modules with 10 ≤ CC < 16. % Percentage of modules with 16 ≤ CC < 20. % Percentage of modules with 20 ≤ CC < 30. % Percentage of modules with 30 ≤ CC < 80. % Percentage of modules with 80 ≤ CC < 100. % Percentage of modules with 100 ≤ CC < 200. % Percentage of modules with CC ≥ 200.

The percentage distribution of modules by CC level reflects the CC of a software product.

25 Note that this is not the combined cyclomatic complexity of the software product. A combined cyclomatic complexity value is
not necessary for RePS construction and reliability prediction.

166

11.2 Measurement Rules

The CC measure is based on the structure of a module’s control-flow graph. Control-flow graphs
describe the logic structure of software modules. Each flow graph consists of nodes and edges.
Each possible execution path of a software module has a corresponding path from the entry node
to the exit node of a module’s control-flow graph.

For the remainder of this chapter, it is assumed that the constructed control-flow graphs are all
non-strongly-connected (i.e., no edge exists between the entry and exit nodes).

Five steps are required to manually measure the CC of a module:

1. Beginning at the top of the source code, each non-comment line of code is numbered.
2. A circle is drawn to contain each number—each one is a “node.”
3. All possible sequential nodes are joined with lines (i.e., “edges”) to indicate the possible

order in which the lines are executed.
4. The number of edges and the number of nodes in the control-flow graph are counted.
5. The CC of the i-th module is calculated using Equation 11.1.

It is time-consuming, tedious, and error-prone to manually construct the control-flow graphs and
count the CC for each module. Fortunately, several easier methods to calculate CC exist in
practice, ranging from counting decision predicates to using automated tools [Zuse, 1990]
[Watson, 1996]. McCabe [McCabe, 1982] demonstrated that CCi is also equal to the number of
binary decision nodes in the control-graph plus one. Four basic rules can be used to calculate CCi
[McCabe, 1982] [Gill, 1997] [Hensen, 1978]:

1. Increment CCi by one for every IF, CASE, or other alternate execution construct;
2. Increment CCi by one for every Iterative DO, DO-WHILE, or other repetitive construct;
3. Add to CCi the number of logical alternatives in a CASE minus two;
4. Add one to CCi for each logical operator (AND, OR) in a conditional statement. Such

statements include IF, CASE, DO, DO-WHILE, etc.

There are three variants of using the four rules mentioned above [Gill, 1997]:

a) Variant 1: all four rules are used, as in the original McCabe version.
b) Variant 2: only rules 1–3 apply, as proposed by [Myers, 1977].
c) Variant 3: only rules 1–2 apply, as suggested by Hansen [Hansen, 1978].

Variant 1 is widely recognized [Watson, 1996] [Gill, 1997] and is therefore adopted in this
chapter.

167

In this report, RSM 6.8 [MST, 2005], a source code metrics and quality analysis tool for C, C++,
Java, and C#, was used to measure the CC for all modules. This tool measures CC based on
McCabe’s four rules.

Once the CC for an individual module is obtained, the percentage distribution of modules by CC
level should be determined using the following rules:

1. Divide the modules according to their level of cyclomatic complexity:

 Level 1: 0 ≤ CC < 4

Level 2: 4 ≤ CC < 10
Level 3: 10 ≤ CC < 16

 Level 4: 16 ≤ CC < 20
 Level 5: 20 ≤ CC < 30

Level 6: 30 ≤ CC < 80
 Level 7: 80 ≤ CC < 100
 Level 8: 100 ≤ CC < 200
 Level 9: CC ≥ 200

2. Count the number of modules for each cyclomatic complexity level;
3. Calculate the percentage distribution of modules by CC level according to Equation 11.3:
 ∑ (11.3)

where
 The percentage of modules with CC belonging to the i-th level. i = 1, 2, ..., 9.
 The number of modules with CC belonging to the j-th level. j = 1, 2, ..., 9.

One of the factors most often associated with successful and unsuccessful software projects
[Jones, 1996] [Basili, 1984] [Stuzke, 2001] is the CC. In order to obtain a meaningful CC value
for the entire software product, the concepts of Performance Influencing Factors (PIF) and
Success Likelihood Index (SLI) are introduced. How good or how bad PIFs are in a given
situation can be rated by experts and quantified by a SLI. SLI was used as an index that
quantifies whether a particular environment will increase or decrease the human error probability
(with respect to a “normal situation”) [Stuzke, 2001]. The SLI ranges from 0 (error is likely) to 1
(error is not likely). This section discusses the rules for calculating the SLI of the CC.

It has been suggested that modules exceeding a threshold value of CC are difficult to test
completely [Walsh, 1979] [McCabe, 1982] and incompletely tested software may be delivered
with errors. According to McCabe [McCabe, 1982] modules with CC > 10 are at risk for
deficient reliability. Walsh [Walsh, 1979] used CC = 4 as a threshold to estimate the defect
density of the source code prior to unit testing.

168

Based on more recent research [Chapman, 2002], Equation 11.4 is proposed to quantify the
impact of the CC factor on software quality:
 1 ∑ % (11.4)
where

 The SLI value of the CC factor

 Failure likelihood fi used for SLI1 calculations, as shown in Table 11.1

(extracted from [Chapman, 2002])
 Derived measures defined in Section 11.1, i = 1, 2, ... 9.

Table 11.1 Failure Likelihood fi Used for SLI1 Calculations

 f1 f2 f3 f4 f5 f6 f7 f8 f9

Value 0.08 0.15 0.25 0.35 0.45 0.55 0.65 0.75 1.0

Note that the above nine classes correspond to the complexity classes. The value of SLI1 may be
used as a quality indicator of a software product. SLI1 is related to the likelihood that developers
will err (i.e., introduce faults in the software product and/or fail to remove them) because of the
CC of the modules.

11.3 Measurement Results

The following documents were used to measure module CC:

 APP Module μp1 System source code [APP, Y1]
 APP Module μp1 Flux/Delta Flux/Flow Application source code [APP, Y2]
 APP Module μp2 System source code [APP, Y3]
 APP Module μp2 Flux/Delta Flux/Flow Application source code [APP, Y4]
 APP Module Communication Processor System source code [APP, Y5]

The CC measures for all modules of the APP system are presented in Table 11.2.

Table 11.3 presents the counting of for the APP system using the results in Table 11.2. The
percentage distribution of modules for the APP system and the calculated SLI of the CC measure
(SLI1) are shown in Table 11.4 and 11.5, respectively.

169

Table 11.2 Measurement Results for CCi

Software
Name

File Name Module Name
Cyclomatic
Complexity

CP System
Source Code

CMMONLI.c

Online Operation procedures 7

Check cycle monitor procedure 11

Check trip outputs procedure 17

Test Mode procedure 2

COMMPOW.c

Power Up Self Tests 24

AM Tests procedure 6

Address Line Tests procedure 4

ROM Checksum procedure 2

Board ID test procedure 3

Halt procedure after diagnostic test failure 2

Halt procedure after Module ID test failure 5

Online diagnostic procedure 16

Timer 0 Interrupt service routine 5

170

 Table 11.2 Measurement Results for CCi (continued)

Software
Name

File Name Module Name
Cyclomatic
Complexity

CP System
Source Code

COMMPROC.c

Main Program 2

External interrupt 0 and 1 service routine 2

Timer 1 Interrupt service routine 10

Dual Port RAM Semaphore Handler function 3

Disable Interrupt routine 2

Enable Interrupt routine 2

Initialization Procedure 3

Process Serial Communication 23

1 Transmit Buffer with a byte 4

Get buffer size 3

Get receive buffer byte 3

Process time out counter 2

COMMSER.c

Receive Dual Port RAM data 13

Examine determine data direction transmission 8

Receive Time of Day update 4

Transmit dual port RAM data 11

Transmit APP Status table 4

Calculate CRC using CRC-CCITT methods 3

Serial Communication Interrupt 9

μp1-
Application
Source Code

SF1APP.c

Application Program 36

Application Program Diagnostic Test 24

Square Root Function 2

171

 Table 11.2 Measurement Results for CCi (continued)

Software
Name

File Name Module Name
Cyclomatic
Complexity

μp1- System
Source Code
μp1- System
Source Code

SF1CALTN.c

Calibrate/Tune function 12

Calibration function 6

Tuning function 8

Input calibration function 10

Download tuning data from DPR function 4

Handling input potentiometers function 28

SF1FUNCT.c

Majority function 4

Access semaphore function 9

Averaging function 3

Median function 5

Read analog inputs function 3

Copy status table to DPR function 2

Generate discrete output signals function 11

Generate front panel LEDs output signals 5

Generate outputs function 3

Generate status relays output signals 2

Halt function 2

Read module input signals function 53

Reset outputs module 2

Wait function 10

Generate analog output signals function 1

172

 Table 11.2 Measurement Results for CCi (continued)

Software
Name

File Name Module Name
Cyclomatic
Complexity

μp1- System
Source Code

SF1FUNCT.c

Main function 2

Initialization function 5

Main program function 21

External zero interrupt function 4

External one interrupt function 4

Serial interrupt function 4

Timer 0 interrupt function 1

Timer 1 interrupt function 2

Timer 2 interrupt function 3

Power-Up Self Tests function 2

SF1TEST1.c

On-line diagnostics function 18

External RAM test function 5

DPR test function 2

fun_perform memory R/W to external
RAM/DPR

8

Address lines test function 5

SF1TEST2.c

PROM checksum test function 5

EEPROM checksum test function 8

fun_calculating checksum for PROM and
EEPROM

6

173

Table 11.3 ni Counts Per Subsystem

The number of modules

whose CC belongs to
i-th level, ni

CP
System

μp1
System

μp1
Application

μp2
System

μp2
Application

n1 14 40 1 6 8
n2 10 22 0 14 11
n3 4 7 0 4 4
n4 2 2 0 0 0
n5 2 2 1 1 2
n6 0 4 1 1 0
n7 0 0 0 0 0
n8 0 0 0 0 0
n9 0 0 0 0 0

Table 11.4 Percentage Distribution of the APP System Modules

Derived
Measure

Values of Derived Measure for

CP
μp1

System
μp1

Application
μp2

System
μp2

Application
p1 43.75% 51.95% 33.33% 23.08% 32%
p2 31.25% 28.57% 0 53.85% 44.0%
p3 12.5% 9.09% 0 15.38% 16.0%
p4 6.25% 2.6% 0 0 0
p5 6.25% 2.6% 33.33% 3.85% 8%
p6 0 5.19% 33.33% 3.85% 0

p7 0 0 0 0 0

p8 0 0 0 0 0
p9 0 0 0 0 0

Table 11.5 SLI1 for the Different Subsystems

CP

System
μp1

System
μp1

Application
μp2

System
μp2

Application
SLI1 0.8369 0.8435 0.6400 0.8239 0.8324

174

11.4 RePS Construction Using the Cyclomatic Complexity Measure

Reliability prediction based on the CC measure consists of the following two steps:

 Estimate the fault contents in the delivered source code using the Success Likelihood
Index Method (SLIM) (as described below).

 Calculate the reliability using Musa’s Exponential Model (as described below).

11.4.1 Estimating the Fault Contents in the Delivered Source Code

Numerous influencing factors can be identified that potentially affect the magnitude of the
intensity and probability-density functions. One method used in human reliability analysis to
account for the quantitative aspects of influencing factors is the SLIM, developed in [Embrey,
1983], refined in [Dougherty, 1988] and critiqued in [Reason, 1990].

The SLIM is founded on three key assumptions:

1. The likelihood of an error occurring in a particular situation depends on the combined

effects of a relatively small number of PIFs, which are represented by SLI.
2. Experts can numerically rate how good or bad these PIFs are in a given situation.
3. The probability of a human error is logarithmically proportional to the SLI.

 ln (11.5)

where = Human Error Probability and and are two constants to be determined using
experimental data.

Based on the above SLIM method, Equation 11.6 is proposed for estimating the fault content in
delivered source code with the assumption that the likelihood of an error occurring depends on
the entire software product.

 (11.6)
where

 the number of faults remaining in the delivered source code
 a universal constant, estimated by fitting experiment data
 the amount of activity in developing the delivered source code
 universal constant, estimated by fitting experiment data
 the Success Likelihood Index of the entire software product

175

The UMD research team then examined twelve software products to find the values of constants
k and F. The size of the source code (in terms of LOC) was chosen as a measure to quantify the
amount of activity in developing the delivered source code. The data gave k = 0.036 and F = 20.

If the set of PIFs used in the SLIM model is restricted to the value of CC for the different factors,
Equation 11.6 can be modified into Equation 11.726, which links the fault contents to the code
size and CC. Further work is required to validate the values of k and F in Equation 11.6.
 0.036 20 (11.7)
where

 the size of the delivered source code in terms of LOC (Line of Code).

Table 11.6 summarizes the fault content calculation results for the APP system.

Table 11.6 Summary of Fault Content Calculation Results

CP
System

μp1
System

μp1
Application

μp2
System

μp2
Application

SIZE, in LOC 1,210 2,034 480 895 206

 0.8369 0.8435 0.6400 0.8239 0.8324

Defects in source code 5.8 9.4 7.5 4.6 1.0

The estimated number of faults in the entire APP system is:
 5.8 9.4 7.5 4.6 1.0 28.3 (11.8)

11.4.2 Calculating the Reliability Using the Fault-Contents Estimation

The probability of success-per-demand is obtained using Musa’s exponential model [Musa,
1990] [Smidts, 2004]:

 (11.9)
where

 Reliability estimation for the APP system accounting for the effect of CC.
 Fault Exposure Ratio, in failures/defect.
 Number of defects estimated using the CC measure.

 Average execution-time-per-demand, in seconds/demand.
 Linear execution time of a system, in seconds.

26 Parameters and are determined using severity level 1 and 2 defects only. Thus, the number of defects obtained from
Equation 11.7 is for severity level 1 and 2 defects only.

176

Since a priori knowledge of the defect locations and impact of the defects on failure probability
is unknown, the average K value given in [Musa, 1990], which is 4.2 10 failure/defect, must
be used.

For the APP system, NCC = 28.3, as calculated in Section 11.4.1.

The linear execution time, TL, is usually estimated as the ratio of the execution time and the
software size on a single microprocessor basis [Musa, 1990] [Smidts, 2004]. In the case of the
APP system, however, there are three parallel subsystems (μp1, μp2, and CP), each of which has
a microprocessor executing its own software. Each of these three subsystems has an estimated
linear execution time. Therefore, there are several ways to estimate the linear execution time for
the entire APP system, such as using the average value of these three subsystems.

For a safety-critical application, such as the APP system, the UMD research team suggests a
conservative estimation of TL by using the minimum TL of the three values. Namely:

 min 1 , 2 ,
 min 0.018, 0.009, 0.021 (11.10)
 0.009
where 1 : Linear execution time of Microprocessor 1 (μp1) of the APP system.

TL (μp1) = 0.018 second, as determined in Chapter 17; 2 : Linear execution time of Microprocessor 2 (μp2) of the APP system.
TL (μp2) = 0.009 second, as determined in Chapter 17;

 : Linear execution time of Communication Microprocessor (CP) of the
APP system. TL (CP) = 0.021 second, as determined in Chapter 17.

Similarly, the average execution-time-per-demand, τ, is also estimated on a single
microprocessor basis. Each of the three subsystems in the APP has an estimated average
execution-time-per-demand. To make a conservative estimation, the average execution-time-per-
demand for the entire APP system is the maximum of the three values. Namely:

 max 1 , 2 ,
 max 0.082,0.129,0.016 (11.11)
 0.129 /
Where
 1 Average execution-time-per-demand of μp1 of the APP system. τ(μp1)

= 0.082 seconds/demand, as determined in Chapter 17; 2 Average execution-time-per-demand of μp2 of the APP system. τ(μp2)
= 0.129 seconds/demand, as determined in Chapter 17;

177

 Average execution-time-per-demand of CP\ of the APP system. τ(CP)
= 0.016 seconds/demand, as determined in Chapter 17.

Thus the reliability for the APP system using the CC measure is given by: exp 4.2 10 28.3 . /. 0.9998296 / (11.12)

11.4.3 An Approach to Improve the Prediction Obtained from the CC Measure

The UMD approach described in sections 11.4.1 and 11.4.2 relates CC and the number of defects
directly using the SLI concept and the SLIM model. However, it is obvious that the number of
defects in the software is affected by many other factors besides CC. Thus, estimation based only
on CC is inaccurate. To improve the prediction of the number of defects and the reliability
prediction, other factors (PIFs) that could affect predicted defect number should be incorporated
in the SLIM model as additional support measures. These factors include:

 Development Schedule Factor (SCED)
 Experience Factor

o Application Experience (APEX)
o Platform Experience (PLEX)
o Language and Tool Experience (LTEX)

 Capability Factor
o Analyst Capability (ACAP)
o Programmer Capability (PCAP)
o Tester Capability (TCAP)
o Personnel Continuity (PCON)

 Development Tools Factor (TOOL)
 Development Site Factor (SITE)
 Team Cohesion Factor (TEAM)
 Management Style Factor (STYLE)
 Process Maturity Factor (PMAT)
 Requirement Evolution Factor (REVL)

A justification for using such factors to predict the number of defects remaining in the software
is found in the software engineering literature:
1. SCED, APEX, PLEX, LTEX, ACAP, PCAP, PCON, TOOL, SITE, TEAM, and PMAT are

factors defined in COQUALMO. COQUALMO is a quality model extension of the existing
COCOMO II [Boehm, 2000]. It is based on the software Defect Introduction and Defect
Removal model described by Boehm [Boehm, 1981]. All the factors identified in
COQUALMO are related to defects content in the software.

178

2. TCAP, STYLE, and REVL are identified as important influencing factors to software-failure
density by a team of experienced software developers [Stutzke, 2001].

3. STYLE and REVL are also factors identified as two out of the 32 factors influencing
software reliability by Pham [Pham, 2000].

Definitions, measurement rules, and SLI ratings for each of the above factors are presented in the
following sections. If data for a PIF is unavailable, the value 0.5 (corresponding to a
nominal/average situation) for the corresponding SLI should be used.

11.4.3.1 Development Schedule Factor (SCED)

This factor measures the schedule constraint imposed on the project team developing the
software. The rating scales for SCED are defined in terms of the percentage of schedule stretch-
out or acceleration with respect to a nominal schedule.

The development schedule factor can be estimated using [Boehm, 1982] [Boehm, 2000]:
 100% (11.13)

 3.67 2.94 . .
 (11.14)

 (11.15)

where
 Actual time to develop the software, in calendar months.
 Nominal time to develop the software, in calendar months.
 The size of developed source code, in KLOC.
 The size of finally delivered source code, in KLOC.
 The size of source code discarded during development, in KLOC.

Either or is given by:

 (11.16)

where

 The size of new code developed, in KLOC (Kilo Line of Code).

 The equivalent size of adapted code, in KLOC. Adapted code is
preexisting code that is treated as a white-box and is modified for use
with the product.

179

 The equivalent size of reused code, in KLOC. Reused code is
preexisting code that is treated as a black-box and plugged into the
product without modification.

 The equivalent size of off-the-shelf software, in KLOC. There may be
some new interface code associated with it, which also needs to be
counted as new code.

The equivalent size of adapted, reused, or COTS code is calculated according to the following
sizing equations:
 , , , , 1 (11.17)

 . 50 50 (11.18)

 0.4 0.3 0.3 (11.19)
where

 Assessment and Assimilation Increment
 Adaptation Adjustment Factor
 Adaptation Adjustment Modifier

 Percentage of Code Re-engineered by Automation
 Percentage of Code Modified
 Percentage of Design Modified
 Percentage of Integration Effort Required for Integrating

Adapted or Reused Software.
 Percentage of Software Understanding

 Programmer Unfamiliarity with Software

If the software is developed without using any adapted, reused, or COTS source code (like the
APP system), the , , 0. Otherwise, it is necessary to measure AT,
CM, DM, and IM, and estimate the value of AA, SU, and UNFM to quantify the , , and the SLI of the development schedule factor.

Assessment and Assimilation (AA) assesses the degree of effort (“increment”) necessary to
determine whether a reused software module is appropriate for the application, and to integrate
its description into the overall product description. Table 11.7 provides the Rating Scales and
values for the assessment assimilation increment. “AA” and “AA increment” are used
interchangeably in this report.

180

Table 11.7 Rating Scales for Assessment and Assimilation Increment (AA)

AA Increment Level of AA Effort
0 None
2 Basic module search and documentation
4 Some module Test and Evaluation (T&E), documentation
6 Considerable module T&E, documentation
8 Extensive module T&E, documentation

The Software Understanding increment (SU) is obtained from Table 11.8. If the software is rated
very high on structure, applications clarity, and self-descriptiveness, the software understanding
and interface-checking penalty is 10%. If the software is rated very low on these factors, the
penalty is 50%. SU is determined by taking the subjective average of the three categories.

Table 11.8 Rating Scales for Software Understanding Increment (SU)

 Very Low Low Nominal High Very High

Structure

Very low
cohesion, high

coupling,
spaghetti

code.

Moderately
low cohesion,
high coupling.

Reasonably
well-structured;

some weak
areas.

High cohesion,
low coupling.

Strong
modularity,
information

hiding in
data/control
structures.

Application
clarity

No match
between

program and
application
worldviews.

Some
correlation
between

program and
application.

Moderate
correlation
between

program and
application.

Good
correlation
between

program and
application.

Clear match
between

program and
application
worldviews.

Self-
descriptiveness

Obscure code;
documentation

missing,
obscure or
obsolete.

Some code
commentary
and headers;
some useful

documentation.

Moderate level
of code

commentary,
headers,

documentation.

Good code
commentary
and headers;

useful
documentation
; some weak

areas.

Self-descriptive
code;

documentation
up-to-date, well-
organized, with
design rationale.

SU Increment 50 40 30 20 10

UNFM is the indicator for the programmer’s relative unfamiliarity with the software. If the
programmer works with the software every day, the 0.0 multiplier for UNFM will add no
software understanding effort increment. If the programmer has never seen the software before,

181

the 1.0 multiplier will add the full software understanding effort increment. The rating for
UNFM is shown in Table 11.9.

Table 11.9 Rating Scales for Programmer Unfamiliarity (UNFM)

UNFM Increment Level of UNFM

0.0 Completely familiar
0.2 Mostly familiar
0.4 Somewhat familiar
0.6 Considerably unfamiliar
0.8 Mostly unfamiliar
1.0 Completely unfamiliar

Table 11.10 summarizes the guidelines and constraints to estimate the parameters used in the
sizing equations (Equation 11.15 to Equation 11.17).

Table 11.10 Guidelines and Constraints to Estimate Reuse Parameters

Reuse Parameters

DM CM IM AA SU UNFM
New code N/A N/A N/A N/A N/A N/A

Adapted code 0–100% 0–100%
0–100+%
(can be >

100%)
0–8% 0–50% 0–1

Reused code 0% 0% 0–100% 0–8% N/A N/A
COTS 0% 0% 0–100% 0–8% N/A N/A

AAM uses the factors described above, Software Understanding (SU), Programmer
Unfamiliarity (UNFM), and Assessment and Assimilation (AA) with the Adaptation Adjustment
Factor (AAF), which is given by Equation 11.19.

In order to obtain the SLI of the Schedule Pressure factors (denoted by), the UMD research
team investigated the Yerkes-Dodson law [Yerkes, 1908]. This “law” states that the quality of
performance on any task is an inverted U-shaped function of arousal, as shown on Figure 11.3.
With increasing arousal, performance first improves, up to an optimal level, and then deteriorates
when arousal is too high.

The range over which performance improves with increasing arousal varies with task

182

complexity, as shown on Figure 11.4 [Huey, 1993]. A simple task needs a higher amount of
arousal than a more complex task to reach a maximal quality of performance.

Figure 11.3 The Yerkes-Dodson Law with Three Levels of Task Difficulty

 Figure 11.4 U-Function Relating Performance to Arousal

For a “nominal” task with medium level of difficulty, it is reasonable to postulate a symmetric
bell-shaped function that relates SLI to SCED. Assume:
 1⁄ 2

with conditions: 2| 200% 0.5 2| 200% 1.0 1
and

Level of Arousal

P
er

fo
rm

an
ce

Optimum
Level of

Complex Task

Simple Task

183

| % 0.5 1√8 ln 2

Therefore, Equation 11.20:
 exp ln 16 . (11.20)

This equation gives results consistent with those given by [Gertman, 2005]. A follow on effort is
required to validate this equation.

11.4.3.2 Experience Factor

11.4.3.2.1 Application Experience (APEX)

The rating scales for APEX are defined in terms of the project team’s level of experience with
this type of application [Boehm, 1982] [Boehm, 2000]. See Table 11.11 for APEX ratings.

Table 11.11 Rating Scales for APEX

APEX Descriptors 2 months 6 months 1 year 3 years 6 years

Rating Levels Very Low Low Nominal High Very high

Rating Value 1 2 3 4 5

11.4.3.2.2 Platform Experience (PLEX)

The rating scales for PLEX are defined in terms of the project team’s equivalent level of
experience with the development platforms, including Graphical User Interface (GUI), database,
Operating System, hardware platform, networking platform, etc. [Boehm, 1982] [Boehm, 2000].
See Table 11.12 for PLEX ratings.

Table 11.12 Rating Scales for PLEX

PLEX Descriptors 2 months 6 months 1 year 3 years 6 years

Rating Levels Very Low Low Nominal High Very high

Rating Value 1 2 3 4 5

11.4.3.2.3 Language and Tool Experience (LTEX)

LTEX is a measure of the level of programming language and software tool experience of the

184

project team developing the software system or subsystem [Boehm, 1982] [Boehm, 2000]. See
Table 11.13 for LTEX ratings.

Table 11.13 Rating Scales for LTEX

LTEX Descriptors 2 months 6 months 1 year 3 years ≥ 6 years

Rating Levels Very Low Low Nominal High Very high

Rating Value 1 2 3 4 5

Refer to Table 11.14 to estimate the SLI value for the Experience factor (denoted by 3)

Table 11.14 Experience SLI Estimation

Sum of Rating Values of
APEX, PLEX and LTEX

3, 4 5, 6 7, 8 9, 10 11, 12 13, 14 15

Rating Levels
Extra
Low

Very
Low

Low
Nomina

l
High

Very
high

Extra
High

SLI Value 0.0 0.17 0.34 0.50 0.67 0.84 1.0

11.4.3.3 Measurement for Capability Factor

11.4.3.3.1 Analyst Capability (ACAP)

Analysts are personnel who work on requirements, high-level design, and detailed design. The
rating scales for ACAP are expressed in terms of percentiles with respect to the overall
population of analysts [Boehm, 1982] [Boehm, 2000]. The major attributes that should be
considered in this rating are:

1. Analysis and design ability
2. Efficiency and thoroughness
3. Ability to communicate and cooperate

Note:

 These attributes should be approximately equally weighted in the evaluation.
 The evaluation should not consider the level of experience of the analysts; experience

effects are covered by other factors.
 The evaluation should be based on the capability of the analysts as a team rather than as

individuals.

185

See Table 11.15 for ACAP ratings.

Table 11.15 Rating Scales for ACAP

ACAP Descriptors
15th

percentile
35th

percentile
55th

percentile
75th

percentile
90th

percentile

Rating Levels Very Low Low Nominal High Very high

Rating Value 1 2 3 4 5

11.4.3.3.2 Programmer Capability (PCAP)

The rating scales for PCAP are expressed in terms of percentiles with respect to the overall
population of programmers. Unit testing is regarded as one of the tasks performed by the
programmers. The major factors that should be considered in the rating are [Boehm, 1982]
[Boehm, 2000]:

1. Programmer ability
2. Efficiency and thoroughness
3. Ability to communicate and cooperate

Note:

 These attributes should be approximately equally weighted in the evaluation.
 The evaluation should not consider the level of experience of the programmers; experience

effects are covered by other factors.
 The evaluation should be based on the capability of the programmers as a team rather than as

individuals.

See Table 11.16 for PCAP ratings.

Table 11.16 Rating Scales for PCAP

PCAP Descriptors
15th

percentile
35th

percentile
55th

percentile
75th

percentile
90th

percentile

Rating Levels Very Low Low Nominal High Very high

Rating Value 1 2 3 4 5

186

11.4.3.3.3 Tester Capability (TCAP)

The rating scales for TCAP are expressed in terms of percentiles with respect to the overall
population of testers. Unit testing is regarded as one of the tasks performed by the programmers,
not by the testers. The major factors that should be considered in the rating are [Boehm, 1982]
[Boehm, 2000]:

1. Tester ability
2. Efficiency and thoroughness
3. Ability to communicate and cooperate

Note:

 These attributes should be approximately equally weighted in the evaluation.
 The evaluation should not consider the level of experience of the testers; experience effects

are covered by other factors.
 The evaluation should be based on the capability of the testers as a team rather than as

individuals.

See Table 11.17 for TCAP ratings.

Table 11.17 Rating Scales for TCAP

TCAP Descriptors
15th

percentile
35th

percentile
55th

percentile
75th

percentile
90th

percentile

Rating Levels Very Low Low Nominal High Very high

Rating Value 1 2 3 4 5

11.4.3.3.4 Personnel Continuity (PCON)

The rating scales for PCON measures the project’s annual personnel turnover [Boehm, 1982]
[Boehm, 2000]. See Table 11.18 for PCON ratings.

187

Table 11.18 Rating Scales for PCON

PCON Descriptors
48%

per year
24%

per year
12%

per year
6%

per year
3%

per year

Rating Levels Very Low Low Nominal High Very high

Rating Value 1 2 3 4 5

Refer to Table 11.19 or Table 11.20 to estimate the SLI value of CAPABILITY Factor (denoted
by) for either capability excluded from the rating or capability included in the rating,
respectively.

Table 11.19 Estimating SLI Value of Capability (Tester Capability Excluded)

Sum of SLI Values
of ACAP, PCAP,

and PCON
3, 4 5, 6 7, 8 9, 10 11, 12 13, 14 15

Rating Levels
Extra
Low

Very
Low

Low Nominal High
Very
high

Extra
High

SLI Value 0 0.17 0.24 0.50 0.67 0.84 1

 Table 11.20 Estimating SLI Value of Capability (Tester Capability Included)

Sum of SLI values
of ACAP, PCAP,
PCON and TCAP

4, 5 6, 7 8–10 11–13 14–16 17–19 20

Rating Levels
Extra
Low

Very
Low

Low Nominal High
Very
high

Extra
High

SLI Value 0 0.17 0.24 0.50 0.67 0.84 1

11.4.3.4 Measurement For Development Tools Factor

The major factors that should be considered in this rating are [Boehm, 1982] [Boehm, 2000]:

1. Capability of the tools employed within the life cycle of a project.
2. Maturity of the tools
3. Integration of the tools

Refer to Table 11.21 for TOOL ratings and SLI estimation (denoted by 5).

188

Table 11.21 Rating Scales for TOOL Factor

11.4.3.5 Measurement for Development Site Factor (SITE)

Determining the rating of the SITE factor involves the assessment and combination of two
factors: site collocation and communication support. When making the subjective average of
these two components of SITE, 70% and 30% weights are recommended for site collocation and
communication support, respectively, as shown in Table 11.22 and Table 11.23 [Boehm, 1982]
[Boehm, 2000].

Table 11.22 Rating Scales for Site Collocation

Site
Collocation
Descriptors

Inter-
national

Multi-city
and

Multi-
company

Multi-city
or

Multi-
company

Same city
or

metro area

Same
building or

complex

Fully
cooperative

Rating
Levels

Very Low Low Nominal High Very High Extra High

Rating
Value

0 1 2 3 4 5

Tool
Descriptors

Minimal tools
for document

editing, coding,
compiling, and

debugging

Simple life-
cycle tools,

little
integration

Basic life-
cycle tools,
moderately
integrated

Strong,
mature life-
cycle tools,
moderately
integrated

Strong, mature,
proactive life-

cycle tools, well
integrated with

processes,
methods, and

reuse

Rating Levels Very Low Low Nominal High Very high

SLI Value 0 0.25 0.5 0.75 1

189

Table 11.23 Rating Scales for Communication Support

Site Communi-
cation

Descriptors

Some
phone,
mail

Individ.
phone,
FAX

Narrow-
band
e-mail

Wideband
e-comm.

Wideband
e-comm. occas.

Video
conference

Interactive
multi-
media

Rating Levels
Very
Low

Low Nominal High Very High Extra High

Rating Value 0 1 2 3 4 5

Refer to Table 11.24 for SITE ratings and SLI estimation (denoted by), and Table 11.25 for
determining the weighted sum by the rating values of collocation and communication.

Table 11.24 SITE Ratings and SLI Estimation

Weighted Sum of
SLI values of Site

Collocation
and Site Comm.

0.0–0.9 1.0–1.5 1.6–2.9 3.0–3.8 4.0–4.4 4.7–5.0

Rating Levels Very Low Low Nominal High Very high
Extra
High

SLI Value 0.0 0.25 0.50 0.67 0.84 1.0

Table 11.25 Determining the Weighted Sum by the Rating of Collocation and Communication

Communication Rating →

Collocation Rating ↓
0 1 2 3 4 5

0 0 0.3 0.6 0.9 1.2 1.5

1 0.7 1 1.3 1.6 1.9 2.2

2 1.4 1.7 2 2.3 2.6 2.9

3 2.1 2.4 2.7 3 3.3 3.6

4 2.8 3.1 3.4 3.7 4 4.3

5 3.5 3.8 4.1 4.4 4.7 5

190

11.4.3.6 Measurement for Team Cohesion Factor (TEAM)

TEAM accounts for the sources of project turbulence and extra effort caused by difficulties in
synchronizing the project’s stakeholders: users, customers, developers, maintainers, and others.
See Table 11.26 for TEAM ratings and SLI estimation (denoted by) and Table 11.27 for the
components comprising TEAM ratings. [Boehm, 1982] [Boehm, 2000]

Table 11.26 Rating Scales for TEAM

TEAM
Descriptors

Very
difficult

interactions

Some
difficult

interactions

Basically
cooperative
interactions

Largely
cooperative

Highly
cooperative

Seamless
interactions

Rating
Levels

Very Low Low Nominal High Very High Extra High

SLI Value 0 0.25 0.5 0.67 0.84 1

Table 11.27 TEAM Rating Components

Characteristic Very Low Low Nominal High Very High Extra High
Consistency of

stakeholder
objectives and

cultures

Little Some Basic Considerable Strong Full

Ability, willingness
of stakeholders to

accommodate other
stakeholders’

objectives

Little Some Basic Considerable Strong Full

Experience of
stakeholders in

operating as a team
None Little Some Basic Considerable Extensive

Stakeholder team
building to achieve
shared vision and

commitments

None Little Some Basic Considerable Extensive

191

11.4.3.7 Measurement for Management Style Factor (STYLE)

This factor captures the impact of management style on the quality of a project. Refer to Table
11.28 for STYLE ratings and SLI estimation (denoted by).

Table 11.28 Rating Scales for STYLE

Style
Descriptors

Highly
Intrusive

Moderately
Intrusive

Neither Intrusive
nor Supportive

Moderately
Supportive

Highly
Supportive

Rating Levels Very Low Low Nominal High Extra High

SLI Value 0 0.25 0.5 0.75 1

11.4.3.8 Measurement for Process Maturity Factor (PMAT)

PMAT captures the capability level of an organization based on the software Engineering
Institute’s Capability Maturity Model (CMM) (Refer to Chapter 8 for CMM measurement).
Refer to Table 11.29 for PMAT SLI Estimation (denoted by) [Boehm, 1982] [Boehm,
2000] .

Table 11.29 Rating Scales and SLI Estimation for PMAT

PMAT
Descriptors

CMM level 1
(lower half)

CMM level 1
(upper half)

CMM
level 2

CMM
level 3

CMM
level 4

CMM
level 5

Rating Levels Very Low Low Nominal High Very High Extra High

SLI Value 0 0.25 0.5 0.67 0.84 1

11.4.3.9 Measurement for Requirements Evolution Factor (REVL)

Different from the definition given by COCOMO II [Boehm, 2000], REVL here is defined in
terms of the percentage of code change due to the evolution of requirements since the initial SRS
baseline. Refer to Chapter 15 for details.

See Table 11.30 for REVL ratings and SLI estimation (denoted by 10).

192

Table 11.30 Rating Scales and SLI Estimation for REVL

REVL
Descriptors

5%
code

change

20%
code

change

35%
code

change

50%
code

change

65%
code

change

80%
code change

Rating Levels Very Low Low Nominal High Very High Extra High

SLI Value 1 0.75 0.5 0.34 0.16 0

11.4.3.10 Measurement results for the support measures

Table 11.31 summarizes the measurement results for all Performance Influencing Factors.

Table 11.31 PIF Measurement Results for the APP System

Influence Factors Primitives
Values of Primitives for

CP
μp1

System
μp1

Application
μp2

System
μp2

Application

EXPERIENCE

APEX 5 5 5 5 5

PLEX 3 3 3 3 3

LTEX 3 3 3 3 3

CAPABILITY

ACAP 4 4 4 4 4

PCAP 3 3 3 3 3

PCON 5 5 5 5 5

TCAP 3 3 3 3 3

SCED

TDEVactual,
in calendar

months
25 25 13 25 19

SIZEdelivered,
in KLOC

1.21 2.034 0.48 0.895 0.206

SIZEdiscarded,
in KLOC

0.150 0.270 0.045 0.180 0.190

Use of Methods/
Notation/TOOL

TOOL 3 3 3 3 3

193

Table 11.31 PIF Measurement Results for the APP System (continued)

Influence Factors Primitives
Values of Primitives for

CP
μp1

System
μp1

Application
μp2

System
μp2

Application

SITE

COLLO-
CATION

4 4 4 4 4

COMMU-
NICATION

1 1 1 1 1

Team Relationships TEAM 3 3 3 4 4

Management Style STYLE 4 4 4 4 4

PMAT CMM 2 2 2 2 2

Requirement
Volatility

REVL 10.6% 3.8% 3.0% 9.1% 3.9%

The data for APEX, PLEX, LTEX, ACAP, PCAP, PCON, TCAP, TDEVactual, TOOL,
COLLOCATION, COMMUNICATION, TEAM, STYLE, and CMM were extracted from
responses to a questionnaire distributed to the APP system manufacturer. Refer to Chapter 15 for
details of obtaining the data for REVL.

The data for SIZEdiscarded was obtained by the following procedure.

1. Identify the discarded code segment/module documented in [APP, Y1], [APP, Y2], [APP,
Y3], [APP, Y4], and [APP, Y5].
2. Count the size of the discarded code by using the code size measurement rules defined in
Chapter 6.

Table 11.32 summarizes the SLIs for the APP system calculated by applying the measurement
rules of the PIFs to the data in Table 11.31.

Table 11.32 Summary of SLI Calculations

CP

System
μp1

System
μp1

Application
μp2

System
μp2

Application

Cyclomatic
Complexity

0.8369 0.8435 0.6400 0.8239 0.8324

SECD 0.7857 0.8347 0.8395 0.8057 0.7768

EXPERIENCE 0.67 0.50 0.50 0.7692 0.7314

CAPABILITY 0.84 0.67 0.67 0.84 0.84

194

Table 11.32 Summary of SLI Calculations (continued)

 CP
System

μp1
System

μp1
Application

μp2
System

μp2
Application

TOOL 0.50 0.50 0.50 0.50 0.50

SITE 0.50 0.50 0.50 0.50 0.50

TEAM 0.67 0.67 0.67 0.84 0.84

STYLE 0.75 0.75 0.75 0.75 0.75

PMAT 0.5 0.5 0.5 0.5 0.5

REVL 0.9067 1.00 1.00 0.9317 1.00

The SLI of the entire software product is given by the weighted sum of all PIF SLIs:
 ∑ (11.21)
where

 weight of the i-th influence factor. Table 11.33 provides the values of weights used
for SLI calculation [Stutzke, 2001].

 the SLI value of the i-th influence factor.

Table 11.33 Values of Weights Used for SLI Calculation

 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

Value 0.204 0.037 0.148 0.093 0.056 0.167 0.019 0.037 0.074 0.167

11.4.3.11 RePS with supportive measures

Equation 11.22 will be used to estimate the fault content.
 0.036 20 (11.22)

Table 11.34 summarizes the SLI values and the fault content of the delivered source codes with
and without using the support measures respectively.

The estimated number of faults in the APP using the support measures in addition to CC is:

195

11.8 22.7 6.9 7.8 1.7 50.9 (11.23)

Thus, the APP reliability prediction (using support measures in addition to CC) is given by:

 exp 4.2 10 50.9 0.129 /0.009 0.9996936 /

 (11.24)

The above results show that the estimated number of defects using the support measures (i.e.,
50.9 from Equation 11.23) is larger than the estimated number of defects obtained using only CC
(i.e., 28.3 defects from Equation 11.8). Consequently, the reliability will be less using the
support measures (i.e. 0.9996936 defect/demand from Equation 11.24) than using only CC (i.e.,
0.9998296 defect/demand from Equation 11.12). As shown in Table 11.34, the SLI values for
many of the influencing factors are lower than the SLI values for CC. This means the APPs
performance on these factors was low and consequently the number of defects estimated using
all the factors should be higher.

It should be noted that the use of supportive measures in this chapter is for illustration only. The
purpose of this exercise is to show how supportive measures could be used to improve a
reliability prediction based on CC. The results analysis in Chapter 19 uses the reduced CC RePS
(i.e., without supportive measures).

Table 11.34 Summary of Fault Content Calculation

CP

System
μp1

System
μp1

Application
μp2

System
μp2

Application
 SIZE, in LOC 1210 2034 480 895 206

Without
using the
support

measures

 0.8369 0.8435 0.64 0.8239 0.8324
The number of
defects in the
source code.

5.8 9.4 7.5 4.6 1

Using the
support

measures

 0.7175 0.6952 0.6539 0.7377 0.7441

The number of
defects in the
source code.

11.8 22.7 6.9 7.8 1.7

196

11.5 Lessons Learned

The measurement of CC can be supported by automation tools. The RePS based on CC is
straightforward once the average execution-time-per-demand and the linear execution-time are
quantified. Thus, CC is a convenient measure for software-reliability prediction. However, there
are two issues with this measure. First, as is the case for BLOC, the measurement of CC also
requires the concept of software “module” while there is no clear definition of “module”
provided in the current literature. Second, the CC RePS uses empirical industry-data to link the
CC value with the number of defects. Thus, reliability prediction from CC is not as good as the
predicted reliability obtained from other measures that deal with real defects of the application.

197

11.6 References

[APP, Y1] “APP Module SF1 System Software code,” Year Y1.
[APP, Y2] “APP SF1 Flux/Delta Flux/Flow Application code,” Year Y2.
[APP, Y3] “APP Module μp2 System Software Source Code Listing,” Year Y3.
[APP, Y4] “APP μp2 Flux/Delta Flux/Flow Application Software Source Code

Listing,” Year Y4.
[APP, Y5] “APP Comm. Processor Source Code,” Year Y5.
[Basili, 1984] V.R. Basili and B.T. Perricone. “Software Errors and Complexity: An

Empirical Investigation,” Communications of the ACM, 1984.
[Boehm, 1982] B. Boehm. Software Engineering Economics. Prentice Hall, Inc., 1982.
[Boehm, 2000] B. Boehm et al. Software Cost Estimation With COCOMO II. Prentice-

Hall, Inc., 2000.
[Chapman, 2002] R.M. Chapman and D. Solomon. “Software Metrics as Error Predictors,”

NASA, 2002. Available:
http://sarpresults.ivv.nasa.gov/ViewResearch/289/23.jsp

[Dougherty, 1988] E.M. Dougherty and J.R. Fragola. Human Reliability Analysis: A System
Engineering Approach with Nuclear Power Plant Applications. John
Wiley & Sons, 1988.

[Embrey, 1983] D.E. Embrey. “The Use of Performance Shaping Factors and Quantified
Expert Judgment in the Evaluation of Human Reliability: An Initial
Appraisal,” US NRC, NUREG/CR-2986, 1983.

[Fenton, 1999] N.E. Fenton and M. Neil. “A Critique of Software Defect Prediction
Models,” IEEE Transactions on Software Engineering, vol. 25, pp. 675–
689, 1999.

[Gertman, 2005] D.I . Gertman et al. “The SPAR-H Human Reliability Analysis Method,”
US NRC, NUREG/CR-6883, 2005.

[Gill, 1997] G.K. Gill and C.F. Kemerer. “Cyclomatic Complexity Density and
Software Maintenance Productivity,” IEEE Transactions on Software
Engineering, vol. 17, pp. 1284–1288, 1991.

[Hansen, 1978] W. J. Hansen. “Measurement of Program Complexity by the Pair
(Cyclomatic Number, Operator Count),” ACM SIGPLAN Notices, vol.
13, no. 3, pp. 29–33, 1978.

[IEEE 982.2, 1988] “IEEE Guide for the Use of IEEE Standard Dictionary of Measures to
Produce Reliable Software,” IEEE Std. 982.2-1988, 1988.

[Jones, 1991] C. Jones. Applied Software Measurement: Assuring Productivity and
Quality. New York, NY: McGraw-Hill, 1991.

[Jones, 1996] C. Jones. Software Systems Failure and Success. International Thomson
Computer Press, Inc., 1996.

[Musa, 1990] J.D. Musa. Software Reliability: Measurement, Prediction, Application.
New York: McGraw-Hill, 1990.

[McCabe, 1976] T.J. McCabe. “A Complexity Measure,” IEEE Transactions on Software
Engineering, 1976.

198

[McCabe, 1982] T.J. McCabe. “Structured Testing: A Software Testing Methodology
Using the Cyclomatic Complexity Metric,” National Bureau of Standards
Special Publication 500-99, 1982.

[McCabe, 1989] T.J. McCabe and C.W. Butler. “Design Complexity Measurement and
Testing,” Communications of the ACM, vol. 32, pp. 1415–1425, 1989.

[McCabe, 1994] T.J. McCabe and A.H. Watson. “Software Complexity.” Crosstalk,
Journal of Defense Software Engineering, vol. 7, pp. 5–9, 1994.

[MST, 2005] M Squared Technology, RSM (Resource Standard Metrics) Version 6.80,
2005. Available: http://msquaredtechnologies.com/m2rsm/index.htm

[Myers, 1977] G.J. Myers. “An Extension to the Cyclomatic Measure of Program
Complexity,” SIGPLAN Notices, vol. 12, no. 10, pp. 61–64, 1977.

[Pham, 2000] X. Zhang and H. Pham. “An analysis of Factors Affecting Software
Reliability,” The Journal of Systems and Software, vol. 50, pp. 43–56,
2000.

[Reason, 1990] J. Reason. Human Error. Cambridge University Press, 1990.
[Smidts, 2004] C. Smidts and M. Li, “Preliminary Validation of a Methodology for

Assessing Software Quality,” NUREG/CR-6848, 2004.
[Stutzke, 2001] M.A. Stutzke and C. Smidts. “A Stochastic Model of Fault Introduction

and Removal During Software Development,” IEEE Transactions on
Reliability Engineering, vol. 50, no. 2, 2001.

[Takahashi, 1997] R. Takahashi. “Software Quality Classification Model Based on McCabe’s
Complexity Measure,” Journal of Systems and Software, vol. 38, pp. 61–
69, 1997.

[Walsh, 1979] T. Walsh. “A Software Reliability Study Using a Complexity Measure,” in
Proc. AFIPS Conference, 1979.

[Watson, 1996] A.H. Watson and T.J. McCabe. “Structured Testing: A Testing
Methodology Using the Cyclomatic Complexity Metric,” NIST Special
Publication 500-235, 1996. Available:
http://www.mccabe.com/pdf/nist235r.pdf

[Zuse, 1990] H. Zuse. “Software Complexity: Measures and Methods,” Hawthorne, NJ:
Walter de Gruyter Co., 1990.

199

12. DEFECT DENSITY

The Defect Density measure indicates whether the inspection process is effective. If the defect
density is outside the norm after several inspections, it is an indication that the inspection process
requires further scrutiny.

This measure can only be applied after the requirements, design, and source code inspections are
completed. As listed in Table 3.3, the applicable life cycle phases for the DD measure are
Testing and Operation.

12.1 Definition

Defect density is defined in this study as the ratio of defects remaining to the number of lines of
code in the software. This definition is consistent with the “Code Defect Density”, which is
defined in [IEEE 982.2, 1988] and [Smidts, 2000]. The defects are discovered by independent
inspection. The inspection process is discussed below.

To calculate defect density, severity levels for defect designation27 are established first. In this
particular case, all defects discussed below belong to the level 1 category.28

Defect Density, DD, is given as:

1 , , 1 (12.1)

where
 An index reflecting the development stage. A value of 1 represents the requirements

stage, a value of 2 represents the design stage and a value of 3 represents the coding
stage.

 The index identifying the specific inspector. This index ranges from 1 to N.

 , The number of unique defects detected by the j-th inspector during the i-th

development stage in the current version of the software.

 , The number of defects found in the -th stage and fixed in the k-th stage, 1 3.

27Refer to Chapter 6 for a definition of severity levels.
28 No severity level 2 defects were found.

200

 The number of defects found by exactly inspectors and remaining in the code

stage. The value of m ranges from 2 to N.

 Total number of inspectors.

 The number of source lines of code (LOC) in thousands. The LOC counting rule is

defined in Chapter 6.

The numerator in Equation 12.1 is the number of defects discovered by the inspection but
remaining unresolved in the APP. The first term of the numerator is the total number of defects
found by all inspectors and from all life cycle phases (requirements, design, code, and testing).
Among these defects, some are fixed in the succeeding life cycles (for instance, a defect is found
in the requirements phase but later fixed in the testing phase); some are found by multiple
inspectors simultaneously (for instance, Inspector I found defect A and Inspector II found defect
A, too). The second term in the numerator represents the former case (defects fixed in a later
stage), and the third term represents the latter situation, i.e., a duplicate count for one defect.

12.2 Measurement

The IEEE standard [IEEE 982.2, 1988] specified that Defect Density can be measured using
software inspection. It did not specify, however, which software inspection procedure should be
conducted. In this study, the authors utilized the Fagan [Fagan, 1976] approach to conduct the
software inspection. Fagan’s method was further developed by Robert Ebenau and described in
[Strauss, 1993].

The inspection conducted in this study is not in the development process. As such, the inspection
stages described in [Strauss, 1993] were tailored in this study. Only the planning, preparation,
and meeting stage from [Strauss, 1993] were considered. The inspectors (or checkers); the
documents under inspection; the documents required (also called source document, for example,
the user requirements, the system requirements or other background knowledge); and the rules or
checklists were identified in the planning stage. The individual checking activities were
performed in the preparation stage. The findings were then summarized in the meeting stage. No
process improvement activities are required in the inspection process.

The checklists used for the requirements, design, and code inspection are presented in [Strauss,
1993]. The requirements, design, and code inspection are formalized in the following sub-
sections.

201

12.2.1 Requirements Inspection

Products Under Inspection

1. APP module first safety function processor SRS [APP, Y3]
2. APP Flux/Delta Flow Application SRS SF1 [APP, Y6]
3. TAR module μp2 system software SRS [APP, Y9]
4. APP μp2 Flux/Delta Flux/Flow application software SRS [APP, Y12]
5. APP module communication processor SRS [APP, Y15]

Source Documents

1. APP instruction manual [APP, Y1]
2. APP module - design specification [APP, Y2]

Participants:

1. Two Inspectors
2. One Moderator

The inspectors inspected the products independently and recorded all ambiguous, incorrect, or
incomplete statements and locations. The moderator reviewed the logs and corrected mistakes
made during the inspection process29. The values of , were obtained during this stage.

12.2.2 Design Inspection

Products Under Inspection

1. APP module first safety function processor SDD [APP, Y4]
2. APP Flux/Delta Flux/Flow Application SDD for μp1 [APP, Y7]
3. APP μp2 SDD for system software [APP, Y10]
4. APP μp2 Flux/Delta Flux/Flow application software SDD [APP, Y13]
5. APP communication processor SDD [APP, Y16]

Source Documents:

1. APP instruction manual [APP, Y1]
2. APP module - design specification [APP, Y2]
3. APP module first safety function processor SRS [APP, Y3]
4. APP Flux/Delta Flow Application SRS for SF1 [APP, Y6]
5. APP module μp2 system software SRS [APP, Y9]

29By “mistake” refers to cases where a defect found by inspection was determined not to be a defect per se.

202

6. APP μp2 Flux/Delta Flux/Flow application software SRS [APP, Y12]
7. APP module communication processor SRS [APP, Y15]
8. The list of defects generated in the requirements inspection cycle.

Participants:

1. Two Inspectors
2. One Moderator

The inspectors inspected the products independently and recorded defects (for example, any
ambiguity, incorrectness, inconsistency, or incompleteness).

The moderator reviewed all defects discovered in the design stage, and corrected the mistakes
made during the inspection.

The inspectors identified the defects found by the requirements inspection and fixed in the design
stage (,) as well as the defects that originated during the design process (,).

12.2.3 Source Code Inspection

Products Under Inspection

1. APP module SF1 system software code [APP, Y5]
2. APP SF1 Flux/Delta Flux/Flow application code [APP, Y8]
3. APP μp2 system software source code listing [APP, Y11]
4. APP μp2 Flux/Delta Flux/Flow application software source code listing [APP, Y14]
5. APP communication processor source code [APP, Y17]

Source Documents:

1. APP instruction manual [APP, Y1]
2. APP module-design specification [APP, Y2]
3. APP module first safety function processor SRS [APP, Y3]
4. APP Flux/Delta Flow Application SRS for SF1 [APP, Y6]
5. APP module μp2 system software SRS [APP, Y9]
6. APP μp2 Flux/Delta Flux/Flow application software SRS [APP, Y12]
7. APP module communication processor SRS [APP, Y15]
8. APP module first safety function processor SDD [APP, Y4]
9. APP Flux/Delta Flux/Flow Application SDD for SF1 [APP, Y7]
10. APP μp2 SDD for system software [APP, Y10]
11. APP μp2 Flux/Delta Flux/Flow application software SDD [APP, Y13]

203

12. APP communication processor SDD [APP, Y16]
13. The list of defects generated in the requirements inspection cycle.
14. The list of defects generated in the design inspection cycle.

Participants:

1. Two Inspectors
2. One Moderator

The inspectors inspected the source code independently and recorded defects with an emphasis
on the following types of defects: data reference, data declaration, computation, comparison,
control flow, interface, input/output, and missing code.

The moderator reviewed all defects discovered in the code stage, and corrected mistakes made
during the inspection.

The inspectors identified the number of defects found by the requirements inspection that were
fixed in the code (,), the number of defects found by the design inspection that were in the
code (,), and the number of defects that originated in the code , .

12.2.4 Lines of Code Count

The number of source lines of code was counted by one of the inspectors using the counting
rules defined in Chapter 6.

12.3 Results

The values of the different primitives required to evaluate defect density are shown in Table 12.1
through Table 12.4. Only Level 1 and 2 defects were considered.

Table 12.1 Values of the Primitives Di, j

Di, j
Development Stage (j)

Requirements Design Code

Inspector (i)
1 0 0 0

2 2 4 0

204

Table 12.2 Values of the Primitives DFl, k

DFl, k

Development Stage During which
Defects Were Fixed

Requirements Design Code

Development
Stage During
which Defects

were
Introduced

Requirements 0 0 0

Design N/A 0 2

Code N/A N/A 0

Table 12.3 Values of the Primitives DUm

m DUm

2 0

Based on these results, the value of the numerator is obtained in Equation 12.1 (where 2):
 1 , , 1 4

 (12.2)

Table 12.4 lists the number of lines of code.

Table 12.4 Primitive LOC

LOC 4825

Therefore

 LOC . KLOC

Table 12.5 gives a detailed description of the unresolved defects found during inspection.

205

Ta

bl
e

12
.5

 U
nr

es
ol

ve
d

D
ef

ec
ts

 L
ea

di
ng

 to
 L

ev
el

 1
 F

ai
lu

re
s

Fo
un

d
du

ri
ng

 In
sp

ec
tio

n

D
ef

ec
t

N
u

m
b

er

L
oc

at
io

n

D
ef

ec
t

D
es

cr
ip

ti
on

S

ev
er

it
y

L
ev

el
S

R
S

S

D
D

S

ou
rc

e
C

od
e

1
P

ag
e

62
 o

f
μp

1
S

ys
te

m
 S

R
S

,
ad

dr
es

s
li

ne
 c

he
ck

T
he

 c
he

ck
 a

lg
or

it
hm

 c
an

no
t d

et
ec

t
co

up
li

ng
 f

ai
lu

re
 b

ut
 o

nl
y

st
uc

k
at

 h
ig

h
or

lo

w
 f

ai
lu

re
s.

L

ev
el

 1

O
ri

gi
na

te
d

R
em

ai
ns

R

em
ai

ns

2

P
ag

e
41

 o
f
μp

2
S

ys
te

m
 S

D
D

,
m

ai
n_

pr
og

ra
m

 tr
ip

ca

lc
ul

at
io

n
lo

gi
c

If
 tr

ip
 c

on
di

ti
on

 is
 c

al
cu

la
te

d,
 th

e
lo

gi
c

w
il

l f
or

ce
 a

no
th

er
 c

al
cu

la
ti

on
. T

he
 f

in
al

de

ci
si

on
 th

en
 c

om
pl

et
el

y
de

pe
nd

s
on

 th
e

re
su

lt
 o

f
th

is
 r

ou
nd

 o
f

ca
lc

ul
at

io
n.

 T
hi

s
lo

gi
c

is
 p

ro
bl

em
at

ic
 in

 c
as

e
of

 th
is

sc

en
ar

io
: a

 r
ea

l t
ri

p
fi

rs
t,

th
en

 a
 f

al
se

no

n-
tr

ip
. A

lt
ho

ug
h

it
 is

 le
ss

 li
ke

ly
 b

ut

po
ss

ib
le

.

L
ev

el
 1

N

ot

sp
ec

if
ie

d
O

ri
gi

na
te

d
R

em
ai

ns

3

P
ag

e
45

 o
f
μp

2
S

ys
te

m
 S

D
D

,
ad

dr
es

s_
li

ne
_t

es
t

fu
nc

ti
on

Z
18

0
ha

s
16

 b
it

s
of

 a
dd

re
ss

 li
ne

 b
ut

 o
nl

y
th

e
le

as
t 1

3
bi

ts
 a

re
 e

xa
m

in
ed

. T
he

 m
os

t
si

gn
if

ic
an

t t
hr

ee
 a

re
 n

ot
 c

on
si

de
re

d.
 I

n
ca

se
 th

os
e

th
re

e
ar

e
in

 a
 b

ad
 s

it
ua

ti
on

,
th

e
te

st
 is

 n
ot

 a
bl

e
to

 r
ev

ea
l i

t.

L
ev

el
 1

N

ot

cl
ea

rl
y

sp
ec

if
ie

d
O

ri
gi

na
te

d
R

em
ai

ns

4
P

ag
e

38
 o

f
C

P

S
R

S
, a

dd
re

ss
 li

ne

ch
ec

k

T
he

 c
he

ck
 a

lg
or

it
hm

 c
an

no
t d

et
ec

t
co

up
li

ng
 f

ai
lu

re
 b

ut
 o

nl
y

st
uc

k
at

 h
ig

h
or

lo

w
 f

ai
lu

re
s.

L

ev
el

 1

O
ri

gi
na

te
d

R
em

ai
ns

R

em
ai

ns

206

12.4 RePS Construction and Reliability Estimation

Chapter 5 explained in greater detail how to utilize Extended Finite State Machine (EFSM)
models to propagate defects against an operational profile. Such EFSM models and the
operational profile constitute the RePS for Defect Density.

12.4.1 Result

The defect-density-based failure-probability prediction was obtained through execution of the
EFSM model. Detailed EFSM construction procedures are provided in Appendix A. The
estimation of APP probability of failure-per-demand based on the defect density RePS is 2.3110 . Hence 1 2.31 10 0.9999999997688.

12.5 Lessons Learned

The measurement of DD is a labor-intensive process. The use of a well-defined checklist can
facilitate the process. However, a large number of items in the checklist must be verified for a
single segment of requirement or design specification or source-code module. Some of the items
are high level and cannot be verified systematically nor answered objectively. For instance, the
checklist does not provide a clear definition of “complete,” “correct,” and “unambiguous” for an
item such as: “Are the requirements complete, correct, and unambiguous?” Thus, the larger the
application, the more difficult a complete measurement of DD becomes.

207

12.6 References

[APP, Y1] APP Instruction Manual.
[APP, Y2] “APP Module-Design Specification,” Year Y2.
[APP, Y3] “APP Module First SFP SRS,” Year Y3.
[APP, Y4] “APP Module First SFP SDD,” Year Y4.
[APP, Y5] “APP Module SF1 System Software code,” Year Y5.
[APP, Y6] “APP Flux/Delta Flux/Flow Application SRS for SF1,” Year Y6.
[APP, Y7] “APP Flux/Delta Flux/Flow Application SDD for SF1,” Year Y7.
[APP, Y8] “APP SF1 Flux/Delta Flux/Flow Application Code,” Year Y8.
[APP, Y9] “APP Module μp2 System Software SRS,” Year Y9.
[APP, Y10] “APP Module μp2 SDD for System Software,” Year Y10.
[APP, Y11] “APP Module μp2 System Software Source Code Listing,” Year Y11.
[APP, Y12] “APP μp2 Flux/Delta Flux/Flow Application Software SRS,” Year Y12.
[APP, Y13] “APP μp2 Flux/Delta Flux/Flow Application Software DD,” Year Y13.
[APP, Y14] “APP μp2 Flux/Delta Flux/Flow Application Software Source Code

Listing,” Year Y14.
[APP, Y15] “APP Module Communication Processor SRS,” Year Y15.
[APP, Y16] “APP Module Communication Processor SDD,” Year Y16.
[APP, Y17] “APP Communication Processor Source Code,” Year Y17.
[Fagan, 1976] M.E. Fagan. “Design and Code Inspections to Reduce Errors in Program

Development,” IBM Systems Journal, vol. 15, pp. 182–211, 1976.
[IEEE 982.2, 1988] “IEEE Guide for the Use of IEEE Standard Dictionary of Measures to

Produce Reliable Software,” IEEE Std. 982.2-1988, 1988.
[Smidts, 2004] C. Smidts and M. Li, “Validation of a Methodology for Assessing

Software Quality,” NRC, Office of Nuclear Regulatory Research,
Washington DC NUREG/CR-6848, 2004.

[Strauss, 1993] S.H. Strauss and R.G. Ebenau. “Software Inspection Process,” New York:
McGraw-Hill, Inc., 1993.

[Voas, 1992] J.M. Voas. “PIE: A Dynamic Failure-Based Technique,” IEEE
Transactions on Software Engineering, vol. 18, pp. 717–27, 1992.

209

13. FAULT-DAYS NUMBER

The fault-days number (FDN) measure represents the number of days that faults remain in the
software system from introduction to removal.

It should be noted that this measure is more suitable for assessing a development process than for
assessing a product.

The effectiveness of the software design and development process depends upon the timely
removal of faults across the entire life cycle. This measure is an indicator of the quality of the
software system design and of the development process. A high value may be indicative of
delayed removal of faults and/or presence of many faults, due to an ineffective development
process [Smidts, 2000].

This measure encourages timely inspections and testing and can also assist in the management of
improving the design and development process [Smidts, 2000].

Although limited published research is available, this measure can be used in a software
reliability program to monitor the quality of process and product development. Careful collection
of primitive data is essential to the successful use of this measure [Smidts, 2000].

This measure can be applied as soon as the requirements are available. As listed in Table 3.3, the
applicable life cycle phases for the FDN measure are Requirements, Design, Coding, Testing,
and Operation.

13.1 Definition

The fault-day metric evaluates the number of days between the time a fault is introduced into a
system and until the point the fault is detected and removed [Smidts, 2000] [Herrmann, 2000],
such that:

 (13.1)
and ∑ (13.2)
where

 Fault-days for the total system

 Fault-days for the i-th fault

 Date at which the i-th fault was introduced into the system

 Date at which the i-th fault was removed from the system

 Total number of faults

210

It is difficult to determine the exact fault content introduced into a system during the life cycle
phases. One way is to use the industry-average data to estimate the fault content based on the
size of a system (in terms of function point), as described later.

The “waterfall model,” sometimes called the “classic life cycle,” is a model of the software
development process in which the constituent activities, typically a concept phase, requirements
phase, design phase, coding phase, integration and test phase, and installation and checkout
phase, are performed in that order, possibly with overlap but with little or no iteration [IEEE
610.12, 1990].

For a software product whose development process follows a sequential development life cycle
model (such as the waterfall model), the FDN measure is counted on a phase-by-phase basis.

Despite the criticism of its efficacy in all situations [Hanna, 1995], the waterfall model is suitable
for use when [Pressman, 2004]:

1. The requirements of a problem are reasonably well understood
2. Work flows from communication through deployment in a reasonably linear fashion
3. Well-defined adaptations or enhancements to an existing system must be made

The definitions of the phases in the waterfall model are as follows (according to their typical
sequence of occurrence in the model):

Requirements Phase: the period of time in the software life cycle during which the
requirements for a software product are defined and documented [IEEE 610.12, 1990].
Requirements Review is part of this phase, in which a process or meeting during which the
requirements for a system, hardware item, or software item are presented to project personnel,
managers, users, customers, or other interested parties for comment or approval. Types of
requirements reviews include system requirements review, and software requirements review
[IEEE 610.12, 1990].

Design Phase: the period of time in the software life cycle during which the designs for
architecture, software components, interfaces, and data are created, documented, and verified to
satisfy requirements. Types of design phases include detailed design and preliminary design
[IEEE 610.12, 1990]. The Design Review is a process or meeting during which a system,
hardware, or software design is presented to project personnel, managers, users, customers, or
other interested parties for comment or approval. Types of design reviews include critical design
review, preliminary design review, system design review [IEEE 610.12, 1990].

Coding Phase: sometimes called the “implementation phase,” the period of time in the software
life cycle during which a software product is created from design documentation and debugged
[IEEE 610.12, 1990]. Code Inspection is a process or meeting during which software code is

211

presented to project personnel, managers, users, customers, or other interested parties for
comment or approval [IEEE 610.12, 1990].

Test Phase: the period of time in the software life cycle during which the components of a
software product are evaluated and integrated, and the software product is evaluated to determine
whether or not requirements have been satisfied [IEEE 610.12, 1990].

The following abbreviations for typical development phases appear in this chapter.

RQ Requirements Phase
RR Requirements Review
DE Design Phase
DR Design Review
CO Coding (or Implementation) Phase
CI Code Inspection
TE Testing Phase

13.2 Measurement Rules

This section presents eight rules for counting the FDN of a system. In Section 13.3 we use the
APP system to illustrate the application of these rules.

Rule 13.1: The FDN is counted on a workday basis.

Rule 13.2: The FDN for a system is the sum of the FDN of all faults, including faults removed
during the development life cycle, and faults remaining in the delivered source code.

Rule 13.3: The FDN of a fault is calculated according to Equation 13.1.

Rule 13.4: If the exact date at which the fault was introduced is unknown, it is assumed to have
occurred during the middle of the corresponding phase [Smidts, 2000]; i.e.:

 (13.3)

where

 Date at which the fault was introduced into the system

 Ending date of the phase in which the fault was introduced

 Beginning date of the phase in which the fault was introduced

212

Rule 13.5: If the exact date at which the fault was removed is unknown, it is assumed to have
occurred during the middle of the corresponding phase [Smidts, 2000]; i.e.:

 (13.4)

where

 Date at which the fault was removed from the system

 Ending date of the phase in which the fault was removed

 Beginning date of the phase in which the fault was removed

Three steps are required in order to apply Rule 13.4 or Rule 13.5:

1. Identify the beginning date and the ending date of each life cycle phase.

The beginning date of a phase is the date at which initial activities belonging to that phase are
conducted. The ending date of a phase is the date of release of the first version of all deliveries
belonging to that phase. These dates are usually recorded on development documents and/or
quality assurance documents, such as the SRS and the Verification and Validation (V&V)
Summary Report.

2. Construct the sequential development life cycle according to the occurrence sequence of

all phase beginning dates.

3. Divide the documented faults into several categories according to their originating phase.

For example, most faults are usually introduced during RQ, DE, and CO phases. Therefore, the
faults are divided into Requirements Faults, Design Faults, and Coding Faults.

Requirements faults originate in the requirements phase and can be detected in the requirements
review, design, design review, code, code review, or testing phase of the software life cycle.

Design faults originate in the design phase and can be detected in the design review, coding,
code review, or testing phases of the software life cycle.

Code faults originate in the coding phase and can be detected in the code inspection or testing
phases of the software life-cycle.

The FDN of the requirements faults, design faults, and coding faults is thus counted phase-by-
phase.

213

Rule 13.6: The removal date of a fault remaining in the delivered source code is estimated to be
the ending date of the last phase of the software-development life-cycle.
Rule 13.7: The fault content of requirements faults, design faults, and code faults, respectively,
are estimated using the industry average data.

According to [Stutzke, 2001], the expected fault content function is determined by solving the
following differential equation:
 , , , , (13.5)

where
 , expected category “j” fault count at time

 a category of faults introduced during phase , = RQ, DE, or CO,
corresponding to Requirements Faults, Design Faults, and Coding Faults,
 respectively

 a life cycle phase, ϕ = RQ, RR, DE, DR, CO, CI, or TE

 life cycle time

 estimate of “j” fault introduction rate in phase

, intensity function of per-fault detection in phase , for category “j” faults

 expected change in fault count due to each repair in phase , for category “j”
faults

Equation 13.5 is usually only applied to Requirements Faults, Design Faults, and Coding Faults
(= RQ, DE, and CO) because most faults are introduced into a software system during the RQ,
DE, and CO phases.

The component , addresses the introduction of faults. The component , , addresses the detection and removal of faults.

Three steps are required to set-up Equation 13.5.

1. Estimate of ,

Assuming that the fault-introduction rate within a phase is constant, the estimate of the fault-
introduction rate is given by [Stutzke, 2001]:

, , , ,0 (13.6)

214

and

, · ,, (13.7)

where , unadjusted estimate of the fault-introduction rate of the j-th fault categories

 a category of faults introduced during phase , = RQ, DE, or CO

, a constant

 Success Likelihood Index for the FDN measure which varies between 0
(error is likely) and 1 (error is not likely)

 fault potential per function point

, fraction of faults of type that originated in phase

, mean effort necessary to develop a function point in phase

In Equation 13.6, , 0 while . The reason is that each category of faults is
only introduced in a phase. For example, the Requirements Faults () are introduced in the
requirement phase (). Therefore, the introduction rate of the Requirements Faults is zero
during other phases (). We will thus write , as well as other parameters
and variables in Section 13.6 and 13.7 as dependents on only.

Stutzke [Stutzke, 2001] proposed a method for estimating the and . For , the following
transformations should be made. The upper and the lower bounds on
(corresponding to the extreme values of : 0 and 1) are:

, (corresponding to 1)

and , (corresponding to 0)

Therefore, ,, (13.8)

According to Equation 13.7, to obtain the upper and lower bounds of the in the
development phase, the upper and lower bounds of . and , should be obtained first.

Based on Capers Jones’ data [Jones, 2002], the average defect potential per function point per
phase for a software is shown in the “Average Defect Potential” column in Table 13.1. The upper
bound (worst software case) and the lower bound (best software case) of the defect potential per

215

function point per phase for a software program are shown in the “Upper Bound of the Defect
Potential” column and the “Lower Bound of the Defect Potential” column, respectively.

Table 13.1 . Per Function Point Per Phase

Defect Origins
Average

Defect Potential
Upper Bound of the

Defect Potential
Lower Bound of the

Defect Potential

Requirements 1.00 1.50 0.40

Design 1.25 2.20 0.60

Coding 1.75 2.50 1.00

Documents 0.60 1.00 0.40

Bad fixes 0.40 0.80 0.10

Total 5.00 8.00 2.50

The value of , is determined according to the “Mean” column of Table 13.2 (adapted from
Table 3.17 in [Jones, 1996]).

Table 13.2 , , Mean Effort Per Function Point for Each Life Cycle Phase , in Staff Hours

Phase, Max Mode Min Mean*

RQ 2.64 0.75 0.38 1.00

RR 1.76 0.59 0.33 0.74

DE 9.24 2.07 1.03 3.09

DR 1.76 0.60 0.33 0.75

CO 8.8 2.64 0.66 3.34

CI 1.76 0.88 0.44 0.95

Independent Validation &
Verification

1.76 1.06 0.66 1.11

Unit Testing 1.89 0.88 0.33 0.96

Function Testing 5.28 0.88 0.44 1.54

Integration Testing 1.76 0.75 0.33 0.85

System Testing 1.32 0.66 0.26 0.70

Independent Testing 1.32 0.66 0.44 0.73

Field Testing 1.76 0.59 0.26 0.73

Acceptance Testing 1.76 0.38 0.22 0.58

*Note: Mean was calculated using Equation 12 in [Stutzke, 2001]:

216

16 4

Therefore, Table 13.3 provides the boundary information for . and , .

Table 13.3 Boundary Information for . and ,

Requirements Design Phase Coding Phase

Max Mean Min Max Mean Min Max Mean Min . 1.5 1.00 0.4 2.2 1.25 0.6 2.5 1.75 1.0 , 2.64 1 0.38 9.24 3.09 1.03 8.8 3.34 0.66

Normally, there are enough reasons to believe that the defect potential will become smaller if
more effort is spent on the development process. Thus, the maximum defect potential is
corresponding to the minimum effort and the minimum defect potential is corresponding to the
maximum effort. Therefore, the upper bound of the can be obtained by using the
maximum defect potential divided by the minimum development effort. Similarly, the lower
bound of the is the minimum defect potential over the maximum development
effort. The results of the boundary of are shown in Table 13.4.

Table 13.4 Boundary Information for

Requirements Design Phase Coding Phase

Max Mean Min Max Mean Min Max Mean Min

 3.95 0.5 0.15 2.14 0.49 0.065 3.79 0.49 0.11

Thus, the value of for each development phase can be obtained from Equation 13.8 and is
shown in Table 13.5.

Table 13.5 Values of for Different Fault Categories

 RQ DE CO

 5.13 5.74 5.87

If there is no data available in the documents for determining the value of , it is
recommended to use 0.5 for , which corresponds to the average. Thus, Equation 13.6
becomes:

217

, 0 (13.9)

APP’s is given in Chapter 11 (Cyclomatic Complexity).

2. Estimate of

The expected change in fault count due to one repair for the life cycle phase is [Stutzke, 2001]:

 (13.10)

where
 Expected change in fault count due to one repair in the life-cycle phase

 Life-cycle time

 A life-cycle phase, = RQ, RR, DE, DR, CO, CI, or TE

 Number of requested repairs that are fixed in the life-cycle phase

 Number of repairs requested in the life-cycle phase

An industry average value of 0.7 should be used when the data for estimating is not
available (especially for RQ, DE, and CO, in which the debugging activities are rarely
documented) [Stutzke, 2001].

3. Estimate of ,

The intensity function of per-fault detection in phase , , is estimated as follows:

According to Stutzke [Stutzke, 2001], can be determined by Equation 13.11: 30
 · ·

 (13.11)

where:
 Intensity function of per-fault detection

 Fault-detection rate

 Fault-detection efficiency

 Effort necessary to develop a function point

 Time

 Time at which the considered phase originates

30 We omit the indices , for the current discussion.

218

The fault detection efficiency has the same characteristics as function , . Thus,
similarly, according to: 1 1 ·

the upper and lower bounds on 1 (corresponding to the extreme values of : 0 and 1)
are:
 1 1 (corresponding to 1),

and
 1 1 (corresponding to 0).

Based on the data by Capers Jones [Jones, 1986], Table 13.6 presents the fault-detection
efficiency during the development phases.

Table 13.6 Upper and Lower Bounds of the Fault Detection Efficiency during Development Phases

Removal Step Lowest Efficiency Modal Efficiency Highest Efficiency

 Desk checking of design 15% 35% 70%

 Desk checking of code 20% 40% 60%

Therefore, the mean fault-detection-efficiency can be calculated using Equation 12 in [Stutzke,
2001] and can be obtained easily. These results are provided in Table 13.7.

Table 13.7 Mean Fault Detection Efficiency and for Fault Detection Efficiency

Removal Step Mean Efficiency

 Desk checking of design 37.5% 1.68

 Desk checking of code 40% 1.41

Therefore, 1 0.625 1.68 for RQ and DE documents; 1 0.6 1.41
for CO documents.

Estimations of the inspection speed are shown in Table 13.8.

As shown in Table 13.8, the peer-review speed is around four times the formal documents
inspection rate and three times the code-inspection rate. The average effort and reviewing speed
for the peer review can be estimated based on Table 13.2 and is shown in Table 13.9

219

Table 13.8 Estimations of the Reviewing Speed

Phase Peer Review Speed Inspection Rate

Requirement

20 pages/hour31

5 pages/hour

External Design 4 pages/hour

Internal Design 200 lines/hour

Code 150 non-comment source lines/hour

Test Plan 4 pages/hour

Table 13.9 Average Peer Review Effort and Reviewing Speed

Phase
Peer Review Effort

(staff hour/function point)
Reviewing Speed

(function point/staff hour)

RQ 0.74/4 = 0.185 5.41

DE 0.75/4 = 0.188 5.32

CO 0.95/3 = 0.32 3.13

Having the above information on and , the intensity function of per-fault detection in phase , , is estimated and is shown in Table 13.10.

Rule 13.8: Only critical and significant faults should be considered when calculating the FDN
for a system.

The fault content of a system estimated according to Rule 13.7 does not distinguish faults by
their severity levels.

Furthermore, the measurements use empirical data and subjective assessments. The empirical
data used in this research is based on a significant amount of industry data. The associated
assessments are based on the best knowledge and information available to the research team after
communications with the developers. Also, much of the modeling is based on direct
measurements of the APP system and, as such, is purely objective in nature.

31 It is assumed that each page contains 30 lines of requirements/design description in natural language or 30 lines of code.

220

Ta
bl

e
13

.1
0

In
te

ns
ity

 F
un

ct
io

n
of

 P
er

-f
au

lt
D

et
ec

tio
n

of
 R

eq
ui

re
m

en
ts

, D
es

ig
n,

 a
nd

 C
od

in
g

Fa
ul

ts

 P
h

as
e

In
te

n
si

ty
 F

u
n

ct
io

n
 o

f
P

er
-f

au
lt

 D
et

ec
ti

on
,

,
R

eq
u

ir
em

en
ts

 F
au

lt
s

(
 =

 R
Q

)
D

es
ig

n
 F

au
lt

s
(

 =
 D

E
)

C
od

in
g

F
au

lt
s

(
 =

 C
O

)

R
Q

5.41

10.6
251

.68
/

0
0

R
R

10.6

251
.68

0.74
0

0

D
E

10.6

251
.68

3.09
15.88

10.6
251

.68 /

0

D
R

10.6

251
.68

0.75
10.6

251
.68

0.74
0

C
O

10.6

251
.68

3.34
10.6

251
.68

3.34
10.41

10.6
1.41 /

C
I

10.6
251

.68
0.95

10.6
251

.68
0.95

10.6
1.41

0.95
IV

&
V

10.6

251
.68

1.11
10.6

251
.68

1.11
10.6

1.41
1.11

U
T

10.6

251
.68

0.96
10.6

251
.68

0.96
10.6

1.41
0.96

F
T

10.6

251
.68

1.54
10.6

251
.68

1.54
10.6

1.41
1.54

Ig
T

10.6

251
.68

0.85
10.6

251
.68

0.85
10.6

1.41
0.85

S
T

10.6

251
.68

0.7
10.6

251
.68

0.7
10.6

1.41
0.7

Ip
T

10.6

251
.68

0.73
10.6

251
.68

0.73
10.6

1.41
0.73

F
iT

10.6

251
.68

0.73
10.6

251
.68

0.73
10.6

1.41
0.73

A
T

10.6

251
.68

0.58
10.6

251
.68

0.58
10.6

1.41
0.58

*N
ot

es
:

221

IV&V Independent Validation & Verification

UT Unit Testing

FT Function Testing

IgT Integration Testing

ST System Testing

IpT Independent Testing

FiT Field Testing

AT The number of function points for a system

 The number of function points for a system

 The life-cycle time, in staff-hours

 The beginning date of design phase

 The beginning date of coding phase

13.3 Measurement Results

The following documents were used to measure FDN of the APP system:

 APP Module Software V&V PLAN (SVVP) [APP, Y1]
 Final Verification and Validation Report for APP Module Software [APP, Y2]
 APP Module μp1 System SRS [APP, Y3]
 APP Module μp1 Flux/Delta Flux/Flow Application SRS [APP, Y4]
 APP Module μp2 System SRS [APP, Y5]
 APP Module μp2 Flux/Delta Flux/Flow Application SRS [APP, Y6]
 APP Module Communication Processor SRS [APP, Y7]
 APP Module μp1 SDD [APP, Y8]
 APP Flux/Delta Flux/Flow Application SDD for μp1 [APP, Y9]
 APP μp2 System Software SDD [APP, Y10]
 APP μp2 Flux/Delta Flux/Flow Application Software SDD [APP, Y11]
 APP Communication Processor SDD [APP, Y12]
 APP Module μp1 Flux/Delta Flux/Flow Application source code [APP, Y14]
 APP Module μp2 System source code [APP, Y15]
 APP Module μp2 Flux/Delta Flux/Flow Application source code [APP, Y16]
 APP Module Communication Processor System source code [APP, Y17]
 Test Summary Report for μp1 [APP, Y18]
 Test Summary Report for μp2 [APP, Y19]
 Test Summary Report for Communication Processor [APP, Y20]

222

13.3.1 Phases in the Development Life Cycle

According to the documents cited above, the APP system was developed according to the
waterfall model. The phases in the development life cycle are ordered as follows: RQ, RR, DE,
DR, CO, CI, and TE.

13.3.2 Duration of Each Life-Cycle Phase

The APP system has five components: the μp1 System, the μp1 Application, the μp2 System, the
μp2 Application, and the CP System. The μp1 System and the μp1 Application were developed
by one team, while the μp2 System, the μp2 Application, and the CP System were developed by
another team. The debugging phases (RR, DR, CI [Code Review Phase], and TE) were
conducted by a third independent team.

The beginning dates and ending dates of RR, DR, and CI for the five components were obtained
from [APP, Y1] and [APP, Y2].

The beginning dates and ending dates of TE for μp1 System, μp2 System, and CP System were
obtained from [APP, Y18], [APP, Y19], and [APP, Y20]. There is no independent testing for
μp1 Application and μp2 Application.

The ending dates of RQ, DE, and CO were obtained from [APP, Y2]. However, the beginning
dates of RQ, DE, and CO were not documented. In Table 13.11, the beginning dates of RQ, DE
and CO were estimated by the manufacturer of the APP system. These estimates can strongly
influence the accuracy of the measurement results. Given the beginning date and the ending date,
the length of a phase is estimated on a 20-workdays-per-month basis according to the
manufacturer of the APP system. These data also are summarized in Table 13.11.

Based on the collected information from the developer (5 staff-hours/workday), the total effort
(in staff-hours) of each life-cycle phase of the APP system development effort can be obtained
and is shown in Table 13.12.

223

Table 13.11 Measurement of Length of Each Life Cycle-Phase for the APP System

Phase,

RQ RR DE DR CO CI TE

μp1
System

Begin date 05/12/93 08/19/93 09/07/93 01/14/94 03/05/94 06/15/94 06/14/94

End date 06/28/93 09/07/93 01/03/94 03/04/94 04/05/94 06/24/94 09/12/94

in workdays

30 13 69 34 21 7 61

μp1
Appli-
cation

Begin date 11/08/93 01/06/94 11/24/93 03/07/94 04/06/93 07/21/94 06/14/94

End date 11/23/93 02/14/94 12/09/93 03/31/94 06/23/94 07/21/94 09/12/94

in workdays

10 26 11 17 53 1 61

μp2
System

Begin date 09/29/93 11/12/93 10/14/93 02/21/94 04/07/94 07/07/94 08/10/94

End date 10/13/93 01/28/94 12/08/93 04/06/94 05/16/94 08/15/94 11/02/94

in workdays

13 25 38 30 27 27 57

μp2
Appli-
cation

Begin date 10/13/93 01/19/94 10/23/93 03/11/94 05/17/94 08/09/94 08/10/94

End date 10/22/93 02/10/94 12/10/93 03/24/94 07/07/94 08/19/94 11/02/94

in workdays

7 15 33 9 35 7 57

CP

Begin date 08/09/93 10/27/93 09/10/93 02/16/94 12/14/94 07/08/94 10/04/94

End date 09/09/93 12/01/93 12/13/93 03/17/94 04/11/94 08/08/94 11/09/94

in workdays

20 23 64 20 73 21 25

 in workdays

80 102 215 110 209 63 261

224

Table 13.12 Duration Estimation for All Life Cycle Phases of the APP

Phase,

RQ RR DE DR CO CI TE

Total effort (in staff-hours) 400 510 1075 550 1045 315 1305

13.3.3 Software Development Life Cycle

Based on the data in Table 13.12, the entire software development life cycle timeline for the APP
system can be reconstructed, as shown in Figure 13.1 (unit: staff-hours).

Figure 13.1 Software Development Life Cycle for APP

Table 13.13 summarizes the beginning date of each life cycle phase for the APP system. This
data is used in Section 13.3.5 to estimate the intensity function of the per-fault detection for the
development phases (RQ, DE, and CO).

Table 13.13 Beginning Time of Each Life-Cycle Phase for the APP

Phase

RQ RR DE DR CO CI TE

Beginning time of phase ,
, in staff-hours 0 400 910 1985 2535 3580 3895

225

13.3.4 Introduction Rates of Requirements Faults, Design Faults, and Coding
Faults

The introduction rates of requirements faults, design faults, and code faults, , , are
estimated according to Equations 13.6 and 13.7.

The function-point count for the APP system is 301 function points as determined in Section
14.3.3. Moreover, the APP system falls into the category of “system software” (see Section
14.4.1). Therefore, the fault-potential-per-function-point for the APP system can be obtained
from the “Systems” column in Table 13.14 (extracted from Table 3.44 in [Jones, 1996]), using a
logarithmic interpolation for 301 function points (100 < 301 < 1000).
 5 log 301 log 1005.48 fault potential function point ⁄ (13.12)

where is the fault potential per function point for the APP system.

Table 13.14 Fault Potential Per Function Point,

Function
Points

End User MIS Outsourced Commercial Systems Military Average

1 1 1 1 1 1 1 1.00

10 2.5 2 2 2.5 3 3.25 2.54

100 3.5 4 3.5 4 5 5.5 4.25

1,000 N/A 5 4.5 5 6 6.75 4.54

10,000 N/A 6 5.5 6 7 7.5 5.33

100,000 N/A 7.25 6.5 7.5 8 8.5 6.29

The value of is obtained from the “Systems” column of Table 13.15 (extracted from Table
3.15 in [Jones, 1996]).

226

Table 13.15 , Fraction of Faults Originated in Phase

Phase,

End User MIS*
Out-

sourced
Commer-

cial
Systems Military Average

RQ 0.00 0.15 0.20 0.10 0.10 0.20 0.1250

DE 0.15 0.30 0.25 0.30 0.25 0.20 0.2417

CO 0.55 0.35 0.35 0.30 0.40 0.35 0.3833

User
Document

0.10 0.10 0.10 0.20 0.15 0.15 0.1333

Bad Fix 0.20 0.10 0.10 0.10 0.10 0.10 0.1167

*Note: “MIS” is “Management Information System”

The mean effort per function point, , , is obtained from the “Mean” column of Table 13.2.

Table 13.16 summarizes the data required to calculate , for the APP system.

Table 13.16 Data Required to Calculate , for APP

Phase,

RQ RR DE DR CO CI TE

DP 5.48

 0.10 N/A 0.25 N/A 0.40 N/A N/A ,
in staff hrs

1 0.74 3.09 0.75 3.34 0.95 3.12

*Note: Only Function Testing (FT), Integration Testing (IgT), and Independent Testing (IpT)
were conducted during the testing phase, according to [APP, Y18], [APP, Y19], and [APP, Y20].
Therefore, , for the testing phase is the sum of values of FT, IgT, and IpT.

Using Equations 13.6 and 13.7, Table 13.5 and Table 13.16 with equals 0.71 (See Chapter
11), the introduction rates of requirements faults, design faults, and code faults can be calculated,
as summarized in Table 13.17.

227

Table 13.17 Introduction Rates of Requirements, Design, and Coding Faults for APP

Phase,

RQ RR DE DR CO CI TE

Fault
Introduction

Rate

 ,

faults/staff-hour

Requirements Faults
()

0.28 0 0 0 0 0 0

Design Faults
()

0 0 0.21 0 0 0 0

Coding Faults
()

0 0 0 0 0.31 0 0

13.3.5 The Expected Change in Fault Count Due to One Repair

The expected change in fault count due to one repair in each phase, , is estimated
according to Equation 13.10. However, the numbers of repair requests and the numbers of fixed-
repair requests for the APP system are not available. Therefore, the industry average was used
for all life-cycle phases; namely, 0.7 for = RQ, RR, DE, DR, CO, CI, and TE.

13.3.6 Estimate of the Intensity Function of Per-Fault Detection

The intensity function of per-fault detection of requirements faults, design faults, and coding
faults during RQ, RR, DE, DR, CO, or CI phase, , (= RQ, RR, DE, DR, CO, CI), is
calculated according to Table 13.10. The number of function points for the APP system is 301,
as determined in Chapter 14.

Only Function Testing (FT), Integration Testing (IgT), and Independent Testing (IpT) were
conducted during the testing phase according to [APP, Y18], [APP, Y19], and [APP, Y20].
Therefore, , for the testing phase (TE) is the sum of values of FT, IgT, and IpT (see
Table 13.18, calculated according to Table 13.10).

228

Table 13.18 Intensity Function of Per-Fault Detection Faults for APP

Phase

Intensity Function of Per-fault Detection ,

Requirements Faults
()

Design Faults
()

Coding Faults
()

 2.691⁄ 0 0

 0.00223 0 0

 0.00053 8.177 910⁄ 0

 0.00223 0.00223 0

 0.00049 0.00049 5.022 2535⁄

 0.00172 0.00172 0.00166

0.00528 0.00528 0.00510

13.3.7 Expected Content of Requirements Faults, Design Faults, and Coding
Faults

The expected content of requirements faults, design faults, and coding faults, , , is
obtained using the results in Section 13.3.2 through 13.3.6 to solve Equation 13.5.

For example, during the requirement-analysis phase (,), , 0.28,
(determined in Table 13.17), 0.7 (determined in Section 13.3.5), and ,2.691⁄ (determined in Table 13.18). Therefore, Equation 13.5 becomes:
 , 0.28 . 0.7 , 0.28 . , (13.13)

Since , | 0 (there is no fault introduced into a system when 0),
Equation 13.15 yields:
 , 0.097 0 400 (13.14)

During RR, , 0, 0.7, and , 0.00223.
Therefore, Equation 13.5 becomes:

229

, 0 0.00223 0.7 , 0.00156 , (13.15)

Since continuity dictates that , | , | 0.097 400 38.8
Equation 13.13 yields:
 , 38.8 exp 0.00156 400 400 910 (13.16)

In the same way, the expected content of requirements faults can be obtained by solving
Equation 13.5 phase-by-phase, as shown in Equation 3.17:

0.097 0 40038.80 exp 0.00156 400 400 91017.50 exp 0.00037 910 910 198511.70 exp 0.00156 1985 1985 25354.95 exp 0.00034 2535 2535 35803.44 exp 0.0012 3580 3580 38952.36 exp 0.0037 3895 3895 5200

 (13.17)

Similarly, using the results in Section 13.3.2 through 13.3.6 to solve Equation 13.5 yields the
expected content of design faults:

0 0 4000 400 9100.0312 910 198533.58 exp 0.00156 1985 1985 253514.21 exp 0.00034 2535 2535 35809.90 exp 0.0012 3580 3580 38956.77 exp 0.0037 3895 3895 5200

 (13.18)

Using the results in Section 13.3.2 through 13.3.6 to solve Equation 13.5 yields the expected
content of coding faults:

0 0 4000 400 9100 910 19850 1985 25350.069 2535 358071.74 exp 0.0016 3580 3580 389549.71 exp 0.00357 3895 3895 5200

 (13.19)

230

The total expected fault content of the APP system is

 (13.20)

13.3.8 Count of Fault-Days Number

The FDN for the APP system is determined according to the eight measurement rules (Rule 13.1
to Rule 13.8) described in Section 13.2. The time unit in this section is converted from staff-
hours to workdays (on a 5-staff-hours/day basis), which is given by the manufacturer of the APP
system.

Three steps are required to count the FDN of a system:

1. Calculate the FDN for faults removed during the development life cycle
2. Calculate the FDN for faults remaining in the delivered source code
3. Calculate the FDN of the system, which is the sum of the results of the previous two steps

13.3.8.1 Calculation of FDN for Faults Removed During the Development Life Cycle

Table 13.19 summarizes the required data for counting the FDN, in which and

were determined according to Figure 13.1.

As mentioned in Section 13.2, faults are classified based on the phase during which they are
introduced into a system. For example, the requirements faults are introduced into a system only
during RQ. Therefore, the introduction date of type faults, , according to Rule 13.4, is:
 (13.21)

where
 date at which type faults are introduced into a system

 a category of faults introduced, = RQ, DE, or CO

 a life cycle phase, = RQ, RR, DE, DR, CO, CI, or TE

 ending date of the phase

 beginning date of the phase

231

Similarly, a fault of type cannot be removed from a system until it has been introduced into a
system. Therefore, the date at which type faults are removed from a system during phase , , according to Rule 13.5, is:

, (13.22)

where , date at which type faults are removed from a system

 a category of faults introduced, = RQ, DE, or CO

 a life cycle phase, = RQ, RR, DE, DR, CO, CI, or TE

 ending date of the phase

 beginning date of the phase

, and , were calculated and shown in Table 13.19 according to

Equation 13.17 (), Equation 13.18 (), and Equation 13.19 (), respectively.

Using Table 13.19, the FDN for each fault category can be calculated phase-by-phase, as
presented in Table 13.20.

According to Rule 13.8, only critical faults and significant faults should be considered while
calculating the FDN. Moreover, the fraction of critical faults and significant faults for the APP
system is 0.1391, as calculated in Equation 6.3. Therefore, the number of type faults (critical
and significant) removed from the APP system during phase is:
 ∆ ,

, , 0.1391 (13.23)

where ∆ , number of type faults (critical and significant) removed during phase

 a category of faults introduced, = RQ, DE, or CO

 a life cycle phase, = RQ, RR, DE, DR, CO, CI, or TE , Expected number of type faults at the beginning of phase , Expected number of type faults at the end of phase

The FDN per fault of type removed during phase is:

232

, , (13.24)

where
 , fault-days number per fault of type removed during phase

 date at which type faults are introduced into a system , date at which type faults are removed from a system

 a category of faults introduced, = RQ, DE, or CO

 a life-cycle phase, = RQ, RR, DE, DR, CO, CI, or TE

Table 13.19 Data Required to Calculate FDN for Faults Removed during the Development Life Cycle

Phase,

RQ RR DE DR CO CI TE

 0 80 182 397 507 716 779

 80 182 397 507 716 779 1040

Date at which type j
faults are introduced into

APP,
2

Requirements Faults
(j = RQ)

40 N/A N/A N/A N/A N/A N/A

Design Faults
(j = DE)

N/A N/A 289.5 N/A N/A N/A N/A

Coding Faults
(j = CO)

N/A N/A N/A N/A 611.5 N/A N/A

233

Table 13.19 Data Required to Calculate Fault-days Number for Faults
Removed during the Development Life Cycle (continued)

Phase,

RQ RR DE DR CO CI TE

 0 80 182 397 507 716 779

 80 182 397 507 716 779 1040

Date at which type j
faults are removed

from APP
 ,

Requirements Faults
(j = RQ)

40 131 289.5 452 611.5 747.5 909.5

Design Faults
(j = DE)

N/A N/A 289.5 452 611.5 747.5 909.5

Coding Faults
(j = CO)

N/A N/A N/A N/A 611.5 747.5 909.5

Number of faults at the
beginning of phase ,

,

Requirements Faults
(j = RQ)

0 38.8 17.5 11.7 5.0 3.4 2.4

Design Faults
(j = DE)

0 0 0 33.6 14.2 9.9 6.8

Coding Faults
(j = CO)

0 0 0 0 0 71.7 49.7

Number of faults at the
end of phase ,

,

Requirements Faults
(j = RQ)

38.8 17.5 11.7 5.0 3.4 2.4 0.02

Design Faults
(j = DE)

0 0 33.6 14.2 9.9 6.8 0.05

Coding Faults
(j = CO)

0 0 0 0 71.7 49.7 0.47

The fault-days number for a fault of type removed during phase is:

, , ∆ , (13.25)

where ,

fault-days number of type faults (critical and significant) removed during
phase ; , fault-days number per fault of type removed during phase ; ∆ , number of type faults (critical and significant) removed during phase ;

234

 a category of faults introduced during phase , = RQ, DE, or CO;

 a life cycle phase, = RQ, RR, DE, DR, CO, CI, or TE.

Table 13.20 Calculation of FDN for Faults Removed during the Development Life Cycle

Phase

RQ RR DE DR CO CI TE

Fault-days number
per fault of type j

removed during phase
, ,

in workdays

Requirements
Faults

(j = RQ)
0 91 249.5 412 571.5 707.5 869.5

Design Faults
(j = DE)

N/A N/A 0 162.5 322 458 620

Coding Faults
(j = CO)

N/A N/A N/A N/A 0 136 298

Number of type j
faults (critical and

significant) removed
during phase , ∆ , ,,0.1391

Requirements
Faults

(j = RQ)
0 3.0 0.8 0.9 0.2 0.2 0.3

Design Faults
(j = DE)

N/A N/A 0 2.7 0.6 0.4 0.9

Coding Faults
(j = CO)

N/A N/A N/A N/A 0 3.1 6.8

Fault-days number of
type j faults removed

during phase , ,

Requirements
Faults

(j = RQ)
0 273.0 199.6 370.8 114.3 141.5 260.9

Design Faults
(j = DE)

N/A N/A 0 438.8 193.2 183.2 558.0

Coding Faults
(j = CO)

N/A N/A N/A N/A 0 421.6 2026.4

235

13.3.8.2 Calculation of FDN for Faults Remaining in the Delivered Source Code

The fault-days number for faults remaining in the delivered source code is calculated using Rule
13.3, 13.4, 13.6, and 13.8, as summarized in Table 13.21.

The date at which type j faults are introduced into the APP, , is determined in Table 13.19.
According to Rule 13.6, the removal date for a fault remaining in the delivered source code is the
ending date of TE (the last phase of the development life cycle), namely,

 (13.26)
where

 removal date of faults remaining in the delivered source code;

ending date of testing phase, which is the last phase in the
software development life cycle of the APP system.

The FDN per fault of type j remaining in the delivered source code, according to Rule 13.3, is:
 , (13.27)

where ,
fault-days number per fault of type j remaining in the delivered
source code;

 removal date of faults remaining in the delivered source code;

 date at which type j faults are introduced into a system.

The number of type j faults (critical and significant) remaining in the delivered source code was
estimated using Equation 13.17 (), Equation 13.18 (), and Equation 13.19 (

), respectively:
 , | 0.1391 (13.28)
where ,

number of type faults (critical and significant) remaining in the delivered source
code;

 expected content of type j faults at life cycle time ;

 ending date of the testing phase.

Using Equations 13.27 and 13.28, the fault-days number for type faults remaining in the
delivered source code can be calculated:
 , , , (13.29)

236

Table 13.21 Calculation of Fault-days Number for Faults Remaining in the Delivered Source Code

Requirements

Faults
()

Design Faults
()

Coding Faults
()

Date at which type j faults are
introduced into APP in workdays 40 289.5 611.5

Removal date of faults remaining in the
delivered source code

 in workdays

1040

Fault-days number per fault remaining
in the delivered source code,

in workdays ,

1000 750.5 428.5

Number of type j faults (critical and
significant) remaining in the delivered

source code ,| 0.1391
0.00264 0.00757 0.06537

Fault-days number of type j faults
remaining in the delivered source code ,, ,

2.6 5.7 28.0

13.3.8.3 Calculation of FDN for the APP

Using the results in Table 13.20 and 13.21, the fault-days number for the APP system is:
 ∑ ∑ , , , ∑ ,, ,5217.6 fault · workday (13.30)

237

13.4 RePS Construction Using the Fault-Days Number Measure

Based on the cumulative characteristic of the Fault-days Number measure and by using the
concepts introduced by Stutzke [Stutzke, 2001], one can show that FDN is related to by
the following equation:
 ∆ ∆ · ∆ 1 ∆ · ∆ (13.31)

where ∆ the Fault-days Number at time ∆

 the Fault-days Number at time

 estimate of fault introduction rate

 intensity function of per-fault detection

 expected change in fault count due to each repair

 expected fault count at time

Equation 13.33 can be simplified to Equation 13.32:

 (13.32)

This equation shows the direct relationship between the measured real FDN and the
corresponding fault count number. Once the real FDN is measured, the number of faults can be
obtained by this equation. However, the real FDN cannot be obtained experimentally because not
all the faults can be discovered during the inspection. One can only obtain the apparent FDN,
FDNA. “Apparent” refers to only removed faults logged during the development process. One
can relate FDNA to FDN by Equation 13.33 knowing , , , .
 ; , , , · (13.33)

where
 the apparent Fault-days Number ; , , , a function of , , , which relates to

 the exact Fault-days Number

Therefore, one can still obtain the fault count based on the measured apparent FDN as shown by
Equation 13.34. · ; , , , (13.34)

238

Thus ideally, six steps are required to estimate software reliability using the Fault-days Number
measure:

1. Measure the apparent FDN
2. Map the faults discovered into the EFSM
3. Execute the EFSM and obtain the failure probability
4. Calculate the per-fault Fault Exposure Ratio ()
5. Calculate the number of faults () remaining in the source code using FDN measurement

results by Equation 13.34
6. Calculate the failure probability using Musa’s exponential model

In the case of the APP system, the above procedures are difficult to apply because:

 The apparent FDN may be unobtainable because no record of removed faults exists. One
can only obtain the average introduction and removal date of a category of faults during a
specific development phase. Therefore, the FDN obtained in Section 13.3.8 is not the
apparent FDN of the APP system, it is an estimated FDN.

 There may be no record of the description of each fault found during the development
process. Thus, it may be impossible to map the faults discovered into the EFSM and
execute the EFSM to obtain the failure probability and the exact per-fault Fault Exposure
Ratio for the APP system. One substitute method is to use the testing data and its
corresponding Fault Exposure Ratio. (This will be shown in Chapter 17).

The research team was aware of these difficulties and adopted the following steps to estimate the
reliability of the APP system using the Fault-days Number measure:

1. Measure the estimated FDN shown in Section 13.3.8
2. Estimate the number of faults () remaining in the source code using the Fault-days

Number measure
3. Estimate the number of delivered critical and significant faults
4. Calculate the failure probability using Musa’s Exponential Model and the new Fault

Exposure Ratio

13.4.1 Estimate of Number of Faults Remaining in the Source Code Using FDN

According to Figure 13.1 the APP system was released by the end of TE, when 5200 staff-
hours. Therefore, the delivered fault content is:

239

, | | |2.36 exp 0.0037 5200 3895 6.97 exp 0.0037 5200 3895 49.71 exp 0.0037 5200 3895 0.5
 (13.35)

Where
 , total number of delivered faults in the APP estimated using the Fault-days

Number (FDN) measure
 total expected fault content of the APP as a function of life cycle time

13.4.2 Estimate of the Number of Delivered Critical and Significant Faults

Given the total number of delivered defects, , , and the percentages of delivered defects
by severity level as determined in Table 6.7, the number of delivered defects by severity level
can be calculated. For example, the number of delivered defects of severity 1 for the APP system
is 0.543 × 0.0185 = 0.01.

Table 13.22 presents the number of delivered defects by severity level for the APP system.

Table 13.22 Number of Delivered Defects by Severity Level for the APP System

Severity 1
(critical)

Severity 2
(significant)

Severity 3
(minor)

Severity 4
(cosmetic)

Number of
delivered
defects

0.01 0.065 0.205 0.262

13.4.3 Reliability Calculation from Delivered Critical and Significant Defects

According to Musa’s exponential model [Musa, 1990] [Smidts, 2004], the reliability of a
software product is given by:
 exp (13.36)

and

240

, , (13.37)
where

 reliability estimation for the APP system using the Fault-days Number
(FDN) measure;

 Fault Exposure Ratio, in failures/fault;

 Number of defects in APP estimated using the FDN measure;

, Number of delivered critical defects (severity 1) estimated using the
FDN measure;

, Number of delivered significant defects (severity 2) estimated using the
FDN measure;

 Average execution-time-per-demand, in seconds/demand;

 Linear execution time, in seconds.

The value of the new fault exposure ratio is 4.5 × 10-12 failure/defect. This is determined later
through Equation 17.14 and shown in section 19.2.2.3.

As shown in Table 13.22, the APP system , 0.01, and , 0.065.
Therefore, according to Equation 13.37, 0.01 0.065 0.075 which we round to 1.

The linear execution time, , is usually estimated as the ratio of the execution time and the
software size on a single microprocessor basis [Musa, 1990] [Smidts, 2004]. In the case of the
APP system, however, there are three parallel subsystems (μp1, μp2, and CP), each of which has
a microprocessor executing its own software. Each of these three subsystems has an estimated
linear execution time. Therefore, there are several ways to estimate the linear execution time for
the entire APP system, such as using the average value of these three subsystems.

For a safety-critical application like the APP system, the UMD research team suggests to make a
conservative estimation of by using the minimum of the three subsystems. Namely,

 min 1 , 2 ,

 min 0.018, 0.009, 0.021 (13.38)
 0.009 second
where 1 Linear execution time of Microprocessor 1 (μp1) of the APP system. TL

(μp1) = 0.018 second (refer to Chapter 17) 2 Linear execution time of Microprocessor 2 (μp2) of the APP system. TL
(μp2) = 0.009 second (refer to Chapter 17)

241

 Linear execution time of Communication Microprocessor (CP) of the APP
system. TL (CP) = 0.021 second (refer to Chapter 17)

Similarly, the average execution-time-per-demand, , is also estimated on a single
microprocessor basis. Each of the three subsystems in APP has an estimated average execution-
time-per-demand. To make a conservative estimation, the average execution-time-per-demand
for the entire APP system is the maximum of the three subsystems. Namely,

 max 1 , 2 ,
 max 0.082,0.129,0.016 (13.39)
 0.129 seconds/demand
where
 1 Average execution-time-per-demand of Microprocessor 1 (μp1) of the

APP system. τ(μp1) = 0.082 seconds/demand (refer to Chapter 17) 2 Average execution-time-per-demand of Microprocessor 2 (μp2) of the
APP system. τ(μp2) = 0.129 seconds/demand (refer to Chapter 17)

 Average execution-time-per-demand of Communication
Microprocessor (CP) of the APP system. τ(CP) =
0.016 seconds/demand (refer to Chapter 17)

Thus the reliability for the APP system using the Fault Days Number measure is given by:
 . . . (13.40)
 0.99999999999355

A more accurate estimation of reliability using the Fault-days Number measure for the APP
system can be obtained by the following:

1. Obtaining the accurate dates at which faults are introduced into a system and removed

from a system;
2. Obtaining actual dates at which phases of the development life cycle start;
3. Considering the existence of multiple versions of documentation for each phase;
4. Considering the overlap between two development life cycle phases;
5. Considering the iteration of the development life cycle phases;
6. Obtaining better documentation on debugging activities during RQ, DE, and CO phases;
7. Estimating the fault introduction rate in each development life cycle phase using the data

for safety-critical applications, rather than the data for industry average;
8. Collecting data to estimate the Success Likelihood Index for the Fault-days Number

measure, , for the safety-critical application.
9. Using the concept of as discussed in Chapter 19.

242

13.5 Lessons Learned

The measurement of FDN requires data on the software-development process. This data was
unavailable to the research team because it was either undocumented or unclearly documented in
the software-development documents (SRS, SDD code, and V&V). For example, the exact effort
for each development phase could not be obtained for each team member because it was not
recorded during the original development. Even if these data had been recorded, the exact effort
for each phase would have been difficult to measure since the development did not follow a
waterfall development model because the developers returned to work on the SRS after the code
was written.

243

13.6 References

[APP, Y1] “APP Module Software V&V PLAN (SVVP),” Year Y1.
[APP, Y2] “Final V&V Report for APP Module Software,” Year Y2.
[APP, Y3] “APP Module First Safety Function Processor SRS,” Year Y3.
[APP, Y4] “APP Flux/Delta Flux/Flow Application SRS for SF1,” Year Y4.
[APP, Y5] “APP Module μp2 System Software SRS,” Year Y5.
[APP, Y6] “APP μp2 Flux/Delta Flux/Flow Application Software SRS,” Year Y6.
[APP, Y7] “APP Module Communication Processor SRS,” Year Y7.
[APP, Y8] “APP Module First Safety Function Processor SDD,” Year Y8.
[APP, Y9] “APP Flux/Delta Flux/Flow Application SDD for SF1,” Year Y9.
[APP, Y10] “APP μp2 System Software SDD,” Year Y10.
[APP, Y11] “APP μp2 Flux/Delta Flux/Flow Application Software SDD,” Year Y11.
[APP, Y12] “APP Communication Processor SDD,” Year Y12.
[APP, Y13] “APP Module SF1 System Software code,” Year Y13.
[APP, Y14] “APP SF1 Flux/Delta Flux/Flow Application code,” Year Y14.
[APP, Y15] “APP Module μp2 System Software Source Code Listing,” Year Y15.
[APP, Y16] “APP μp2 Flux/Delta Flux/Flow Application Software Source Code

Listing,” Year Y16.
[APP, Y17] “APP Communication Processor Source Code,” Year Y17.
[APP, Y18] “Test Summary Report for μp1,” Year Y18.
[APP, Y19] “Test Summary Report for μp2,” Year Y19.
[APP, Y20] “Test Summary Report for Communication Processor,” Year Y20.
[Hanna, 1995] M. Hanna. “Farewell to Waterfalls,” Software Magazine, pp. 38–46, 1995.
[Herrmann, 2000] D.S. Herrmann. Software Safety and Reliability: Techniques, Approaches,

and Standards of Key Industrial Sectors. Wiley-IEEE Computer Society
Print, First Edition, 2000.

[IEEE 610.12, 1990] “IEEE Standard Glossary of Software Engineering Terminology,” IEEE
Std. 610.12-1990, 1990.

[Jones, 1986] C. Jones. Programming Productivity. McGraw-Hill, Inc., 1986.
[Jones, 1996] C. Jones. Applied Software Measurement: Assuring Productivity and

Quality. New York, NY: McGraw-Hill, 1996.
[Jones, 2002] C. Jones. Software Quality in 2002: A Survey of the State of Art.

Burlington, MA, 2002.
[Musa, 1990] J.D. Musa. Software Reliability: Measurement, Prediction, Application.

New York: McGraw-Hill, 1990.
[Pressman, 2004] R. Pressman. Software Engineering: A Practitioner’s Approach. New

York: McGraw Hill, 2004.
[Shepard, 1979] S.B. Shepard and T. Love. “Modern coding practices and programmer

performance,” Computer, vol. 12, no. 12. pp. 41–49, 1979.
[Smidts, 2000] C. Smidts and M. Li, “Software Engineering Measures for Predicting

Software Reliability in Safety Critical Digital Systems,” NRC, Office of
Nuclear Regulatory Research, Washington DC NUREG/GR-0019, 2000.

244

[Smidts, 2004] C. Smidts and M. Li, “Preliminary Validation of a Methodology for
Assessing Software Quality,” NUREG/CR-6848, 2004.

[Stutzke, 2001] M. Stutzke and C. Smidts. “A Stochastic Model of Fault Introduction and
Removal during Software Development,” IEEE Transactions on
Reliability Engineering, vol. 50, 2001.

245

14. FUNCTION POINT

Function Point (FP) is a measure designed to determine the functional size of software.32

FP measures the entire size of an application including enhancements regardless of the
technology used for development and/or maintenance. FPs have gained acceptance as a primary
measure of software size [IEEE 982.2, 1988].

This measure can be applied as soon as the requirements are available. As listed in Table 3.3, the
applicable life-cycle phases for FP are Requirements, Design, Coding, Testing, and Operation.

14.1 Definition

The Function Point Counting Practices Manual is the definitive description of the Function
Point Counting Standard, despite the fact that there are many resources addressing FP counting
(such as [Heller, 1996] and [Garmus, 2001]). Several versions of the manual are available, the
latest, Release 4.3.1, was published in 2004 [IFPUG, 2004].

However, unless otherwise specified, information in this chapter is intended to be consistent with
Release 4.1 [IFPUG, 2000]. This is because this report is a follow-up of previous research
[Smidts, 2004] in which Release 4.1 was used in FP counting.

According to [IFPUG, 2000], “Function Point” is a unit of measure of functionality of a software
project or application from a logical (not physical) point of view. A “function point” is defined
as one end-user business function, such as a query for an input [IFPUG, 2000].

The primary terms used in FP counting are alphabetically listed as follows [IFPUG, 2000]:

Data Element Type (DET): A unique, user-recognizable, non-repeated field.

External Inputs (EIs): An elementary process in which data crosses the boundary from outside
to inside. This data may come from a data-input screen or another application. The data may be
used to maintain one or more internal logical files. The data is either control or business
information. If the data is control information, it does not have to update an internal logical file.

32 Used with permission from the International Function Point Users’ Group (IFPUG) (http://www.ifpug.org/).

246

External Interface Files (EIFs): A user-identifiable group of logically related data that is used
for reference purposes only. The data resides entirely outside the application and is maintained
by another application. The external interface file is an internal logical file for another
application.

External Inquiries (EQs): An elementary process with both input and output components that
result in data retrieval from one or more ILFs and EIFs. The input process does not update any
ILFs, and the output side does not contain derived data.

External Outputs (EOs): An elementary process in which derived data passes across the
boundary from inside to outside. Additionally, an EO may update an ILF. The data creates
reports or output files sent to other applications. These reports and files are created from one or
more ILFs and EIFs.

Internal Logical Files (ILFs): A user-identifiable group of logically related data that resides
entirely within the application’s boundary and is maintained through external inputs.

Record Element Type (RET): A user-recognizable subgroup of data elements within an ILF or
EIF.

14.2 Measurement Rules

The FP count for the APP system was outsourced to Charlie Tichenor, an IFPUG Certified
Function Point Specialist.33 The advantages of outsourcing the FP counting are [SCT, 1997]:

Expertise - The major FP consultants have experience with many organizations and diverse
technologies. They can ensure FP analysis is properly utilized in the metrics program and the
software development process as a whole.

Current Knowledge - Staying up to date with FP counting is a problem for most in-house
practitioners. If they count a system only once every few months, their knowledge of more
convoluted rules fades. Often they lack the time and budget to update their knowledge at IFPUG
conferences or other training events.

Credibility - In many situations, credibility of the in-house counters is an issue. Outside
consultants often have greater credibility due to their expertise and the currency of their

33In this study, FP counting was outsourced to a specialist whereas the CMM appraisal was conducted by the UMD
research team. Indeed, a formal FP count is not as expensive as a formal CMM appraisal, i.e., a formal FP count
remains affordable even within a limited budget.

247

information. Sometimes the mere fact that they are outsiders increases their credibility. An
outside consultant should be an IFPUG Certified Function Point Specialist.

Consistency - Consistency is a key to successful use of any measure. One requirement for
consistency is the use of a small group of counters who are in constant communication with one
another regarding counting practices. Furthermore, this group must have ties to the FP counting
community as a whole, that is, membership and participation in the IFPUG.

Independence - Bias can be a problem in FP counting. Project personnel may overstate counts
because they may feel they will be judged on the size of their delivered system. Project
customers may understate the size to push for quicker and cheaper delivery. There is a need for
an unaffiliated third-party who is judged only on the accuracy of the count and any associated
estimates. This is the role of an independent consultant.

Frees Resources - In many development groups, the counting is done by developers who have
other project responsibilities. Often they are under pressure to continue with their other
responsibilities. They often do not feel their job security or advancement is related to counting
FPs. Outsourcing the counts can make both developers and their managers happier.

Versions of the IFPUG’s FP counting manual preceding 1994 did not provide clear counting
rules for real-time systems. As a consequence, the applicability of FPs to real-time systems was
judged as questionable by many practitioners and researchers [Abran]. Counting rules
specifically dedicated to the evaluation of real-time systems were added to versions of the
manual published after 1994. These updated rules were used for the APP system FP count.

The total process to size FPs can be summarized by the following seven steps [Garmus, 2001]:

1. Determine the type of FP count.
2. Identify the counting scope and application boundary.
3. Identify all data functions (ILFs and EIFs) and their complexity.
4. Identify all transactional functions (EIs, EO, and EQs) and their complexity.
5. Determine the unadjusted FP count.
6. Determine the Value Adjustment Factor, which is based on the 14 general system

characteristics.
7. Calculate the adjusted FP count.

Sections 14.2.1 to 14.2.5 provide a brief description on how to conduct FP counting (adopted
from [Garmus, 2001]). For a complete description refer to [IFPUG, 2000].

248

14.2.1 Determining the Type of FP Count

The three types of FP counts are [Garmus, 2001]:

1. Development Project: Measures the functionality provided to end users with the first

installation of the application.

2. Enhancement Project: Measures modifications to existing applications and includes the
combined functionality provided to users by adding new functions, deleting old functions,
and changing existing functions.

3. Application: Measures an installed application.

There are some minor differences between the three types [IFPUG, 2000].

14.2.2 Identifying the Counting Scope and Application Boundary

The counting scope defines the functionality that will be included in a particular FP count.
[IFPUG, 2000]

The application boundary indicates the border between the software being measured and the user
[IFPUG, 2000].

14.2.3 Identifying Data Functions and Their Complexity

Data functions represent the functionality provided to the user to meet internal and external data
requirements. Data functions are either Internal Logical Files (ILFs) or External Interface Files
(EIFs) [IFPUG, 2000].

In the analysis, these two components are ranked as low, average, or high complexity. The
ranking is based on the number of Record Element Types (RETs) and the number of Data
Element Types (DETs) [IFPUG, 2000].

A weight is assigned to these components by complexity level according to a rating matrix
[IFPUG, 2000], which is summarized in Table 14.1.

249

Table 14.1 Rating Matrix for Five Components in Function Point Counting
(Adapted from [IFPUG, 2000])

Type of component
Weight of components with complexity of

Low Average High

Internal Logical Files (ILFs) × 7 × 10 × 15

External Interface Files (EIFs) × 5 × 7 × 10

External Inputs (EIs) × 3 × 4 × 6

External Outputs (EOs) × 4 × 5 × 7

External Inquiries (EQs) × 3 × 4 × 6

14.2.4 Identifying Transactional Functions and Their Complexity

Transactional functions represent the functionality provided to the user to process data.
Transactional functions are either External Inputs (EIs), External Outputs (EOs), or External
Inquiries (EQs) [IFPUG, 2000].

In the analysis, these three components are ranked as low, average, or high complexity. The
ranking is based on the number of files updated or referenced (FTRs) and the number of Data
Element Types (DETs) [IFPUG, 2000].

A weight is assigned to these components by complexity level according to the rating matrix
summarized in Table 14.1[IFPUG, 2000].

250

14.2.5 Determining the Unadjusted Function Point Count

The Unadjusted Function Point Count (UFPC) reflects the specific functionality provided to the
user by the project or application [IFPUG, 2000]. The UFPC is given by [IFPUG, 2000]:

(14.1)

14.2.6 Determining the Value Adjustment Factor

The Value Adjustment Factor (VAF) is based on 14 general system characteristics (GSCs) that
comprise the general functionality of the application being counted.

Each characteristic has associated descriptions that help determine the degrees of influence of the
characteristics. The degrees of influence range from 0 to 5, from no influence to strong influence,
respectively [IFPUG, 2000].

The IFPUG Counting Practices Manual [IFPUG, 2000] provides detailed evaluation criteria for
each of the GSCs. The list below provides an overview of each GSC.

1. Data Communications. The data and control information used in the application are sent

or received over communication facilities.
2. Distributed Data Processing. Distributed data or processing functions are a

characteristic of the application within the application boundary.
3. Performance Application. Performance objectives, stated or approved by the user, in

either response or throughput, influence (or will influence) the design, development,
installation, and support of the application.

4. Heavily Used Configuration. A heavily used operational configuration, requiring
special design considerations, is a characteristic of the application.

5. Transaction Rate. The transaction rate is high and influences the design, development,
installation, and support.

6. Online Data Entry. Online data entry and control information functions are provided in
the application.

251

7. End-User Efficiency. The online functions provided emphasize a design for end-user
efficiency.

8. Online Update. The application provides online update for the ILFs.
9. Complex Processing. Complex processing is a characteristic of the application.
10. Reusability. The application and the code in the application have been specifically

designed, developed, and supported to be usable in other applications.
11. Installation Ease. Conversion and installation ease are characteristics of the application.

A conversion and installation plan and/or conversion tools were provided and tested
during the system test phase.

12. Operational Ease. Operational ease is a characteristic of the application. Effective start-
up, backup, and recovery procedures were provided and tested during the system test
phase.

13. Multiple Sites. The application has been specifically designed, developed, and supported
for installation at multiple sites for multiple organizations.

14. Facilitate Change. The application has been specifically designed, developed, and
supported to facilitate change.

Equation 14.2 converts the total degrees of influence assigned above to the Value Adjustment
Factor [IFPUG, 2000] into the Value Adjustment Factor:

 0.01 0.65

(14.2)

14.2.7 Calculating the Adjusted Function Point Count

The Adjusted Function Point Count (AFPC) is calculated using Equation 14.3 for a development
project, enhancement project, or application (system baseline) function point count [IFPUG,
2000]:

(14.3)

The number of adjusted FPs, or simply “Function Points” (FPs), represents the size of the
application and can be used to compute several measures discussed in other sections of this
document.

252

14.3 Measurement Results

The following documents were used to count FPs for the APP system:

1. APP Module μp1 System SRS [APP, Y1]
2. APP Module μp1 Flux/Delta Flux/Flow Application SRS [APP, Y2]
3. APP Module μp2 System SRS [APP, Y3]
4. APP Module μp2 Flux/Delta Flux/Flow Application SRS [APP, Y4]
5. APP Module Communication Processor SRS [APP, Y5]

14.3.1 The Unadjusted Function Point

Table 14.2 and Table 14.3 list the measurement results of ILFs, EIFs, EIs, EOs, and EQs for the
APP system from the IFPUG Certified Function Point Specialist, complying with the IFPUG
Function Point Counting Practices Manual Release 4.1.1 [IFPUG, 2000].

The data shown in Table 14.2 and Table 14.3 can be used to count the unadjusted FPs of the five
components, including ILFs, EIFs, EIs, EOs, and EQs (refer to Section 14.2.3 and Section
14.2.4), and thereby determine the unadjusted FPs of the entire system (refer to Section 14.2.5).

Table 14.2 Measurement Results of Data Functions for the APP System

ILF or EIF Descriptions
ILF EIF

DET RET # LVL* DET RET # LVL*

μp1 22 1 1 L

μp2 22 1 1 L

Set Points (Flux/Flow Imbalance Algorithm) 16 1 1 L

Commands < 50 1 1 L

μp Cycle Timer 1 L

Communications Processor Cycle Timer 1 L

Input Range Table 1 L

Flux/Flow/Imbalance Algorithm < 50 1 L

Trip Data Storage 1 L

*Note: LVL stands for level of complexity.

253

Table 14.3 Measurement Results of Transaction Functions for the APP System34

Section Descriptions
EIs EOs EQs

LVL* # LVL* # LVL*

Discrete
Inputs

DIN1 1 L
DIN2 1 L
DIN3 1 L
DIN4 1 L
DIN5 1 L
DIN6 1 L
DIN7 1 L
DIN8 1 L
DIN9 1 L
DIN10 1 L
DIN11 1 L
DIN12 1 L

*Note: LVL stands for level of complexity.

34There should be mostly empty cells in this form as only one kind of function is entered per row.

254

Table 14.3 Measurement Results of Transaction Functions for the APP System35 (continued)

Section Descriptions
EIs EOs EQs

LVL* # LVL* # LVL*

μp
Diagnostics

Screen Display 1 A
Main Program Running 1 L
Processor POST 1 L
Main Program Timeout 1 L
Dual Port RAM Test 1 L
RAM Test 1 L
Address Line test 1 L
PROM Checksum test 1 L
EEPROM Checksum test 1 L
Application Program test 1 L
Proc. Bd in Correct Slot 1 L
Installed Boards 1 L
Multiplexer/ADC test 1 L
Analog output Test 1 L
Discrete Input Test 1 L
TUNE mode 1 A
CAL mode 1 A

Analog
Inputs

AIN 1 1 L
AIN 2 1 L
AIN 3 1 L
AIN 4 1 L
AIN 5 1 L
AIN 6 1 L
AIN 7 1 L
Trip Reset Button 1 L
Key-Lock switch 1 L

*Note: LVL stands for level of complexity.

35There should be mostly empty cells in this form as only one kind of function is entered per row.

255

Table 14.3 Measurement Results of Transaction Functions for the APP System36 (continued)

Section Descriptions
EIs EOs EQs

LVL* # LVL* # LVL*

Discrete
Outputs

Trip 1 1 A
Trip 2-Trip 4 (Not Used)
Status 1 1 L
Status 2 (Not Used)
Aux1 1 L
Aux2 1 L
Aux3-6 (Not Used)

Analog
Outputs

AOUT1 1 L
AOUT2 1 L
AOUT3 1 L
AOUT4 1 L

LED’s

Processors are operating
LED

 1 L

Trip LED 1 L
MAINT LED 1 L

Comm.
Processor

Diagnostics

RAM Test 1 L
Address Line test 1 L
PROM Checksum test 1 L
Processor Bd In Correct
Slot

 1 L

Test Bd in Correct Slot 1 L
Module date 1 L
Module time 1 L
TEST mode 1 L
Online RAM Test 1 L
Online Address Line test 1 L
Online PROM Checksum
test

 1 L

*Note: LVL stands for level of complexity.

36There should be mostly empty cells in this form as only one kind of function is entered per row.

256

Table 14.3 Measurement Results of Transaction Functions for the APP System37 (continued)

Section Descriptions
EIs EOs EQs

LVL* # LVL* # LVL*

APP
Processing

Initialization 1 A
Power-on self test
(counted)

Main Program (counted)
Update Dual port RAM 1 L
Calibrate and tune
(counted)

Read Discrete inputs and
analog outputs(counted)

Application (counted)
Generate discrete and
analog outputs(counted)

Output refresh (On/Off) 1 L

Application
Flux/Flow/Imbalance
algorithm (counted)

Comm.
Processor

Slot ID 1 L
ID Chip 1 L
Initialization 1 A
Power-on self test 1 L

*Note: LVL stands for level of complexity.

Table 14.4 summarizes the numbers of ILFs, EIFs, EIs, EOs, and EQs for three complexity
levels (Low, Average, and High) based on the data in Table 14.2 and Table 14.3.

37There should be mostly empty cells in this form as only one kind of function is typed in per row.

257

Table 14.4 The Counts of Components with Different Complexity Level

Type of component
Number of components with complexity of

Low Average High

Internal Logical Files (ILFs) 7 0 0

External Interface Files (EIFs) 2 0 0

External Inputs (EIs) 25 2 0

External Outputs (EOs) 32 6 0

External Inquiries (EQs) 1 1 0

Table 14.5 summarizes the unadjusted FPs of ILFs, EIFs, EIs, EOs, and EQs based on the data
(the numbers of the five components) in Table 14.4 and the data (the weights of the five
components for three different complexity levels) in Table 14.1.

The total unadjusted FPs for the APP system is 307.

Table 14.5 The Counts of the Unadjusted Function Points

Type of component

Unadjusted function points of
components with complexity of Sum of unadjusted

FPs
Low Average High

Internal Logical Files 7 × 7 = 49 0 × 10 = 0 0 × 15 = 0 49

External Interface Files 2 × 5 = 10 0 × 7 = 0 0 × 10 = 0 10

External Inputs 25 × 3 = 75 2 × 4 = 8 0 × 6 = 0 83

External Outputs 32 × 4 = 128 6 × 5 = 30 0 × 7 = 0 158

External Inquiries 1 × 3 = 3 1 × 4 = 4 0 × 6 = 0 7

Total Unadjusted FP Count for the APP system 307

258

14.3.2 The Value Adjustment Factor

Table 14.6 presents the measurement results of the General System Characteristics for the APP
system. The results were obtained from the IFPUG Certified Function Point specialist, who
complied with the IFPUG Function Point Counting Practices Manual Release 4.1.1 [IFPUG,
2000].

Table 14.6 Measurement Results of General System Characteristics for the APP System

General System Characteristics
Degree of
Influence

Data Communications 4

Distributed Processing 4

Performance 4

Heavily Used Configuration 1

Transaction Rates 0

Online Data Entry 5

End-User Efficiency 2

Online Update 4

Complex Processing 1

Reusability 1

Installation Ease 0

Operational Ease 5

Multiple CPU Sites 0

Facilitate Change 2

Total Degree of Influence 33

According to Equation 14.2, the Value Adjustment Factor (VAF) is:

 33 0.01 0.65 0.98 (14.4)

259

14.3.3 The Adjusted Function Point

According to Equation 14.3, the value of the adjusted FPs for the APP system is:

 307 0.98 300.8 (14.5)

which is rounded up to 301.

14.4 RePS Construction from Function Point

Two steps are required to estimate software reliability using the FP measure:

1. Estimate the number of delivered defects based on the FP measurement (refer to Section

14.4.1)
2. Calculate the reliability using Musa’s Exponential Model (refer to Section 14.4.2)

14.4.1 Estimating the Number of Delivered Defects

There is no proposed model in the literature linking FP to the estimated total number of delivered
defects. However, there is data for the state-of-the-practice of the U.S. averages for delivered
defects summarized in [Jones, 1996]. This data links the FP to the number of defects per FPs for
different categories of applications. The definitions of different types of software systems are
given as follows [Jones, 1996]:

End-user software: applications written by individuals who are neither professional
programmers nor software engineers.

Management information system (MIS): applications produced by enterprises in support of
their business and administrative operations, e.g., payroll systems, accounting systems, front-
and back-office banking systems, insurance claims handling systems, airline reservation systems,
and so on.

Outsourced and contract software: outsourced software is software produced under a blanket
contract by which a software-development organization agrees to produce all, or specific
categories, of software for the client organization. Contract software is a specific software
project that is built under contract for a client organization.

Commercial software: applications that are produced for large-scale marketing to hundreds or
even millions of clients. Examples of commercial software are Microsoft Word, Microsoft Excel,
etc.

260

System software: software that controls physical devices. They include the operating systems
that control computer hardware, network switching systems, automobile fuel-injection systems,
and other control systems.

Military software: software produced for a uniformed military service.

Furthermore, only defects of Severity 1 and Severity 2—called critical defects and significant
defects—should be considered when estimating software reliability.

14.4.1.1 Estimating the Total Number of Delivered Defects

Table 14.7 (Table 3.46 in [Jones, 1996]) provides the average numbers for delivered defects per
FP for different types of software systems.

Table 14.7 Averages for Delivered Defects Per Function Point
 (Extracted From Table 3.46 in [Jones, 1996])

FPs End user MIS Outsource Commercial Systems Military Average

1 0.05 0 0 0 0 0 0.01

10 0.25 0.1 0.02 0.05 0.02 0.03 0.07

100 1.05 0.4 0.18 0.2 0.1 0.22 0.39

1000 N/A 0.85 0.59 0.4 0.36 0.47 0.56

10000 N/A 1.5 0.83 0.6 0.49 0.68 0.84

100000 N/A 2.54 1.3 0.9 0.8 0.94 1.33

Average 0.23 0.90 0.49 0.36 0.30 0.39 0.53

The APP system software falls into the category of “system software” according to the previous
definitions.

The FP count for the APP system is 301 (100 < 301 < 1000), as calculated in Section 14.3.3.

Therefore, according to Table 14.7, the delivered defect density (the number of total delivered
defects per FP) for the APP system is calculated using logarithmic interpolation:

 0.1 0.36 0.1log 1000 log 100log 301 log 100 0.2244

(14.6)

261

where

 = the delivered defect density for the APP system in defects/FP.

 The number of total delivered defects for the APP system is given by:

 , 0.2244 301 67.54 (14.7)

where , the number of total delivered defects for the APP system.

the delivered defect density for the APP system. 0.2244 defects/FP.

the FP count for the APP system. 301 (refer to Section
14.3.3).

14.4.1.2 Estimating the Number of Delivered Critical and Significant Defects

Table 14.8 (Table 3.48 in [Jones, 1996]) presents U.S. averages for percentages of delivered
defects by severity levels.

Using Table 14.8 and logarithmic interpolation, the percentages of delivered defects by severity
level can be obtained. For example, the percentage of delivered defects of severity 1
corresponding to FP = 301 (100 < 301 < 1000) is:

 0.0256 0.0256 0.0108log 1000 log 100log 301 log 100 0.0185

(14.8)

262

Table 14.8 Averages for Delivered Defects by Severity Level
(Adapted From Table 3.48 in [Jones, 1996])

FPs
Percentage of Delivered Defects by Severity Level

Severity 1 Severity 2 Severity 3 Severity 4

1 0 0 0 0

10 0 0 1 0

100 0.0256 0.1026 0.359 0.5128

1000 0.0108 0.1403 0.3993 0.4496

10000 0.015 0.145 0.5 0.34

100000 0.02 0.12 0.5 0.36

Average 0.0179 0.1270 0.5517 0.4156

Given the total number of delivered defects, , (refer to Section 14.4.1.1), and the
percentages of delivered defects by severity level (refer to Table 6.7), the number of delivered
defects by severity level can be calculated. For example, the number of delivered defects of
severity 1 for the APP system is: 67.54 × 0.0185 = 1.249.

Table 14.10 presents the numbers of delivered defects by severity level for the APP system.

Table 14.9 Number of Delivered Defects by Severity Level for the APP System

Severity 1
(critical)

Severity 2
(significant)

Severity 3
(minor)

Severity 4
(cosmetic)

Number of
delivered defects

1.249 8.1 25.6 32.6

For the APP system, the number of delivered defects of severity 1 is 1.249 and the number of
delivered defects of severity 2 is 8.1.

263

14.4.2 Reliability Calculation from Delivered Critical and Significant Defects

The probability of success-per-demand is obtained using Musa’s exponential model [Musa,
1990] [Smidts, 2004]:

 (14.9)

and

 , , (14.10)

where

 Reliability estimation for the APP system using the FP measure.

 Fault Exposure Ratio, in failure/defect.

 Number of defects estimated using the FP measure.

 Average execution-time-per-demand, in seconds/demand.

 Linear execution time of a system, in seconds. , Number of delivered critical defects (severity 1). , Number of delivered significant defects (severity 2).

Since a priori knowledge of the defect locations and their impact on failure probability is
unknown, the average value given in [Musa, 1987] [Musa, 1990] must be used: 4.2 × 10-7
failure/defect.

For the APP system, , 1.3, and , 8.1, as calculated in Section
14.4.1.2. Therefore, according to Equation 14.10, 1.3 1.8 9.4.

The linear execution time, , is usually estimated as the ratio of the execution time and the
software size on a single microprocessor basis [Musa, 1987] [Musa, 1990] [Smidts, 2004]. In the
case of the APP system, however, there are three parallel subsystems (μp1, μp2, and CP), each of
which has a microprocessor executing its own software. Each of these three subsystems has an
estimated linear-execution time. Therefore, there are several ways to estimate the linear-
execution time for the entire APP system, such as using the average value of these three
subsystems.

For a safety-critical application like the APP system, the UMD research team suggests a
conservative estimation of by using the minimum of these three subsystems’ values. Namely,

264

 min 1 , 2 , min 0.018,0.009,0.021 0.009 second (14.11)

where 1 Linear execution time of Microprocessor 1 (μp1) of the APP system. TL

(μp1) = 0.018 second (refer to Chapter 17). 2 Linear execution time of Microprocessor 2 (μp2) of the APP system. TL
(μp2) = 0.009 second (refer to Chapter 17).

 Linear execution time of Communication Microprocessor (CP) of the
APP system. TL (CP) = 0.021 second (refer to Chapter 17).

Similarly, the average execution-time-per-demand, , is also estimated on a single-
microprocessor basis. Each of the three subsystems in APP has an estimated average execution-
time-per-demand. To make a conservative estimation, the average execution-time-per-demand
for the entire APP system is the maximum of the three subsystems’ values. Namely,

 max 1 , 2 , max 0.082,0.129,0.016 0.129 seconds/demand (14.12)

where
 1 Average execution-time-per-demand of Microprocessor 1 (μp1) of the APP

system. τ(μp1) = 0.082 seconds/demand (refer to Chapter 17). 2 Average execution-time-per-demand of Microprocessor 2 (μp2) of the APP
system. τ(μp2) = 0.129 seconds/demand (refer to Chapter 17).

 Average execution-time-per-demand of Communication Microprocessor
(CP) of the APP system. τ(CP) = 0.016 seconds/demand (refer to Chapter
17).

Thus, the reliability for the APP system using the FP measure is given by:
 0.999943414 (14.13)

14.5 Lessons Learned

The measurement of FP can be systematically conducted based on the rules published by IFPUG.
As for BLOC, CMM, and CC, empirical industry data was used to build correlations between the

265

value of FP and the number of defects residing in the software. Thus, reliability-prediction
results based on FP are not as good as the ones obtained from other measures which deal with the
real defects of the application.

266

14.6 References

[APP, Y1] “APP Module First Safety Function Processor SRS,” Year Y1.
[APP, Y2] “APP Flux/Delta Flux/Flow Application SRS for SF1,” Year Y2.
[APP, Y3] “APP Module μp2 System Software SRS,” Year Y3.
[APP, Y4] “APP μp2 Flux/Delta Flux/Flow Application Software SRS,” Year Y4.
[APP, Y5] “APP Module Communication Processor SRS,” Year Y5.
[Garmus, 2001] D. Garmus and D. Herron. “Function Point Analysis: Measurement

Practices for Successful Software Project,” Addison-Wesley, 2001.
[Heller, 1996] R. Heller. “An Introduction to Function Point Analysis,” in Newsletter

from Process Strategies, 1996.
[IEEE 982.2, 1988] “IEEE Guide for the use of Standard Dictionary of Measures to Produce

Reliable Software,” IEEE Std. 982.2-1988, 1988.
[IFPUG, 2000] IFPUG, “Function Point Counting Practices Manual (Release 4.1.1),”

International Function Point Users Group, 2000.
[IFPUG, 2004] IFPUG, “Function Point Counting Practices Manual (Release 4.2),”

International Function Point Users Group, 2004.
[Jones, 1996] C. Jones. Applied Software Measurement: Assuring Productivity and

Quality. New York, NY: McGraw-Hill, 1996.
[Musa, 1987] J.D. Musa, A. Iannino, and K. Okumoto. Software Reliability:

Measurement, Prediction, Applications. New York: McGraw-Hill, 1987.
[Musa, 1990] J.D. Musa. Software Reliability: Measurement, Prediction, Application.

New York: McGraw-Hill, 1990.
[Pressman, 1992] R. Pressman. Software Engineering: A Practitioner’s Approach. New

York: McGraw-Hill, 1992.
[SCT, 1997] Software Composition Technologies, “Frequently Asked Questions (and

Answers) Regarding Function Point Analysis,” Software Composition
Technologies, Inc., Available:
http://ourworld.compuserve.com/homepages/softcomp/fpfaq.htm
[Jun. 25, 1997].

[Smidts, 2004] C. Smidts and M. Li, “Preliminary Validation of a Methodology for
Assessing Software Quality,” NUREG/CR-6848, 2004.

267

15. REQUIREMENTS SPECIFICATION CHANGE REQUEST

Requirements evolution is considered one of the most critical issues in developing computer-
based systems. The sources of changes may come from dynamic environments such as a
changing work environment, changes in government regulations, organizational complexity, and
conflict among stakeholders in deciding on a core set of requirements [Barry, 2002].

The requirements specification change request measure, denoted by RSCR, indicates the stability
and/or growth of the functional requirements. Moreover, it provides an additional view of the
effectiveness of the functional specification process used and has the potential of adding
credibility to the product [Smidts, 2000].

It has been observed that a significant cause of project failure and poor quality in software
systems is frequent changes to requirements. RSCR is an indication of the quality of the resulting
software system. Evidence suggests that the system quality decreases as the size of requirements
specification change requests increases [Smidts, 2000].

However, RSCR can not reflect the contents of requirements specification change requests.
Based on the results from applying the requirements specification change requests measurement
to the APP system, the UMD research team does not recommend using RSCR to estimate the
reliability of a software product.

Instead, the UMD research team suggests using a derived measure, the Requirements Evolution
Factor (REVL), which links requirements specification change requests to the changed source
code. REVL can be used to estimate the reliability of a software product, as described in Section
15.4. REVL has not been validated thoroughly to date.

RSCR and REVL are related in the sense that both measures reflect the effect of changes to
requirements that occur during the software development life cycle after requirements have been
frozen. However, REVL may yield a better estimation of impact than RSCR because, in REVL,
the size of code impacted is incorporated into the measure.

RSCR can be applied as soon as the requirements are available. As listed in Table 3.3, the
applicable life cycle phases for this measure are Requirements, Design, Code, Testing and
Operation.

REVL, on the other hand, is not available until the delivery of the source code.

268

15.1 Definition

The requirements specification change request measure (RSCR) is defined as the number of
change requests that are made to the requirements specification. The requested changes are
counted from the first release of the requirements specification document to the time when the
product begins its operational life. Thus, RSCR is defined as [Smidts, 2000]:
 ∑ (15.1)

where the summation is taken over all requirements change requests initiated during the software
development life cycle (after the first release of the requirements specification document). It
should be noted that the definitions of RSCR published in the software-engineering literature fail
to clearly state what type of requirements (functional or non-functional requirements) should be
included in the RSCR count.

Most of the non-functional requirements are not as important as the functional requirements.
They do not describe what the software will do, but how the software will perform its functions.
Normally, non-functional requirements are not included in the evaluation of reliability based on
requirements change requests. However, in certain cases, non-functional requirements hide what
really are functional requirements or may describe characteristics that are critical such as
response time. These special cases should be identified by the analyst and included in the
measurement. In this research, some of the non-functional requirements for the APP system such
as the timing requirements are also crucial. Thus, such implied functional requirements in the
non-functional requirements section also are considered.

RSCR only quantifies the “number” of requirements specification change requests, and can be
used as an indicator of the stability and/or growth of the functional requirements. However,
RSCR cannot reflect the contents of requirements specification change requests. Therefore, it is
inappropriate to use RSCR to estimate the reliability of a software system.

To link requirements specification change requests to the reliability of a software system, the
UMD research team recommends a derived measure called REVL, which is defined as:

 100% (15.2)

where

 measure of requirements Evolution and Volatility Factor

size of changed source code corresponding to requirements
specification change requests, in Kilo Line of Code (KLOC)

 size of the delivered source code, in KLOC

269

The concept of Requirements Evolution and Volatility Factor was originally proposed in
[Boehm, 1982] and further developed in [Boehm, 2000] for the purpose of estimating the
development effort of a software project at the early stages of the development life cycle. UMD
quantified REVL based on [Boehm, 2000] and [Stutzke, 2001], as shown in Equation 15.2.

The size of changed source code corresponding to requirements specification change requests is
given by

(15.3)

where
 size of added source code corresponding to requirements

specification change requests, in KLOC size of deleted source code corresponding to requirements
specification change requests, in KLOC size of modified source code corresponding to requirements
specification change requests, in KLOC

15.2 Measurement Rules

Five steps are required to measure the impact of Requirements Evolution and Volatility Factor
on the reliability of a software system:

1. Identify requirements specification change requests during the software development life

cycle
2. Identify the changed source code corresponding to requirements specification change

requests
3. Measure the size of the changed source code corresponding to requirements specification

change requests
4. Calculate REVL

A comparison between the first and last version of the source code will not result in a correct
measurement of REVL because some of the code changes do not correspond to requirements
specification change requests but instead to code fixes related to coding or design errors.

270

15.2.1 Identifying Requirements Specification Change Requests

A requirements specification change request has the following essential attributes:

 It is an authorized change of the SRS
 It is a change of the functional requirements of the software
 It is a documented change of requirements, usually in the final version of the SRS
 It is proposed between the release of the first version of the SRS and the time the

software product is delivered to the customer

For example, “Changed MVOLT to mvolt” ([APP, Y1], Page 2) is not considered as a
requirements specification change request because it is not a change of the functional
requirements of the software.

“Changed Analog Inputs = 14 to Analog Inputs = 28” ([APP, Y1], Page 11) is regarded as a
requirements specification change request.

The counting rule for RSCR is to count the number of identified software functional
requirements change requests.

RSCR is counted for the purpose of comparison between RSCR and REVL, as described in
Section 15.3. It is not used when constructing the RePS based on REVL, as described in Section
15.4.

15.2.2 Identifying the Changed Source Code Corresponding to RSCR

The changed source code corresponding to requirements specification change requests is
identified by mapping all requirements specification change requests identified in the previous
step to the delivered source code. Mapping a requirements specification change request to source
code means linking the changed functional requirement(s) to the affected line(s) of the source
code.

The mapping relationships between the source code and a requirements specification change
request may be one-to-one, one-to-many, or many-to-one.

15.2.3 Measuring the Size of the Changed Source Code Corresponding to RSCR

The changes of source code due to requirements specification change requests are divided into
three categories: added, deleted, and modified.

It should be noted that not all changed source code but only the changes corresponding to
requirements specification change requests should be considered while counting the following

271

three quantities: SIZE added due to RSCR, SIZE deleted due to RSCR, and SIZE modified due to RSCR (see Section
15.1).

The rules to measure the size of the changed source code are the same as those used to measure
the size of the source code for the BLOC measure (See Section 6.2).

The size of the changed source code corresponding to requirements specification change requests
is calculated according to Equation 15.3.

15.2.4 Calculating REVL

REVL is calculated by applying Equation 15.2 to the results obtained in Section 15.2.3.

15.3 Measurement Results

The following documents were used to measure RSCR and REVL:

 APP Module μp1 System SRS [APP, Y1]
 APP Module μp1 Flux/Delta Flux/Flow Application SRS [APP, Y2]
 APP Module μp2 System SRS [APP, Y3]
 APP Module μp2 Flux/Delta Flux/Flow Application SRS [APP, Y4]
 APP Module Communication Processor SRS [APP, Y5]
 APP Module μp1 System source code [APP, Y6]
 APP Module μp1 Flux/Delta Flux/Flow Application source code [APP, Y7]
 APP Module μp2 System source code [APP, Y8]
 APP Module μp2 Flux/Delta Flux/Flow Application source code [APP, Y9]
 APP Module Communication Processor System source code [APP, Y10]

The APP system has five components: the μp1 System, the μp1 Application, the μp2 System, the
μp2 Application, and the CP System. The measurement results for the APP system are presented
in Table 15.1 (see Section 15.2 for the measurement rules).

From Table 15.1, one may notice that the size of the changed source code corresponding to
requirements specification change requests is not proportional to RSCR. For example, RSCR for
the μp2 System is 7 and the size of the correspondingly changed source code is 72 LOC, whereas
RSCR for the μp1 System is 26 and the size of the correspondingly changed source code is 27
LOC.

REVL and RSCR are not linearly related because:

 Requirements specification change requests may have different levels of granularity.

Consequently, some requirements specification change requests lead to changing more

272

lines of source code than others. This is also why RSCR is not good at capturing the
impact of requirements specification change requests on the software product.

 A requirements specification change request may affect multiple functions in the source
code (“one-to-many”). This occurs if the code contains multiple implementations of the
same function.

 Multiple requirements specification change requests may correspond to the same line(s)
of changed source code (“many-to-one”).

Despite the benefits exhibited by REVL, the following limitations of REVL also should be noted
and understood:

 REVL does not capture requirements specification change requests proposed in the

requirements analysis phase because these changes are invisible from the point of view of
the source code.

 REVL does not capture requirements specification change requests proposed in the
design phase because these changes, too, are invisible from the point of view of the
source code.

Table 15.1 Measurement Results for RSCR and REVL for the APP System

CP

System
μp1

System
μp1

Application
μp2

System
μp2

Application
 RSCR 4 26 14 7 5
SIZE delivered ,
in KLOC

1.21 2.034 0.48 0.895 0.206

SIZE added due to RSCR ,
in KLOC

0 0.003 0.003 0.006 0

SIZE deleted due to RSCR ,
in KLOC

0.129 0.007 0 0.003 0

SIZE modified due to RSCR ,
in KLOC

0 0.027 0.011 0.072 0.008

SIZE changed due to RSCR =
SIZE added due to RSCR + SIZE deleted due

to RSCR + SIZE modified due to RSCR
(in KLOC)

0.129 0.037 0.014 0.081 0.008

 100% 10.7% 1.8% 2.9% 9.1% 3.9%

Further development of REVL is required for quantifying the impact of requirements
specification change requests at the early stages of the development life cycle.

273

To resolve this issue, the UMD research team suggests linking requirements specification change
requests to the affected function points and quantifying the impact of this change on defect
density through empirical analysis or expert opinion elicitation.

15.4 RePS Construction Based On REVL

Currently there are three approaches found in the literature that attempt to estimate the fault
content of a software system based on requirements volatility. These only focus on linking
requirements volatility to the changed source code, partly because it is too difficult to quantify
the impact of requirements specification change requests at the design phase, as discussed in
Section 15.3.

The first approach is to link requirements volatility to the defect density of the source code,
assuming that the software has been modified in response to changed functional requirements
and that the modification process is imperfect [Malayia, 1998].

The second approach is to use Code Churn to estimate the impact of code changes corresponding
to requirements specification change requests [Munson, 2003].

The third approach is to use the Success Likelihood Index Methodology (SLIM) to integrate the
human analysis of the Performance Influencing Factors [Stutzke, 2001], as described in Section
11.4.1.

Due to the difficulty in obtaining data required to estimate the model parameters of Malayia’s
and Munson’s approaches [Malayia, 1998] [Munson, 2003], the third approach was adopted.

Four steps are required to estimate the reliability of a software product using SLIM [Stutzke,
2001]:

1. Measure REVL, as described previously, and other Performance Influencing Factors, as

described in Section 11.2.1 to 11.2.9.
2. Estimate SLI for requirements Evolution and Volatility Factor.
3. Estimate the fault content in the delivered source code using SLIM, as described below.
4. Calculate reliability using Musa’s Exponential Model, as described below.

15.4.1 Estimating the Value of SLI for Requirements Evolution and Volatility
Factor

Requirements Evolution and Volatility Factor was regarded as one of the Performance
Influencing Factors (PIFs) leading to the success or failure of a project [Jones, 1995].

274

The effect of PIFs on software development can be quantified by a Success Likelihood Index
(SLI), which ranges from 0 (error is likely) to 1 (error is not likely) [Stutzke, 2001].

 for the Requirements Evolution and Volatility Factor, denoted by , is estimated using
the value of REVL, as shown in Table 15.2. If necessary, piecewise linear interpolation is used.

The scale for REVL (in Table 15.2) is based on COCOMO II [Boehm, 2000]. The
assumption made for the ratings is that the relationship between REVL and SLI is an S-
shaped curve, as shown in Figure 15.1.

Further investigation is required to validate the relationship between and REVL.

The values of for the five components of the APP system are summarized in Table 15.3.
For example, REVL for the μp1 Application is 1.8%, as determined in Table 15.1, which is less
than 5%. According to Table 15.2, the value of the is 1 when 5%. Therefore, the
value of for the μp1 Application is 1.

Figure 15.1 Relationship between SLI10 and REVL

275

Table 15.2 Rating Scale and SLI Estimation for REVL

REVL
Descriptors

 5% 20% 35% 50% 65% 80%

Rating Levels Very Low Low Nominal High Very High Extra High

Value of 1 0.75 0.5 0.34 0.16 0

15.4.2 Estimating the Fault Content in the Delivered Source Code

The fault content of the source code is given by (see Section 11.4.1 for details):
 0.036 20 (15.4)
where

 number of faults remaining in the delivered source code
 size of the delivered source code in terms of LOC

 Success Likelihood Index of a software product

According to Equation 15.4, the fault content varies with SLI: the fault content is maximum
when SLI = 0 and minimum when SLI = 1, as shown in Equation 15.5 and 15.6:

 0.72 , 0 (15.5) 0.0018 , 1 (15.6)

To validate the expert-opinion-based ranking [Smidts, 2004], where the target measure must be
isolated from other measures, the SLI of a software product is represented by that of REVL; i.e.:

 (15.7)

However, the UMD research team recommends using other measures in addition to REVL while
using SLIM to estimate the source code fault content because this method usually yields more
accurate results. The SLI of a software product is given by the weighted sum of all PIF SLIs:
 ∑ (15.8)

Table 15.3 summarizes both SLI values and the fault content of the delivered source code with
and without using the supportive measures, respectively. In Table 15.3, the values of SLIs for the
five components of the APP system are found in Table 11.30 (Row 5).

276

Table 15.3 Summary of Fault-Content Calculation

CP

System
μp1

System
μp1

Application
μp2

System
μp2

Application

LOC 1210 2034 480 895 206

Without
using

supportive
measures

 0.9067 1 1 0.9317 1

Number of defects
in source code

3.8 3.7 0.9 2.4 0.4

Using
supportive
measures

 0.7175 0.6952 0.6539 0.7377 0.7441

Number of defects
in source code

11.8 22.7 6.9 7.8 1.7

The estimated number of faults in the entire APP system based on the requirements specification
change request measurement is:
 3.8 3.7 0.9 2.4 0.4 11.2 (15.9)

or 11.8 22.7 6.9 7.8 1.7 50.9 (15.10)

15.4.3 Calculating Reliability Using the Defect Content Estimation

The probability of success-per-demand is obtained using Musa’s exponential model [Musa,
1990] [Smidts, 2004]

 exp (15.11)

where

 Reliability estimation for the APP system based on REVL

 Fault Exposure Ratio, in failure/defect

277

 Number of defects estimated based on REVL

 Average execution-time-per-demand, in seconds/demand

 Linear execution time of a system, in seconds

Since a priori knowledge of defect locations and their impact on failure probability is not known,
the average value given in [Musa, 1990] must be used: 4.2 10 failure/defect.

For the APP system, 11.2 (without using the supportive measures), and 50.9
(using the supportive measures), as calculated in Section 15.4.2.

The linear execution time, TL, is usually estimated as the ratio of the execution time and the
software size on a single microprocessor basis [Musa, 1990] [Smidts, 2004]. In the case of the
APP system, however, there are three parallel subsystems (μp1, μp2, and CP), each of which has
a microprocessor executing its own software. Each of these three subsystems has an estimated
linear-execution time. Therefore, there are several ways to estimate the linear-execution time for
the entire APP system, such as using the average value of these three subsystems.

For a safety-critical application, such as the APP system, the UMD research team suggests
making a conservative estimation of TL by using the minimum of these three subsystems’ values.
Namely,

 min 1 , 2 ,
 min 0.018, 0.009, 0.021 (15.12)
 0.009
where
 1 Linear execution time of Microprocessor 1 (μp1) of the APP system. TL

(μp1) = 0.018 second, as determined in Chapter 17; 2 Linear execution time of Microprocessor 2 (μp2) of the APP system. TL
(μp2) = 0.009 second, as determined in Chapter 17;

 Linear execution time of Communication Microprocessor (CP) of the APP
system. TL (CP) = 0.021 second, as determined in Chapter 17.

Similarly, the average execution-time-per-demand, τ, is estimated on a single microprocessor
basis. Each of the three subsystems in APP has an estimated average execution-time-per-
demand. To make a conservative estimation, the average execution-time-per-demand for the
entire APP system is the maximum of the three subsystems’ values. Namely,

278

 max 1 , 2 ,
 max 0.082,0.129,0.016 (15.13)
 0.129 second/demand
where 1 Average execution-time-per-demand of Microprocessor 1 (μp1) of the APP

system. τ(μp1) = 0.082 second/demand, as determined in Chapter 17; 2 Average execution-time-per-demand of Microprocessor 2 (μp2) of the APP
system. τ(μp2) = 0.129 second/demand, as determined in Chapter 17;

 Average execution-time-per-demand of Communication Microprocessor (CP) of
the APP system. τ(CP) = 0.016 second/demand, as determined in Chapter 17.

Thus the reliability of the APP system based on REVL is given by:

 exp 4.2 10 11.2 0.1290.009 0.999933 (15.14)

without using supportive measures, or

 exp 4.2 10 50.9 0.1290.009 0.999694 (15.15)

with using supportive measures.

15.5 Lessons Learned

Empirical industry data was used to build the relation between REVL/RSCR and the number of
defects residing in the software. Thus, reliability-prediction results based on REVL/RSCR are
not as good as those obtained from other measures which deal with actual defects in the
application.

A more accurate estimation of reliability based on REVL for the APP system can be obtained by:

1. Obtaining better documentation on requirements change requests;
2. Collecting data to estimate the SLI of the REVL factor for safety-critical applications;
3. Combining REVL with RSCR for quantifying the impact of requirements specification

change requests;
4. Measuring REVL at the sub-system level.
5. Enhancing the estimation of . A value of for the safety-critical system, rather than the

average value failure/defect, should be used in Equation 15.14 and 15.15;

279

15.6 References

[APP, 01] APP Instruction Manual.
[APP, Y1] “APP Module First Safety Function Processor SRS,” Year Y1.
[APP, Y2] “APP Flux/Delta Flux/Flow Application SRS for SF1,” Year Y2.
[APP, Y3] “APP Module μp2 System Software SRS,” Year Y3.
[APP, Y4] “APP μp2 Flux/Delta Flux/Flow Application Software SRS,” Year Y4.
[APP, Y5] “APP Module Communication Processor SRS,” Year Y5.
[APP, Y6] “APP Module SF1 System Software code,” Year Y6.
[APP, Y7] “APP SF1 Flux/Delta Flux/Flow Application code,” Year Y7.
[APP, Y8] “APP Module μp2 System Software Source Code Listing,” Year Y8.
[APP, Y9] “APP μp2 Flux/Delta Flux/Flow Application Software Source Code

Listing,” Year Y9.
[APP, Y10] “APP Comm. Processor Source Code,” Year Y10.
[Boehm, 1982] B. Boehm. Software Engineering Economics,. Prentice-Hall, Inc., 1982.
[Boehm, 2000] B. Boehm et al. Software Cost Estimation With COCOMO II. Prentice-

Hall, Inc., 2000.
[Barry, 2002] E.J. Barry, T. Mukhopadhyay and S. Slaughter. “Software Project

Duration and Effort: An Empirical Study, 2002,” Information Technology
and Management, vol. 3, pp. 113–136, 2002.

[Jones, 1995] C. Jones. Patterns of Software Systems Failure and Success. Thompson
Computer Press, 1995.

[Malayia, 1998] Y. Malayia and J. Denton. “Requirements Volatility and Defect Density,”
in Proc. 10th International Symposium on Software Reliability
Engineering, 1998.

[Munson, 2003] J.C. Muson. Software Engineering Measurement. AUERBACH
Publications, CRC Press LLC, 2003.

[Musa, 1990] J.D. Musa. Software Reliability: Measurement, Prediction, Application.
New York: McGraw-Hill, 1990.

[Smidts, 2000] C. Smidts and M. Li, “Software Engineering Measures for Predicting
Software Reliability in Safety Critical Digital Systems,” NRC, Office of
Nuclear Regulatory Research, Washington DC NUREG/GR-0019, 2000.

[Smidts, 2004] C. Smidts and M. Li, “Preliminary Validation of a Methodology for
Assessing Software Quality,” NUREG/CR-6848, 2004.

[Stutzke, 2001] M.A. Stutzke and C. Smidts. “A Stochastic Model of Fault Introduction
and Removal during Software Development,” IEEE Transactions on
Reliability Engineering, vol. 50, no. 2, 2001.

281

16. REQUIREMENTS TRACEABILITY

Traceability is defined as the degree to which a relationship can be established between two or
more products of the development process, especially products having a predecessor-successor
or master-subordinate relationship to one another [IEEE, 1990].

According to IEEE [IEEE, 1988], the requirements traceability (RT) measure aids in identifying
requirements that are either missing from, or in addition to, the original requirements.

This measure can be applied as soon as the design is available. As listed in Table 3.3, the
applicable life cycle phases for RT are Design, Coding, Testing, and Operation.

16.1 Definition

RT is defined as:
 100% (16.1)

where
 the value of the measure requirements traceability,

 1 the number of requirements met by the architecture, and
 2 the number of original requirements.

Ideally, tracing should be done from the user’s requirements specification to the SRS and then to
the SDD, if a SDD is produced. Furthermore, if the source code is available, tracing can be done
from the SDD to the Code or from the user’s requirements specification to the Code directly. In
this research, because the original user’s requirements specification was not available, tracing
could only be performed from the SRS to the other products. Normally, from a software-
reliability point-of-view, it is better to trace from the SRS to the Code directly. This is because
SDD is only an intermediate product and it is the code that affects the reliability of the software
system. However, derived requirements may exist in the SDD. These requirements also should
be identified and counted as the original requirements. Thus, the definition of requirement
traceability is modified as follows:
 100% (16.2)

where
 the value of the measure requirements traceability,
 1 the number of requirements implemented in the source code, and

282

2 the number of original requirements specified in the SRS and derived
requirements specified in the SDD.

It should be noted that, here, the calculated RT acts only as an indicator of the RT measure. The
RePS using this measure is not based on the value of RT but based on the actual defects found
between code and SRS (refer to Section 16.4).

16.2 Measurement Rules

The definition of RT specifically recommends backward traceability to all previous documents
and forward traceability to all spawned documents [Gotel, 1994] [Wilson, 1997] [Ramesh,
1995]. A three-step measurement approach, however, was customized for the purpose of
assessing the reliability of the software. The three steps in this approach are:

Step 1. Identify the set of Original Requirements in the SRS and in the SDD. (Refer to
Section 16.2.1)

Step 2. Forward Tracing (Refer to Section 16.2.2)
Step 3. Backward Tracing (Refer to Section 16.2.3)

According to the definition, this three-step approach was applied to the APP by tracing only
forward and backward between the original requirements identified in the SRS and the derived
requirements identified in the SDD, and the requirements implemented in the delivered source
codes.

16.2.1 Original Requirements Identification

Generally, there are two kinds of requirements in an SRS:

1. Functional Requirements
2. Non-functional Requirements

These terms are defined in [IEEE, 1998]:

Functional Requirement - A system/software requirement that specifies a function that a
system/software system or system/software component must be capable of performing. These are
software requirements that define behavior of the system, that is, the fundamental process or
transformation that software and hardware components of the system perform on inputs to
produce outputs.

Non-functional Requirement - In software system engineering, a software requirement that
describes not what the software will do, but how the software will do it. For example, software-

283

performance requirements, software external interface requirements, software-design constraints,
and software-quality attributes are non-functional requirements.

Functional requirements (FRs) capture the intended behavior of the system in terms of services,
tasks or functions the system is required to perform. On the other hand, Non-functional
Requirements (NRs) are requirements that impose restrictions on the product being developed
(product requirements), on the development process (process requirements), or they specify
external constraints that the product/process must meet (external requirements). These
constraints usually narrow the choices for constructing a solution to the problem.

As stated earlier in this report, most of the non-functional requirements are not as important as
the functional requirements. They do not describe what the software will do, but how the
software will perform its functions. Normally, non-functional requirements are not included in
the evaluation of reliability based on RT. However, this statement must be considered with
caution. In certain cases, non-functional requirements hide functional requirements, or may
describe characteristics that are critical, such as response time. These special cases should be
identified by the analyst and included in the measurement of RT. In this research, some of the
non-functional requirements for the APP system such as the timing requirements are crucial.

In the following subsections, the rules for distinguishing FRs from NRs are given. The counting
rules for identifying each type of requirement in a SRS also are provided.

16.2.1.1 Distinguishing FRs from NRs

The following rules apply when distinguishing FRs from NRs:

1. “Functional” refers to the set of functions a system is to offer. “Non-functional” refers to

the manner in which such functions are performed.
2. Functional requirements are the most fundamental and testable characteristics and actions

that take place in processing function inputs and generating function outputs.
3. Functional requirements might be characterized in data-related or object-oriented

diagrams. In flow diagrams, functional requirements usually are shown as ovals with
arrows showing data flow or function inputs and outputs.

4. Functional requirements describe what it is that a customer needs to be able to do with
the software. They may be documented in the form of rigorously specified Process
Models or Use Cases, or they may simply be lists of required features and functions.
Whatever the form used, functional requirements should always identify the minimum
functionality necessary for the software to be successful.

5. Functional requirements typically are phrased with subject/predicate constructions, or
noun/verb constructions. For example, “The system prints invoices” is a functional
requirement.

6. Non-functional requirements may be found in adverbs or modifying clauses, such as
“The system prints invoices quickly” or “The system prints invoices with confidentiality.”

284

7. NFRs are focused on how the software must perform something instead of focused on
what the software must do.

8. NFRs express constraints or conditions that need to be satisfied by functional
requirements and/or design solutions.

9. Different from functional requirements that can fail or succeed, NFRs rarely can be
completely met—they are satisfied within acceptable limits.

The following requirements should NOT be considered functional requirements:

a. Performance Requirements (throughput, response time, transit delay, latency,
etc.)38

b. Design Constraints
c. Availability Requirements
d. Security Requirements
e. Maintainability Requirements
f. External Interface Requirements
g. Usability Requirements (ease-of-use, learnability, memorability, efficiency, etc.)
h. Configurability Requirements
i. Supportability Requirements
j. Correctness Requirements
k. Reliability Requirements
l. Fault tolerance Requirements
m. Operational Scalability Requirements (including support for additional users or

sites, or higher transaction volumes)
n. Localizability Requirements (to make adaptations due to regional differences)
o. Extensibility Requirements (to add unspecified future functionality)
p. Evolvability Requirements (to support new capabilities or the ability to exploit

new technologies)
q. Composability Requirements (to compose systems from plug-and-play

components)
r. Reusability Requirements
s. System Constraints (e.g., hardware and OS platforms to install the software, or

legacy applications, or in the form of organizational factors or the process that the
system will support.)

t. User Objectives, Values, and Concerns.

The most common method of distinguishing functional requirements from non-functional
requirements is to ask the appropriate decision maker(s) a series of qualifying questions for each
category: “What,” “Who,” “Where,” “When,” and “How.” In addition, the “How” category can
be broken down into four subcategories, specifically, “How Many,” “How Often,” “How Fast,”

38 In the case of APP, some performance requirements need to be traced. See Section 16.2.1.3 for details.

285

and “How Easy”, as shown in Table 16.1 [Xu, 2005] [Hayes, 2004] [Sousa, 2004] [Matthia,
1998].

Table 16.1 Distinguishing Functional Requirements from Non-Functional Requirements

Problem Categories Requirement type

What? Functional Requirements

Who? Security Requirements

Where? Topographical Requirements

When? Timing Requirements

How Often? Frequency Requirements

How Fast? Performance Requirements

How Many? Scalability Requirements

How Easy? Usability Requirements

16.2.1.2 Functional Requirements (Functions) Identification

The following counting rules apply when identifying functions in a SRS:

1. The Functional Requirements Section of the SRS is used to identify functional

requirements for this measure.
2. If there is no separate Functional Requirements Section, then use the requirements in the

SRS that describe the inputs, processing, and outputs of the software. These usually are
grouped by major functional description, sub-functions, and sub-processes. A sub-
function or sub-process is defined as a logical grouping of activities that generate a
definable product or service.

3. The Software Design Document (SDD) is used to identify derived functional
requirements. Normally, most of the functions defined here correspond to the functional
requirements described in the SRS. If there exist functions that were not defined in the
SRS, these functions should be considered derived requirements.

4. Each functional requirements specification is re-expressed as a fundamental and
uncomplicated statement.

5. Each statement of functional requirements must be uniquely identified to achieve
traceability. Uniqueness is facilitated by the use of a consistent and logical scheme for
assigning identification to each specification statement within the requirements
document.

6. Each uniquely identified (usually numbered) functional requirement is counted as an
Original Requirement.

286

Figure 16.1 presents the procedures for identifying functions in a SRS.

Identify functional specification sections
in the SRS

Select a sentence

Is it a functional statement?

Begin

Has this function been
identified previously?

Assign a unique identifier for this function

Yes

No

No

End

Have all sentences been analyzed?

Yes

Yes

No

(This statement defines a function)

Count the number of functions
identified in the SRS

Figure 16.1 Procedure to Identify Functions in a SRS

287

16.2.1.3 Non-functional Requirements Identification

Since the APP system is a real-time system, it should continuously react with its environment
and must satisfy timing constraints to properly respond to all the external events. Therefore, in
this research, some of the non-functional requirements for the APP system also should be traced.
The non-functional requirements that need to be traced are listed below:

1. Timing requirements
2. Frequency requirements
3. Performance requirements

The following counting rules apply when identifying non-functional requirements in a SRS:

1. Most of the timing and frequency requirements are specified in the Performance

Requirements Section in the SRS. Some of these requirements also may be found in the
External Interface Requirements Section in the SRS.

2. All of the performance requirements can be identified in the Performance Requirements
Section in the SRS.

3. Each non-functional requirements specification is re-expressed as a fundamental and
uncomplicated statement.

4. Each non-functional requirement statement must be uniquely identified to achieve
traceability. Uniqueness is facilitated by the use of a consistent and logical scheme for
assigning identification to each specification statement within the requirements
document.

5. Each uniquely identified (usually numbered) non-functional requirement is counted as an
Original Requirement.

Figure 16.2 describes the general procedures for identifying counted non-functional requirements
in a SRS.

16.2.2 Forward Tracing

Forward tracing in the RT measurement is used to determine the counterparts of the original
requirements of the SRS/SDD in the source code. In this step, the original requirements
identified in Step 1 are mapped into the delivered source code, one after another, primarily for
the purpose of identifying unimplemented SRS/SDD original requirements and uncovered source
code. Figure 16.3 presents the procedure of forward tracing (from the SRS/SDD to the source
code).

An unimplemented SRS/SDD original requirement is a requirement that is identified in the SRS
but has no counterpart found in the delivered source code. Contrast this with an implemented
SRS/SDD original requirement that is identified in the SRS/SDD and has counterpart(s) found in

288

the delivered source code. Each unimplemented SRS/SDD original requirement is a defect in the
delivered source code.

Identify Performance Requirements, External
Interface Requirements sections in the SRS

Select a sentence

Is it a timing, frequency and performance
requirement statement?

Begin

Has this nonfunctional requirement
been identified previously?

Assign a unique identifier for this requirement

Yes

No

No

End

Have all sentences been analyzed?

Yes

Yes

No

(This statement describes a nonfunctional
requirement)

Count the number of nonfunctional
requirements identified in the SRS

Figure 16.2 Procedure to Identify Non-functional Requirements in a SRS

The uncovered source code is the source code that does not correspond to any original
requirements identified in the SRS/SDD. This can be contrasted with covered source code,
which has a counterpart identified in the SRS/SDD.

289

It should be noted that understanding the lines of code corresponding to the original requirements
is not easy, especially for a large system. However, existing commercial tools such as the
Rational software developed by IBM are very helpful in this process.

16.2.3 Backward Tracing

The primary concerns of backward tracing are to identify the extra requirements and to count the
number of requirements implemented in the delivered source code (R1).

Select an original requirement identified in
Step 1 (see section 16.2.1)

Is any code found
corresponding to the requirement?

Begin

Yes

End

Is any original requirement left?

Mark the corresponding lines of code
as "covered" (by the SRS)

No

Read the source code and try to understand the
control flow of the software

Try to find out the lines of code
corresponding to the original requirement

Mark the requirement
as "implemented" (by the

source code)

No

Mark the requirement
as "unimplemented" (by the

source code)

Yes

Figure 16.3 Procedure for Forward Tracing

290

An extra requirement is a requirement that is not identified in the SRS/SDD but is implemented
in the delivered source code. Each extra requirement is a defect in the delivered source code
because it may introduce risk into the system.

In this step, the uncovered lines of source code identified in Step 2 are analyzed and then the
corresponding extra requirements are represented using the same level of granularity as used to
identify requirements in the SRS/SDD. Figure 16.4 describes the procedure for backward tracing
(from the source code to the SRS/SDD).

Represent the requirement corresponding to
the "uncovered" lines of source code

(These are Extra Requirements)

Begin

End

Analyze the "uncovered" lines of source code
identified in Step 2 (section 16.2.2)

Count the number of requirements
implemented in the source code (R1)

(Implemented Requirements = Implemented
SRS Requirements + Extra Requirements)

Count the number of Missing SRS
Requirements

Count the number of Implemented SRS
Requirements identified in Step 2 (section

16.2.2)

Figure 16.4 Procedure for Backward Tracing

16.3 Measurement Results

The following documents were used to measure the requirements traceability between the APP
SRSs and the codes:

291

 APP Module μp1 System SRS [APP, Y1]
 APP Module μp1 Flux/Delta Flux/Flow Application SRS [APP, Y2]
 APP Module μp2 System SRS [APP, Y3]
 APP Module μp2 Flux/Delta Flux/Flow Application SRS [APP, Y4]
 APP Module Communication Processor SRS [APP, Y5]
 APP module first safety function processor SDD
 APP Flux/Delta Flux/Flow Application SDD for SF1
 APP μp2 SDD for system software
 APP μp2 Flux/Delta Flux/Flow application software SDD
 APP communication processor SDD
 APP Module μp1 System Software Code [APP, Y6]
 APP μp1 Flux/Delta Flux/Flow Application Software Source Code [APP, Y7]
 APP Module μp2 System Software Source Code [APP, Y8]
 APP μp2 Flux/Delta Flux/Flow Application Software Source Code [APP, Y9]
 APP Communication. Processor Source Code [APP, Y10]

Quantities R1 and R2 are counted at the primitive level. The tables below (Table 16.2 through
Table 16.6) present the measurements.

Table 16.2 Summary of the Requirements Traceability Measurement for μp1 System Software

No. Section No. Section Name R1 R2 RT

1 SRS 3.1 Initialization 48 48 100%

2 SRS 3.2 Power-up self test 175 176 99.432%

3 SRS 3.3 Main Program 135 135 100%

4 SRS 3.3.3.A Calibration 40 42 95.238%

5 SRS 3.3.3.B Tune 16 16 100%

6 SRS 3.4 On-line diagnostics 144 144 100%

7 SDD Decomposition Description 2 2 100%

292

Table 16.3 Summary of the Requirements Traceability Measurement for μp1 Application Software

No. Section No. Section Name R1 R2 RT

1 SRS 3.0 Specific Requirements 67 67 100%

2 SRS 3.1 Other Requirements 3 3 100%

Table 16.4 Summary of the Requirements Traceability Measurement for μp2 System Software

No. Section No. Section Name R1 R2 RT

1 SRS 3.1.1 Initialization 10 9 111.111%

2 SRS 3.1.2 Power-up self test 32 33 96.970%

3 SRS 3.1.3 Main Program 56 56 100%

4 SRS 3.1.4 Calibration 25 25 100%

5 SRS 3.1.5 Tune 12 12 100%

6 SRS 3.1.6 On-line diagnostics 46 46 100%

7 SRS 3.2
External Interface

Requirements
3 3 100%

8 SRS 3.3 Performance Requirements 4 4 100%

9 SDD Decomposition Description 4 4 100%

Table 16.5 Summary of the Requirements Traceability Measurement for μp2 Application Software

No. Section No. Section Name R1 R2 RT

1 3.1 Functional Requirements 25 25 100%

2 3.2 External Interface
Requirements

3 3 100%

The challenge in forward tracing and backward tracing arises from understanding the activities
of the source code. Mastering the control flow of the source code and thus grasping the big
picture is usually the first step to understanding the source code. Comments in the source code,

293

along with other documents such as the Design document, Testing Plan, and V&V reports will
be helpful for performing the tracing.

During the measurement it was observed that the requirements for μp1 were written to a higher
level of detail as compared to the requirements for μp2.

The ratio of R1 and R2 is somewhat subjective because the granularity level of the original
requirements used for counting R1 and R2 is subjective. As stated in the definition section, the
RePS using this measure is not based on the value of RT but is based instead on the actual
defects found between SRS and code. A defect was identified when either a requirement was not
implemented in the code or if extra code was implemented for a requirement that did not exist.

Table 16.6 Summary of the Requirements Traceability Measurement for CP

No. Section No. Section Name R1 R2 RT

1 3.1 Initialization 18 18 100%

2 3.2 Power-up self test 96 97 98.969%

3 3.3 Main Program 45 45 100%

4 3.4 On-line diagnostics 69 69 100%

5 3.5 Time of the day 4 4 100%

6 3.6 Serial Communications 64 64 100%

Table 16.7 Description of the Defects Found in APP by the Requirements Traceability Measure

No. Location Requirement Description Defect Type
Severity

Level

1
μp1 Section

3.2

Increment the EEPROM test
counter if the Tuning in Progress

flag setup.

Requirement not
implemented in the code

3

2
μp1 Section

3.2

This algorithm shall detect
coupling faults between two

address lines.

Requirement not
implemented in the code

1

294

Table 16.7 Description of the Defects Found in APP by the Requirements
Traceability Measure (continued)

No. Location Requirement Description Defect Type
Severity

Level

3
μp1 Section

3.3.3.A
Copy the contents of the table to

the Dual Port RAM.
Requirement not

implemented in the code
1

4
μp1 Section

3.3.3.A
Give up the Semaphore

Requirement not
implemented in the code

1

5
μp2 Section

3.1.1
N/A

Code not mentioned in
SRS

3

6
μp2 Section

3.1.2.3

This algorithm shall detect
coupling faults between two

address lines.

Requirement not
implemented in the code

1

7
CP Section

3.2.3

This algorithm shall detect
coupling faults between two

address lines.

Requirement not
implemented in the code

1

16.4 RePS Construction from Requirements Traceability

The APP system has four distinct operational modes: Power-on, Normal, Calibration, and
Tuning [APP, 01]. The reliability of the APP system was estimated on a one-by-one operational
mode basis using the Extended Finite State Machine (EFSM) model approach [Smidts, 2004].

This approach proceeds in three steps:

1. Construct an EFSM model representing the user’s requirements and embedding the user’s

operational profile information.
2. Map the identified defects to the EFSM model.
3. Execute the EFSM model to evaluate the impact of the defects in terms of the failure

probability.

Figure 16.5 presents the entire approach to estimate reliability. It should be noted that it is
possible for a defect to be involved in more than one operational mode.

295

Figure 16.5 Approach of Reliability Estimation Based on the EFSM Model

The estimation of APP probability of failure-per-demand based on the RT RePS is 3.28 × 10-10.
Hence:
 1 3.28 10 0.9999999996720

The reliability estimation for each of the four operational modes using the defects found through
the requirement traceability measurement is shown in Table 16.8.

Start

End

Completeness
Measure

RePS for
Completeness
Measure

Identify defects in the SRS and SDD

Construct four EFSM models that represent the SRS and
derived requirements identified in the SDD

Map the identified defects into the EFSM models

Map the operational profile (OP) into the EFSM model

In TestMaster, run the EFSM models to estimate the

Document the results

296

Table 16.8 Reliability Estimation for Four Distinct Operational Modes

Mode Probability of Failure

Power-on 2.06 × 10-10

Normal 3.28 × 10-10

Calibration 6.72 × 10-13

Tuning 0

16.5 Lessons Learned

The measurement of RT is a labor-intensive process but it can be assisted by building a formal
approach as illustrated in Figure 16.1 to Figure 16.4. Unlike the DD measurement, which
requires the verification of a large number of items, the measurement of RT only requires
verifying the presence or absence of an item in the requirements documents and the code. Thus,
the RT measurement process is not as error-prone some other measures.

297

16.6 References

[APP, 01] APP Instruction Manual.
[APP, Y1] “APP Module First Safety Function Processor SRS,” Year Y1.
[APP, Y2] “APP Flux/Delta Flux/Flow Application SRS for SF1,” Year Y2.
[APP, Y3] “APP Module μp2 System Software SRS,” Year Y3.
[APP, Y4] “APP μp2 Flux/Delta Flux/Flow Application Software SRS,” Year Y4.
[APP, Y5] “APP Module Communication Processor SRS,” Year Y5.
[APP, Y6] “APP Module SF1 System Software Code,” Year Y6.
[APP, Y7] “APP SF1 Flux/Delta Flux/Flow Application Code,” Year Y7.
[APP, Y8] “APP Module μp2 System Software Source Code Listing,” Year Y8.
[APP, Y9] “APP μp2 Flux/Delta Flux/Flow Application Software Source Code

Listing,” Year Y9.
[APP, Y10] “APP Comm. Processor Source Code,” Year Y10.
[Gotel, 1994] O. Gotel and A. Finkelstein. “An Analysis of the Requirements

Traceability Problem,” in Proc. of the 1st International Conference on
Requirements Engineering, pp. 94–101, 1994.

[Hayes, 2004] J.H. Hayes et al. “Helping Analysts Trace Requirements: An Objective
Look,” in Proc. of IEEE Requirements Engineering Conference, 2004, pp.
249–261.

[IEEE, 1988] “IEEE Guide for the Use of Standard Dictionary of Measures to Produce
Reliable Software,” IEEE Std. 982.2-1988, 1988.

[IEEE, 1990] “IEEE Standard Computer Dictionary. A Compilation of IEEE Standard
Computer Glossaries,” IEEE Std. 610, 1991.

[IEEE, 1998] “IEEE Recommended Practice for Software Requirements
Specifications,” IEEE Std. 830-1998, 1998.

[Matthia, 1998] J. Matthias. “Requirements Tracing.” Communications of the ACM, vol.
41, 1998.

[Ramesh, 1995] B. Ramesh, L.C. Stubbs and M. Edwards. “Lessons Learned from
Implementing Requirements Traceability,” Crosstalk, Journal of Defense
Software Engineering, vol. 8, pp. 11–15, 1995.

[Smidts, 2004] C. Smidts and M. Li, “Preliminary Validation of a Methodology for
Assessing Software Quality,” NUREG/CR-6848, 2004.

[Sousa, 2004] G. Sousa and J.F.B. Castro. “Supporting Separation of Concerns in
Requirements Artifacts,” in Proc. 1st Brazilian Workshop on Aspect-
Oriented Software Development, 2004.

[Wilson, 1997] W.M. Wilson, L.H. Rosenberg and L.E. Hyatt, “Automated Analysis of
Requirement Specifications,” in Proc. International Conference on
Software Engineering, 1997.

[Xu, 2005] L. Xu, H. Ziv and D. Richardson. “Towards Modeling Non-Functional
Requirements in Software Architecture,” in Proc. SESSION: Workshop on
Architecting Dependable Systems, 2005, pp. 1–6.

299

17. TEST COVERAGE

The concept of test coverage (TC) is applicable to both hardware and software. In the case of
hardware, coverage is measured in terms of the number of possible faults covered. In contrast,
the number of software faults is unknown. TC in the case of software systems is measured in
terms of structural or data-flow units that have been exercised.

According to [IEEE, 1988], TC is a measure of the completeness of the testing process from both
a developer and a user perspective. The measure relates directly to the development, integration,
and operational test stages of product development: unit, system, and acceptance tests. The
measure can be applied by developers in unit tests to obtain a measure of the thoroughness of
structural tests.

This measure can be applied once testing is completed. As listed in Table 3.3, the applicable life
cycle phases for TC are Testing and Operation.

17.1 Definition

As described in [IEEE, 1988], the primitives for TC are divided in two classes: program and
requirement. For the program class, there are two types of primitives: functional and data. The
program functional primitives are either modules, segments, statements, branches (nodes), or
paths. Program data primitives are equivalence classes of data. Requirement primitives are either
test cases or functional capabilities.

TC is the percentage of requirement primitives implemented multiplied by the percentage of
primitives executed during a set of tests. A simple interpretation of TC can be expressed by
Equation 17.1:
 % 100 (17.1)

In this study, the definition of TC has been modified for the following two reasons:

1. The percentage of requirement primitives implemented in the source code has been

obtained from the RT measurement results, as discussed in chapter 16.
2. Since the program primitives are implemented in the format of code, the percentage of

primitives executed during a set of tests is actually the coverage of code tested by test
data. The software engineering literature defines multiple code coverage measures such
as block (also called statement) coverage, branch coverage, and data flow coverage
[Malaiya, 1993]. In this research, statement coverage was selected because it is the most

300

popular test coverage metric and has been embedded in many integrated development
environments, such as Keil μVision2 and IAR EWZ80 used in this research.

Therefore, TC can be modified to be the requirements traceability multiplied by the fraction of
the total number of statements that have been executed by the test data [Malaiya, 1996]. The
concept can be shown in the following equation:
 100 (17.2)

where
 The value of the test coverage
 The number of requirements implemented
 The total number of required requirements including the number of original

requirements specified in the SRS, derived requirements specified in the SDD
and requirements implemented in code but not specified in either SRS or
SDD

 The number of lines of code that are being executed by the test data listed in

 the test plan
 The total number of lines of code

The measurement of statement coverage and the corresponding reliability prediction are
discussed in the following sections.

17.2 Measurement Rules

A four-step measurement approach is introduced in this chapter to determine the test coverage
(C1). The four steps in the measurement approach are:

Step 1. Make the APP source code executable (Refer to Section 17.2.1)
Step 2. Determine the total number of executable lines of code (Refer to Section 17.2.2)
Step 3. Determine the number of tested lines of code (Refer to Section 17.2.3)
Step 4. Determine the percentage of requirement primitives implemented (Refer to Section
17.2.4)

17.2.1 Make the APP Source Code Executable

The software on the safety microprocessor 1 (μp1) and communication microprocessor (CP)
were developed using the Archimedes C-51 compiler, version 4.23; the software on safety
microprocessor 2 (μp2) was developed using the Softools compiler, version 1.60f. Due to the
obsolescence of these tools, the software was ported to the Keil PK51 Professional Developer’s
Kit (μVision2 V2.40a) and IAR EWZ80, version 4.06a-2, respectively. The major modifications

301

are the replacement of some obsolete keywords with their equivalents in the new compilers.
Consequently, the porting did not change the results.

Table 17.1 lists the compilers used in this research and the number of errors and warnings
observed before modification of the original APP source code.

Table 17.1 Original Source Code Information with Compilers Used in This Research

Microprocessor Compiler Number of Errors/Warnings

μp1 Keil μVision2 V2.40a 122/1

μp2 IAR EWZ80 V4.06a-2 1345/33

CP Keil μVision2 V2.40a 36/1

The errors and warnings mainly are to the result of the following differences between the
compilers used in this study and those used by the APP developers:

1. Different keyword used;
2. Different definition of special function registers used;
3. Different interrupt definitions used;
4. Different data type used;

Several modification examples are shown in Table 17.2.

Table 17.2 APP Source Code Modification Examples

Reason Type Original Source Code Modified Source Code

1
Different assembly
keyword

Module VCopy Name VCopy

2 Different bit definition bit EA = 0xAF; sbit EA = 0xAF;

3
Different interrupt
definition

Interrupt [0x03] void
EX0_int (void);

#define EX0_int =0;

4 Different data type
Data unsigned int
unmemory_Loc

unsigned int data
unmemory_Loc

5
Other Miscellaneous
errors in APP

GO GO:

302

As shown in Table 17.2, in the Archimedes C-51 compiler “Module” is the keyword used to
define an assembly function while in Keil μVision2 “Name” is the correct keyword performing
the same function. The Archimedes C-51 compiler uses “bit” to define a bit in a special function
register and Keil μVision2 uses “sbit.” The ways in which the interrupt function is defined are
different in these two compilers. How to define a data type is another problem in these
compilers, as the fourth example shows. Other miscellaneous syntax errors, such as a missing
colon (refer to the fifth example), needed to be corrected.

17.2.2 Determine the Total Lines of Code

As specified in Section 17.1, test coverage indicates the number of executable statements
encountered.

The total number of executable lines of code (eLOC) are provided by the compilers. The results
are shown in Table 17.3.

Table 17.3 Total Number of Executable Lines of Code Results

 Module eLOC Total Number of eLOC

μp1

SF1APP 249

1537

SF1CALTN 238

SF1FUNCT 353

SF1PROG 246

SF1TEST1 184

SF1TEST2 267

μp2

APP1 269

1409

CAL_TUNE 392

MAIN 488

ON_LINE 75

POWER_ON 185

303

Table 17.3 Total Number of Executable Lines of Code Results (continued)

 Module eLOC Total Number of eLOC

CP

COMMONLI 116

811
COMMPOW 183

COMMPROC 132

COMMSER 380

Total 3757

17.2.3 Determine the Number of Tested Lines of Code

According to the original APP test plan [APP, Y6], in order to perform the tests, the following
requirements should be met:

1. The software to be tested must be available in PROM and installed in an operational APP

module.
2. An appropriate power supply for the module must be available.
3. In most cases, an emulator for the microprocessor and its associated software is required.
4. A compatible PC is required to monitor and control the emulator.

It should be noted that a modification of the test cases was necessary in this research. Mainly,
this was due to the following reasons:

1. In this study, software testing was performed based on a real-time simulation

environment and not the actual APP system. The software was not available in PROM,
and debuggers were used to monitor the execution of the source code.

2. The emulator was not available. Thus, all the functions performed by the emulator were
modified.

3. The main purpose of the testing in this study was different from the original purpose of
the testing. The original test cases were used to test the program and check the
functionality of the program. The execution of the test cases in this study was to
determine the code coverage. Thus, only the input specifications sections needed to be
considered. The output specifications did not need to be verified.

After step 1, the APP source code was successfully compiled either using KEIL PK51
Professional Developer’s Kit (for μp1 and CP) or using IAR EWZ80 workbench (for μp2). The
compiler debugger tools were used to determine the percentage of code that had been executed,
denoted as C1'. Therefore, the number of tested lines of code can be calculated by:

304

 (17.3)

The general procedure used to conduct each test case is given below:

1. Set breakpoint to halt the execution at certain desired points.
2. Check and change memory or variable values according to the input specifications

described in the test plan.
3. Allow the program to proceed to the next breakpoint where additional checks may occur.
4. Record the code coverage given by the debugger.

The following subsections show how to use the debugger tools to record the code coverage.

17.2.3.1 Keil μVision2 Debugger

The μVision2 debugger offers a feature called “Code Coverage Analysis” that helps to ensure the
application has been thoroughly tested. The Code Coverage Window shows the percentage of
code for each module (according to the level 2 module definition in Chapter 6) in the program
that has been executed. Code Coverage aids in debugging and testing the application by allowing
users to easily distinguish the parts of the program that have been executed from the parts that
have not.

In μVision2, colors displayed on the left of the assembly window indicate the status of the
corresponding instruction.

1. Dark Grey: Indicates that the line of code has not yet been executed.
2. Green: Indicates that the instruction has been executed. In the case of a conditional

branch, the condition has tested true and false at least once.

17.2.3.2 IAR EWZ80 Debugger

Similar to the Keil μVision2 Debugger, the IAR EWZ80 debugger also can provide code
coverage information. The Code Coverage Window shows the percentage of code in the program
module that has been executed. The untested lines of code (line number) also are shown in the
window.

17.2.4 Determine the Percentage of Requirement Primitives Implemented

Chapter 16 described how to obtain the requirements traceability in details. Consult that chapter
for the measurement rules.

305

17.3 Measurement Results

17.3.1 Determine the Required Documents

As described Section 17.4, the value of code coverage can be used to estimate the value of defect
coverage. The number of defects remaining in the APP can then be estimated from the defect
coverage and the number of defects found by test cases provided in the test plan. As stated
earlier, the testing performed on the APP was not intended to test the program and check the
functionality of the program as the original testing did. The number of defects was obtained by
counting the number of defects identified in the original test reports. The reports distinguish five
levels of test results:

1. Test completed successfully;
2. Test resulted in discrepancies that were resolved by Test Plan deviation;
3. Test resulted in discrepancies that required modifications to the Test Plan;
4. Test resulted in discrepancies that required modifications to the requirements

specifications, design description, or code;
5. Incorrect execution of the test which resulted in a discrepancy. The correct execution of

the test resolved the discrepancy.

Obviously, only level-four discrepancies were considered defects found by testing. Since there
exist many versions of source code, test plans and test reports, one needs to determine which
version is to be used for test coverage measurement. Table 17.4 shows this information.

Therefore, the following documents were used to measure the test coverage:

 APP Module μp1 System Software Code Revision 1.03 [APP, Y1]
 APP μp1 Flux/Delta Flux/Flow Application Software Source Code Revision 1.03 [APP,

Y2]
 APP Module μp2 System Software Source Code Revision 1.02 [APP, Y3]
 APP μp2 Flux/Delta Flux/Flow Application Software Source Code Revision 1.02 [APP,

Y4]
 APP Communication Processor Source Code Revision 1.04 [APP, Y5]
 APP Test Plan for μp1 Software [APP, Y6]
 APP Test Report for μp1 Software [APP, Y9]
 APP Test Plan for μp2 Software [APP, Y7]
 APP Test Report for μp2 Software [APP, Y10]
 APP Test Plan for CP Software [APP, Y8]
 APP Test Report for CP Software [APP, Y11]

306

Table 17.4 Testing Information for μp1

Test

Report
Revision

Applicable
Code

Revision

Test Plan
Used

Critical +
Significant

Defects
Test Report Revision

μp1

#00 1.03 0 4

1. Not all the address lines tested
2. All inputs boards missing in Power-on

without indicating fatal error
3. Discrete inputs tripped condition
4. Detect module ID with DPR

#01 1.03 1 0 N/A

#02 1.04 2 0 N/A

#03 1.07 3 0 N/A

#04 1.08 4 0 N/A

μp2

#00 1.02 0 2
1. Online RAM test not complete
2. Online EEPROM failure is not

identified as fatal failure

#01 1.03 0 0 N/A

#02 1.04 2 0 N/A

#03 1.05 4 0 N/A

#04 1.06 5 0 N/A

CP

#00 1.04 0 1 Initialize variable problem

#01 1.04 1 0 N/A

#02 1.04 02 0 N/A

17.3.2 Test Coverage Results

Table 17.5 shows the statement coverage results.

Table 17.5 Statement Coverage Results

Microprocessor LOCTotal C1' LOCTested

μp1 1537 0.886 1362

μp2 1409 0.939 1324

CP 811 0.898 729

Total 3757 0.908 3379

307

From the measurement results of Chapter 16, the total number of implemented requirements of
the APP system, , is 1,146. The number of original requirements specified in the SRS and
derived requirements specified in the SDD is 1,150. There is one requirement that is
implemented in code but not specified in either SRS or SDD. Thus the total number of the
requirements, , is 1,151. Therefore, the test coverage for APP is:
 ,, ,, 0.8955 (17.4)

17.3.3 Linear Execution Time Per Demand Results

The linear-execution time, TL, is used in different RePSs. The linear-execution time is defined as
the product of the number of lines of code per demand and the average execution time of each
line [Malaiya, 1993].

APP linear-execution time is calculated by executing a segment of linear code (code without a
loop) in the Keil-simulation environment. This segment contains seventy-four lines of code. The
measurement procedure is described as follows:

1. Set the clock frequency to 12 MHz for the Intel 80C32 microprocessor and 16 MHz for

the Z180 microprocessor;
2. Set breakpoints at the beginning of the code and the end of the code;
3. Execute the code and record the execution time in seconds at the start and end

breakpoints (Tstart and Tend respectively). This information is available in the “secs” item
in the register window;

4. Calculate the difference between the breakpoints to obtain the execution time for the 74
lines of code ().

As such, the linear-execution time for the given software is:

 (17.5)

where LOC is the size in lines of code for the given software.39

Table 17.6 summarizes the results of this experiment.

39 All 74 LOC are executable.

308

Table 17.6 Linear Execution Time for Each Microprocessor in the APP System

 μp1 μp2 CP

 (seconds) 0.000389 0.00029175 0.000389 (seconds) 0.002844 0.002133 0.002844 (seconds) 0.0000332 0.0000249 0.0000332

LOC/demand with
cycles disabled

554 346 619

 (seconds) 0.018 0.009 0.021

17.3.4 Average Execution-Time-Per-Demand Results

Similar to the linear-execution time, also is used in many RePSs. The value of can be
determined during testing by recording the actual execution time. The approaches for
determining τ in the simulation environments are not the same.

For μp1 and CP, because these source codes are executed in the Keil μVision2 environment,
source code execution time is shown by the system register in the watch window. From the test-
coverage experiment, the average execution time for μp1 is 0.082 seconds/demand and the
average execution time for CP is 0.016 seconds/demand;

For μp2, the execution time is not directly given by the simulation environment IAR EWZ80; but
the number of cycles (processor clock cycles) is provided. The execution time can be calculated
by

 (17.6)

where:
 the number of cycles given by the simulation environment
 the μp2 clock frequency (16 MHz)

From the test coverage experiment, the average number of cycles was 2,064,135, so the average
execution time of μp2 is: , ,. 0.129 second (17.7)

309

17.4 RePS Construction from Test Coverage

17.4.1 Determination of the Defect Coverage

Malaiya et al. investigated the relationship between defect coverage, , and statement coverage,

. In [Malaiya, 1996], the following relationship was proposed:
 ln 1 1 (17.8)

where , , and are coefficients and is the statement coverage [Malaiya, 1996]. The
coefficients were estimated from field data. Figure 17.1 depicts the behavior of for data sets
two, three, and four given in [Malaiya, 1996].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

T est (Statement) coverage

D
ef

ec
t

C
o

ve
ra

DS2 DS3 DS4

Figure 17.1 Defect Coverage vs. Test Coverage

17.4.2 Determination of the Number of Defects Remaining in APP

According to Malaiya [Malaiya, 1993], the number of defects remaining in software, , is:

 (17.9)

where
 number of defects remaining in the software
 number of defects found by test cases provided in the test plan
 defect coverage

From Table 17.4, the total number of defects found by test cases provided in the test plan is

310

 4 2 1 7

Table 17.7 provides the defect coverage and the corresponding total number of defects remaining
in APP given the parameters in [Malaiya, 1996] for three data sets. Since all three data sets are
applicable to the APP case, the total number of defects remaining is estimated by an average
value: 9 defects.

Table 17.7 Defects Remaining, N, as a Function of TC and Defects Found for Three Malaiya Data Sets

 ln 1 10.896 7

Data Set ⁄

DS2 1.31 1.80E-03 6.95 0.847 8 (8.3)

DS3 0.139 7.00E-04 14.13 0.751 9 (9.3)

DS4 0.116 6.00E-04 15.23 0.723 10 (9.7)

17.4.3 Reliability Estimation

Malaiya [Malaiya, 1993] also suggested the following expression for the failure intensity

 (17.10)

where

 the value of the fault exposure ratio during the n-th execution
 the linear execution time

and the probability of n successful demands is given as:

 (17.11)

where T(n) is the duration of n demands. It is given by:

 (17.12)
where
 the average execution-time-per-demand.
 the number of demands.

311

Replacing and in Equation 17.11 with Equation 17.10 and Equation 17.12:

 (17.13)

The fault-exposure ratio for the seven defects identified during testing can be precisely estimated
using the EFSM described in chapter 5. Using Equation 17.13:

 (17.14)

where

 the probability of failure-per-demand corresponding to the known defects. This
value is given by the APP EFSM and is 5.8 × 10-10.

Table 17.8 lists the probability of success-per-demand.

Table 17.8 Probability of Success-Per-Demand Based On Test Coverage

9

0.99999999942

The linear execution time, TL, for each of the three subsystems (μp1, μp2, and CP) of APP has
been identified in Section 17.3.3. There are several ways to estimate the linear-execution time for
the entire APP system, such as using the average value of these three subsystems. For a safety-
critical application, such as the APP system, the UMD research team suggests making a
conservative estimation of TL by using the minimum of these three subsystems. Namely,

 min 1 , 2 ,
 min 0.018, 0.009, 0.021 (17.15)
 0.009 seconds
where
 1 Linear execution time of Microprocessor 1 (μp1) of the APP system. TL

(μp1) = 0.018 seconds; 2 Linear execution time of Microprocessor 2 (μp2) of the APP system. TL
(μp2) = 0.009 seconds;

 Linear execution time of Communication Microprocessor (CP) of the APP
system. TL (CP) = 0.021 seconds.

312

Similarly, the average execution-time-per-demand, τ, for each subsystem has been identified in
section 17.3.4. To make a conservative estimation, the average execution-time-per-demand for
the entire APP system is the maximum of the three subsystems. Namely,

 max 1 , 2 ,
 max 0.082,0.129,0.016 (17.16)
 0.129 seconds/demand
where
 1 Average execution-time-per-demand of Microprocessor 1 (μp1) of the APP

system. τ(μp1) = 0.082 seconds/demand; 2 Average execution-time-per-demand of Microprocessor 2 (μp2) of the APP
system. τ(μp2) = 0.129 seconds/demand;

 Average execution-time-per-demand of Communication Microprocessor (CP) of
the APP system. τ(CP) = 0.016 seconds/demand.

17.5 Lessons Learned

Normally, the measurement of TC should be completed efficiently with the help of automation
tools. In this research, the time required for the measurement was excessive: a great deal of time
was devoted to modifying the original APP source code so that it could be compiled successfully
by current compilers. In addition, a great deal of time was spent modifying the original test cases
for the current simulation environments. If no such compatibility problems existed, the
measurements would have been completed faster.

313

17.6 References

[APP, Y1] “APP Module SF1 System Software code,” Year Y1.
[APP, Y2] “APP SF1 Flux/Delta Flux/Flow Application code,” Year Y2.
[APP, Y3] “APP Module μp2 System Software Source Code Listing,” Year Y3.
[APP, Y4] “APP μp2 Flux/Delta Flux/Flow Application Software Source Code

Listing,” Year Y4.
[APP, Y5] “APP Communication Processor Source Code,” Year Y5.
[APP, Y6] “APP Test Plan for μp1 Software,” Year Y6.
[APP, Y7] “APP Test Plan for μp2 Software,” Year Y7.
[APP, Y8] “APP Test Plan for CP Software,” Year Y8.
[APP, Y9] “APP Test Report for μp1 Software,” Year Y9.
[APP, Y10] “APP Test Report for μp2 Software,” Year Y10.
[APP, Y11] “APP Test Report for CP Software,” Year Y11.
[IEEE, 1988] “IEEE Guide for the use of Standard Dictionary of Measures to Produce

Reliable Software,” IEEE Std. 982.2-1988, 1988.
[Malaiya, 1993] Y. Malaiya, A.V. Mayrhauser and P. Srimani. “An Examination of Fault

Exposure Ratio,” IEEE Transactions on Software Engineering, vol. 19,
pp. 1087–94, 1993.

[Malaiya, 1996] Y. Malaiya et al. “Software Test Coverage and Reliability,” Colorado
State University, Fort Collins, CO, 1996.

[Musa, 1987] J.D. Musa, A. Iannino, and K. Okumoto. Software Reliability:
Measurement, Prediction, Applications. New York: McGraw-Hill, 1987.

315

18. REAL RELIABILITY ASSESSMENT

18.1 Definition

In this study, “reliability” is defined as “the probability that the APP software (both system
software and application software) functions normally within a one demand performance
period.”

Traditionally, the reliability of a system is estimated from failure data. The failure data is
obtained either from operational failures or failures discovered during testing. In NUREG/CR-
6848 [Smidts, 2004], an automatic testing environment was established and the software under
study was tested using that test-bed. In this study, operational failures will be used to quantify the
APP reliability.

Let us assume r failures are observed in T years of operating time. The maximum likelihood and
unbiased estimate of the failure rate is given as [Ireson, 1966]:

 (18.1)

18.2 APP Testing

During the early stages of this research, UMD was unable to obtain operational data from the
plant. Thus, UMD initiated its reliability-estimation effort using testing. A test-bed was
established to conduct reliability testing for the APP safety module (see Figure 18.1).

The test-bed was composed of a testing computer, which executed the testing software and
provided inputs to the APP module and accepted outputs from the APP module. One PCI A/D
card was installed for accepting the analog APP outputs and converting them to digital values;
one D/A PCI card was installed for generating APP analog inputs; and one digital Input/Output
(I/O) card was installed to establish bi-directional communication between the testing computer
and the APP module. The wiring between the safety module and the testing computer was
designed and implemented by the APP manufacturer.

Interface software also was developed to generate and provide inputs into the APP module and to
accept and display APP module outputs. Figure 18.2 depicts this testing software interface. The
user can enter analog input values and digital input values in the two left columns. After pressing

316

the Start button, the values in these text boxes were sent to the APP. The outputs from the APP
were retrieved and appeared in the two right columns.

Figure 18.1 APP Reliability Testing Environment

Figure 18.2 Testing Software

Safety Function
Processor 1

Safety Function
Processor 2

Test Bed

Inputs

Communication
Processor

APP Safety Module

Outputs

317

UMD did not follow the procedures described in NUREG/CR-6848 Chapter 4 [Smidts, 2004] to
conduct APP reliability testing. In particular, generation of test cases from the TestMaster model
was not performed because UMD was in the possession of a large amount of actual operational
input data. The TestMaster model should be used when actual input information is unavailable,
and to generate inputs that represent operational use using the operational profile.

WinRunner was used as described in NUREG/CR-6848 Chapter 4 [Smidts, 2004] to harness the
testing automatically.

Within the test environment, one method to speed up the failure process was to use accelerated
testing techniques. The principle of accelerated testing is to challenge a system under high stress.
For mechanical components, meaningful high stresses include higher temperatures, higher
voltages, higher speed of operation, etc. This technique forces the component into conditions
rarely attained during normal operation. For software components, the same principle applies.
High stress conditions correspond to inputs that rarely appear in normal operations.

Two types of high-stress conditions were identified for the APP. The first set of high-stress
conditions is related to the application software, i.e., the inputs around the trip conditions (points
around the “barn shape”). UMD identified this set of conditions as the least important because
these conditions largely challenge the application software (the predicates that judge whether a
trip occurs). This part of the software is relatively simple and typically less problematic than the
remaining system software.

Another set of high-stress conditions was identified for the system software. The APP system
software was designed to assure that the safety module (both software and hardware) was in
healthy condition. Since hardware failures have a low likelihood of occurrence, it is important to
fictitiously increase these likelihoods, in other words, to accelerate them, to observe module
behavior under this type of high-stress condition.

However, the current testing configuration depicted in Figure 18.1 was not suitable for
accelerating such stress (hardware failure). A simulation-based accelerated testing was
considered a possible approach in future testing.

In summary, it was not possible to derive APPs failure rates from testing. Therefore, UMD
contacted a plant using similar software to acquire failure information from operational data.

18.3 APP Operational Data

The APP had been deployed in a nuclear power plant and had been functioning for 10 years at
the start of this research project. Per UMD’s request, the plant sent UMD copies of the plant
maintenance Work Packages addressing APP failures. The Work Packages included 14 Problem
Records that were related to the APP module. Each Problem Record consisted mainly of a

318

detailed problem description and a corresponding set of corrective actions. Table 18.1
summarizes the 14 Problem Records. The table includes the date at which the Problem Record
originated, the Problem Record Number, a determination of whether the problem was related to
an APP failure, a determination of whether it was an APP software failure, the failure type (i.e.,
Type I or II), and the cause of the failure. From Table 18.1, several conclusions can be drawn as
follows:

1. A new version of the APP software was installed in the plant. The implementation was

completed on December 2003 for one unit, and the completion dates for the other units
were March 2004 and October 2004, respectively. A new EEPROM on a computer card
was installed into the applicable RPS APP module. The software update was not the
result of a failure. The existing Flux Imbalance/Flow trip limits were determined to
perform their intended functions appropriately. A maximum power trip set-point was
added so that the module would trip the plant at a predefined fixed, set power level if the
measured power level exceeded the fixed power level due to increased flow. This
Problem Record recorded the fact that several tuning parameters were set to new values
due to a change of the core design. This thus defined the end point of the window of
analysis.

2. Among the 14 Problem Records there were 5 APP system failures (Numbers 6, 8, 9, 10,

and 12). Not all APP system failures were related to the APP software. Three of the
failures (Numbers 8, 9, and 10) were identified by the system developer as hardware
failures.

3. For the sixth Problem Record, the system developer could not determine the cause of

failure. None of the testing or other diagnostic efforts identified a failed component or
any other problem. As a consequence, the plant owner did not upgrade the APP software
but replaced some critical hardware components, such as a voltage regulator. UMD
conservatively considers this Problem Record as an APP software failure. This failure
was a Type II failure because it produced a trip signal although plant parameters were
normal.

4. For the twelfth Problem Record, the system developer could not determine the cause of

failure. UMD conservatively considers this Problem Record as an APP software failure.
This failure was a Type II failure because it sent out a trip signal although plant
parameters were normal.

5. One more APP failure besides those specified in the 14 Problem Records was identified

by UMD after a thorough analysis of Problem Record O-02-00463. An AVIM (Analog
Voltage Isolation Module) failure caused a failure of the APP system. Therefore, it was
concluded that this Problem Record was not due to an APP software failure.

319

6. Obviously, throughout the total deployment time of the APP software version 1 there was
no software reliability growth because software defects could not be located.

7. On the other hand, some APP module hardware was replaced when those modules were

sent back to the system developer. Thus, the operational profile for the APP infrastructure
inputs needed to be updated to reflect these changes (see Chapter 4).

Table 18.1 Summary of Problem Records

NO.
Problem
Record #

APP
Failure?

APP
Software
Failure?

Failure
Type

Reason

1 O-98-00932 No No N/A
There was a connection problem
when attempting to reinsert APP
module into the cabinet.

2 O-98-02070 No No N/A
The instrumentation is capable of
performing its intended function and
there was no operability issue.

3 O-98-03661 No No N/A
Nothing abnormal happened and no
Problem Record should be written.

4 O-99-05230 No No N/A
No equipment failure or loss of
system/component function is
involved.

5 O-00-01770 No No N/A

Developer believed that it was
impossible to have a particular
common element failed because no
failure of any components in any of
the modules was observed in the
plant. This repeatedly out of
tolerance calibration problem would
due to the problem in CTC.

6 O-01-03095 Yes Yes II

APP module tripped while it should
not. The failure cause was not able
to be determined. None of the
testing or other diagnostic efforts
performed by developer identified a
failed component or any other
problem.

320

Table 18.1 Summary of Plant X’s Problem Records (continued)

NO.
Problem
Record #

APP
Failure?

APP
Software
Failure?

Failure
Type

Reason

7 O-01-03118 No No N/A
Module was not seated well due to
loose connection.

8 Unknown Yes No N/A
AVIM (analog voltage isolation
module) failure.

9 O-02-00463 Yes No N/A

Loss of RC (Runs Commands) flow
indication due to a failed AVIM
(analog voltage isolation module).
The cause of the AVIM failure is
unknown.

10 O-02-01360 Yes No N/A

APP module tripped while it should
not. The evaluation identified a
failed 5V DC regulator as the failed
component.

11 O-03-02646 No No N/A
Not an actual failure. Several tuning
parameters were set to new values
due to the change of the core design.

12 O-03-08237 Yes Yes II
APP module tripped while it should
not. No reason was identified.

13 O-04-01439 No No N/A
CTC need to be calibrated or caused
by a calculating rounding problem
according to developer’s answer.

321

Table 18.1 Summary of Plant X’s Problem Records (continued)

NO.
Problem
Record #

APP
Failure?

APP
Software
Failure?

Failure
Type

Reason

14 3/25/2005 No No N/A

Company Y identified a software
error. The error results in a 0.2% FP
non-conservative trip setpoint for
the Flux/Flow/Imbalance and only
one of the modules is affected.
However, this error is within the
hardware tolerance and has not
shown up in required testing
performed routinely in Plant X.
Plant X did not implement the
changes to their APP modules.

15 4/1/2005 No No N/A Same as Problem Record #14.

The power plant control logic was comprised of three independent control units. Each unit
contained four channels; each channel contained one APP safety module. The following table
shows the deployment of the APP modules in the plant.

322

Table 18.2 Deployment of APP Modules in Plant

Unit Number Deployed in Plant
From

End Deployment Date in
this Study

Total Deployment
Time

 1 December 1997 December 2003 73 months

 2 May 1996 March 2004 95 months

 3 June 1995 October 2004 113 months

The number of demands over the deployment period for the APP modules in the plant is:
 73 95 113 30 24 36000.129 5.646 10 demands

Where τ is the average execution-time-per-demand determined through the simulation
environment. Its value is 0.129 s. For additional detail refer to Section 17.3.4.

The probability of failure per demand () for the APP system can be estimated using
Equation 18.1:

2 failures5.646 10 demands 3.542 10 failure/demand (18.2)

Because , the APP system’s failure rate () can be estimated using the following:
 2 failures73 95 113 months 30 days month⁄ 24 hr day⁄ 3600 s hr⁄2.746 10

The failure types of the APP software failures described in the Problem Records can be
identified. As shown in Table 18.1, the failures were determined as Type II failures. Thus, the
APP Type II rate of failure is also 2.746 × 10-9 failure per second and the probability of a type II
failure-per-demand is 3.542 × 10-10 failure per demand.

However, no Type I failure was observed during the period of investigation. Thus, Equation 18.1
does not apply for failure-rate estimation of APP Type I failures. UMD opted for a statistical
approach to estimate the failure rate based on field data knowing that no type I failures had been
observed.

323

A common solution to failure-rate estimation when no failure event has been observed is to take
one half as the numerator () in Equation 18.1 [Welker, 1974].

The APP failure rate is thus given by:
 0.573 95 113 30 24 2.471 10 failure/hour

The probability that a trip actuation will be required can be estimated using Equation 4.6:
 1072511 1.38 10 triphr

Therefore, the APP type I failure-rate estimate is given by:
 |

 2.471 10 failure/hr1.38 10 trip/hr 0.01792

324

18.4 References

[Ireson, 1966] W.G. Ireson. Reliability Handbook. New York, NY: McGraw Hill, Inc.,

1966.
[Smidts, 2004] C. Smidts and M. Li, “Validation of a Methodology for Assessing

Software Quality,” NRC, Office of Nuclear Regulatory Research,
Washington DC NUREG/CR-6848, 2004.

[Welker, 1974] E.L. Welker and M. Lipow. “Estimating the Exponential Failure Rate
from Data with No Failure Events,” in Proc. Annual Reliability and
Maintainability Conference, 1974.

325

19. RESULTS

The motivation of this project was to validate the RePS theory and the rankings presented in
NUREG/GR-0019.

In previous research, as shown in NUREG/CR-6848, a first set of six RePS models was
constructed for the following six root measures: Requirements Traceability (RT), Mean Time to
Failure (MTTF), Defect Density (DD), Bugs per Line of Code (BLOC), Function Point (FP), and
Test Coverage (TC). These models were applied to two small scale systems, the Personnel
Access Control System, PACS1 and PACS2, and it was found that the results of the assessment
were consistent with the ranking of the measures.

The research described in this report is a continuation of NUREG/CR-6848. Seven more RePS
models were developed and were applied to a nuclear safety critical system, the APP. New
RePSs were built for the measures: Cyclomatic Complexity (CC), Cause and Effect Graphing
(CEG), Requirements Specification Change Requests (RSCR), Fault-days Number (FDN),
Capability and Maturity Model (CMM), Completeness (COM), and Coverage Factor (CF).

It should be pointed out that it is not necessary to validate the methodology using all 40 measures
identified in NUREG/GR-0019. Based on the methodology provided in this NUREG/CR report,
projects have the flexibility to select their own measures for software-reliability prediction. The
selection criteria include the measure’s prediction ability, the measure’s availability to the
specific project considering cost and schedule constraints. For example, when reviewing new
nuclear reactor applications, reviewers may select measures with higher prediction ability
dependent upon their reviewing schedule.

In the current study, the MTTF measure was not applied to the APP and an alternative approach
for assessing the failure rate was introduced in Chapter 18. As described in Section 18.3, APP
failures were identified from the Problem Investigation Process (Problem Records) and the
failure rate of the APP was assessed as the identified number of APP failures divided by the total
APP deployment time. The other twelve RePSs are used to predict the software reliability of the
APP system.

A summary description of the twelve measures is provided in Section 19.1. The results of the
RePS software reliability predictions are displayed and analyzed in Section 19.2. These
predictions are then validated by a comparison to the “real” software reliability obtained from
operational data and statistical inference. The comparison between the NUREG/GR-0019 ratings
and the RePS prediction error is also made in this section, and the efficacy of the proposed
methodology for predicting software quality is determined.

326

Further discussion about the measurement process for the twelve measures used in this research
is provided in Section 19.3. The discussion includes an analysis of feasibility, which takes into
account the time, cost, and other concerns such as special technology required to perform the
measurements.

Section 19.4 discusses the difficulties encountered during the measurement process as well as the
possible solutions. Conclusions, a list of follow-on issues, and their priorities ranked by an expert
panel composed of field experts are presented in Section 19.5 and 19.6, respectively.

19.1 Summary of the Measures and RePSs

Twelve measures were selected and their associated RePSs were created. A summary description
of the measures and RePSs are presented in Section 19.1.1 and 19.1.2, respectively.

19.1.1 Summary Description of the Measures

Table 19.1 presents a summary of the twelve measures with their applicable life cycle phases and
the phases for which they were applied to the APP system. The specific documents required to
perform the measurements are also specified.

Table 19.1 A Summary of Measures Used

Family Measures
Applicable Life Cycle

Phases40

Applied
Phases for

APP41

Required
Documents

Estimate of Faults
Remaining per Unit of
Size

BLOC IM, TE, Operation Operation Code

Cause and Effect
Graphing

CEG
RQ, DE, IM, TE,
Operation

Operation SRS, Code

Software Development
Maturity

CMM
RQ, DE, IM, TE,
Operation

Operation
SRS, SDD,
Code

Completeness COM
RQ, DE, IM, TE,
Operation

Operation SRS, Code

Fault-Tolerant Coverage
Factor

CF TE, Operation Operation Code

40 RQ, DE, IM, and TE stand for Requirements phase, Design phase, Coding phase, and Testing phase respectively.
41 It is assumed that the version used during operation is the version that was delivered at the end of the testing phase.

327

Table 19.1 A Summary of Measures Used (continued)

Family Measures
Applicable Life Cycle

Phases42

Applied
Phases for

APP43

Required
Documents

Module Structural
Complexity

CC DE, IM, TE, Operation Operation Code

Time Taken to Detect
and Remove Faults

FDN
RQ, DE, IM, TE,
Operation

Operation
SRS, SDD,
Code

Functional Size FP
RQ, DE, IM, TE,
Operation

Operation SRS

Faults Detected per Unit
of Size

DD TE, Operation Operation
SRS, SDD,
Code

Requirements
Specification Change
Request

RSCR
RQ, DE, IM, TE,
Operation

Operation SRS, Code

Requirement
Traceability

RT DE, IM, TE, Operation Operation SRS, Code

Test Coverage TC TE, Operation Operation Code

As shown in Table 19.1, all measurements are performed during the APP operation phase. Focus
on the operation phase is driven by the time elapsed between delivery of the APP system and the
consequent unavailability of important historical information that could have characterized the
software-development process. For example, one can measure the FP count in the Requirement
phase using an early version of the SRS. This would yield an estimate of reliability based on FP
early in the development life-cycle. Unfortunately, these early versions of the APP SRS are no
longer available. The only SRS version available is the final version, i.e., the version that was
delivered at the end of the testing phase.

According to the properties of the defects found by different families/measures, the above 12
families/measures can be categorized into three groups.

Group-I Families/Measures:

 Estimate of Faults Remaining per Unit of Size/Bugs per Line of Code (BLOC)
 Software Development Maturity/Capability Maturity Model (CMM)

42 RQ, DE, IM, and TE stand for Requirements phase, Design phase, Coding phase, and Testing phase respectively.
43 It is assumed that the version used during operation is the version that was delivered at the end of the testing phase.

328

 Module Structural Complexity/Cyclomatic Complexity (CC)
 Functional Size/Function Point (FP)
 Requirements Specification Change Request/Requirements Specification Change Request

(RSCR)

Group-II Families/Measures:

 Cause and Effect Graphing/Cause-effect Graphing (CEG)
 Completeness/Completeness (COM)
 Faults Detected per Unit of Size/Defect Density (DD)
 Requirement Traceability/Requirements Traceability (RT)
 Fault-Tolerant Coverage Factor/Coverage Factor (CF)

Group-III Family/Measure:

 Time Taken to Detect and Remove Faults/Fault Days Number (FDN)
 Test Coverage/Test Coverage (TC)

In the case of the first group of families/measures, only the number of defects can be obtained.
Their location is unknown. The RePSs for these measures are based on Musa’s estimation model.
Families/measures in the second group correspond to cases where actual defects are obtained
through inspections or testing. Thus, the exact location of the defects and their number is known.
Extended Finite State Machine Models (see Chapter 5) or Markov Chain Models (see Chapter
10) are used to assess reliability. The measures in the third group have the combinational
characteristics of the first two groups. The exact locations of defects in an earlier version are
used to build the fault location models to obtain a software-specific fault exposure ratio and the
final reliability estimation is based on Musa’s estimation model.

It should be noted that seven out of the twelve measures are unique measures in their families
while UMD selected one of the measures in the other five families. This information is presented
in Table 19.2.

Table 19.2 Family/Measure Information

Family Measure(s) in This Family UMD Selected Measure

Estimate of Faults Remaining
per Unit of Size

BLOC BLOC

Cause and Effect Graphing CEG CEG

Software Development
Maturity

CMM CMM

329

Table 19.2 Family/Measure Information (continued)

Family Measure(s) in This Family UMD Selected Measure

Completeness COM COM

Module Structural Complexity

Cyclomatic Complexity (CC)

CC Minimal Unit Test Case
Determination

Faults Detected per Unit of
Size

Code Defect Density (DD)

DD Design Defect Density

Fault Density

Fault-Tolerant Coverage
Factor

CF CF

Time Taken to Detect and
Remove Faults

Fault Days Number (FDN)

FDN Man Hours per Major Defect
Detected

Functional Size

Function Point (FP)

FP Feature Point Analysis

Full Function Point

Requirements Specification
Change Request

RSCR RSCR

Requirement Traceability RT RT

Test Coverage

Test Coverage (TC)

TC Functional Test Coverage

Modular Test Coverage

Since BLOC, CEG, CMM, COM, CF, RSCR, and RT are the only measure in their respective
families, these were automatically selected. The selection of the other measures among the
members of their families is based on Table 19.3.

330

Table 19.3 Information about Families Containing More Than One Measure

Family Measures Experts Rate

Module Structural Complexity

Cyclomatic Complexity (CC) 0.72

Minimal Unit Test Case
Determination

0.7

Faults Detected per Unit of Size

Code Defect Density (DD) 0.83

Design Defect Density 0.75

Fault Density 0.75

Time Taken to Detect and
Remove Faults

Fault Days Number (FDN) 0.72

Man Hours per Major Defect
Detected

0.63

Functional Size

Function Point (FP) 0.5

Feature Point Analysis 0.45

Full Function Point 0.48

Test Coverage

Test Coverage (TC) 0.68

Functional Test Coverage 0.62

Modular Test Coverage (MTC) 0.7

As seen in the above table, the experts’ rates for each measure in a family do not vary much.
Basically, either measure can be chosen to represent its family. The fundamental criterion that
UMD used was to choose the measures with the highest rates. Thus, CC, DD, FDN, FP, and
MTC are automatically chosen. However, considering the difficulties of their RePS
constructions, TC was selected to replace the MTC measure because the RePS for TC is
available while no RePS exists for the MTC measure. Therefore, UMD selected CC, DD, FDN,
FP, and TC to represent their families.

19.1.2 Summary Description of the RePSs

Twelve RePSs were used to predict the software reliability of the APP system; they are
summarized in Table 19.4. Multiple key elements are involved in the evaluation of each RePS.

331

Some can be measured directly using available documents, others can only be estimated. Table
19.4 also lists these key elements and whether they can be measured or should be estimated.

Table 19.4 Summary of the RePSs

Measure Estimation of Probability of Failure Key Elements
Measured or

Estimated

BLOC 1 ∑ . . ⁄

: fault exposure ratio Estimated

: the number of modules Measured

: the number of lines of code (LOC)
for each module

Measured

: the number of known defects
found by inspection and testing

Measured

: linear execution time Measured

: the average execution-time-per-
demand

Measured

SL: Severity level Estimated

CEG ·, ·

: the number and locations of
defects found by the CEG measure

Measured

: Operational profile Measured

: the propagation probability for
the i-th defect

Measured

: the infection probability for the
i-th defect

Measured

: the execution probability for
the i-th defect

Measured

CMM 1

: fault exposure ratio Estimated

: the number of defects
estimated by the CMM measure

Estimated

: linear execution time Measured

: the average execution-time-per-
demand

Measured

COM · ·,

: the number and locations of
defects found by the COM measure

Measured

 : Operational profile Measured

: the propagation probability for
the i-th defect

Measured

: the infection probability for the
i-th defect

Measured

: the execution probability for
the i-th defect

Measured

332

 Table 19.4 Summary of the RePSs (continued)

Measure Estimation of Probability of Failure Key Elements
Measured

or
Estimated

CF 1 ∑

Pi(t): the probability that the system
remains in the i-th reliable state. i = 1, 2,
and 3, corresponding to the Normal, the
Recoverable, and the Fail-safe states.

Measured

CC 1 · ·

K: fault exposure ratio Estimated

A: the size of the delivered source code in
terms of LOC

Measured

k: a universal constant Estimated

F: a universal constant Estimated

SLICC: the Success Likelihood Index for
the CC measure

Estimated

TL: linear execution time Measured

τ: the average execution-time-per-
demand

Measured

DD · ·,

NDD: the number and locations of defects
found by the DD measure

Measured

OP: Operational profile Measured

P(i): the propagation probability for the i-
th defect

Measured

I(i): the infection probability for the i-th
defect

Measured

E(i): the execution probability for the i-th
defect

Measured

FDN 1

K: fault exposure ratio Estimated

NFDN: the number of defects estimated by
the FDN measure

Estimated

TL: linear execution time Measured

τ: the average execution-time-per-
demand

Measured

FP 1

K: fault exposure ratio Estimated

NFP: the number of defects estimated by
the FP measure

Estimated

TL: linear execution time Measured

τ: the average execution-time-per-
demand

Measured

333

 Table 19.4 Summary of the RePSs (continued)

Measure Estimation of Probability of Failure Key Elements
Measured

or
Estimated

RSCR 1 · ·

K: fault exposure ratio Estimated

A: the size of the delivered source code in
terms of LOC

Measured

k: a universal constant Estimated

F: a universal constant Estimated

: the Success Likelihood Index
for the RSCR measure

Estimated

TL: linear execution time Measured

τ: the average execution-time-per-
demand

Measured

RT · ·,

NRT: the number and locations of defects
found by the RT measure

Measured

OP: Operational profile Measured

P(i): the propagation probability for the i-
th defect

Measured

I(i): the infection probability for the i-th
defect

Measured

E(i): the execution probability for the i-th
defect

Measured

TC

· ·,

 1 ln

υK: fault exposure ratio Measured

N0: the number and locations of defects
found by testing in earlier version of code

Measured

OP: Operational profile Measured

P(i): the propagation probability for the i-
th defect

Measured

I(i): the infection probability for the i-th
defect

Measured

E(i): the execution probability for the i-th
defect

Measured

a0, a1, a2: coefficients Estimated

C1: test coverage Measured

The current regulatory review process does not use metrics to assess the potential reliability of
digital instrumentation and control systems in quantitative terms. The goal of the research
described in this report was to identify methods that could improve the regulatory review process
by giving it a more objective technical basis. While some of the models in this report use generic
industry data, experimental data, and subjective assessments, much of the modeling is based on
direct measurements of the application under study and, as such, is purely objective in nature.

334

Thus, the use of the proposed RePSs models (i.e., of the highly accurate RePSs) could potentially
yield better results than what can be obtained from the current review process.

19.2 Results Analysis

This section presents a detailed analysis of the results, which includes an analysis of the number
of defects estimated or measured by the twelve software engineering measures and an analysis of
the reliability predictions.

19.2.1 Defects Comparison

The total number of Level-1 and Level-2 defects remaining in the APP source code according to
the twelve measures is shown in Table 19.5 and also illustrated in Figure 19.1.

Table 19.5 Number of Defects Remaining in the Code

Measure Number of Defects Found

BLOC 14

CEG 1

CMM 19

COM 1

CF 6

CC44 29

DD 4

FDN 1

FP 10

RSCR45 12

RT 5

TC 9

44 The Number of Defects Found for CC is the number of faults remaining obtained without the use of support measures.
45 The Number of Defects Found for RSCR is the number of faults remaining obtained without the use of support measures.

335

Figure 19.1 Number of Defects Remaining in the Code Per Measure

If the measures are re-ordered according to the groups defined in Section 19.1, Figure 19.1
becomes Figure 19.2. One can see from Figure 19.2 that the “number of defects remaining”
estimated using Group-I measures is much larger than the actual number of defects remaining
using Group-II measures. As discussed before, only an estimated number of defects can be
obtained by Group-I measures. These estimated numbers are mainly based on Capers Jones’
historical data. However, Jones’ data does not cover the entire spectrum of system types. That is,
there is no specific data available for safety critical software. In this research, data in the general
“system software” category was used. As a consequence, the number of defects will be
overestimated. In the case of Group-II measures, defects are uncovered through inspection. It is
clear that the inspector will not uncover all the defects in the software. Thus, the number of
defects is a lower bound estimate of the actual number of defects. These reasons explain why the
number of defects predicted by Group-I measures is generally much larger than the number
found by Group-II measures.

Figure 19.2 Number of Defects Remaining Per Measure Per Group

An analysis of defect characteristics is provided in Section 19.2.1.1. The actual number of
defects can be estimated using a capture-recapture model. The derivation is shown in 19.2.1.2.

336

19.2.1.1 Discussion about Measures in the Second Group

The obvious advantage of the measures in the second group is that the exact location of the
defects can be determined. Table 19.6 provides the number of the defects found by measures in
Group-II.

Table 19.6 Defects Found by the Measures in the Second Group

Measures
Total

Number of
Defects

Number of Level-1
and Level-2 Defects

Only

Number of Defects Remaining in the
Code (Level-1 and Level-2 only)

CEG 7 7 1

COM 113 29 1

DD 11 6 4

RT 7 5 5

CF 6 6 6

It should be noted that only the defects remaining in the code need to be considered to predict the
reliability of the software system. A detailed description of all Level-1 and Level-2 defects
remaining in the code is provided in Table 19.7.

Table 19.7 Detailed Description of Defects Found by the Second Group of Measures
 (Still Remaining in the Code)

No. Defect Description CEG COM DD RT CF

1
The check algorithm of μp1 cannot
detect coupling failures between address
lines.

 X X

2
The function “Copy the contents of the
table to the Dual Port RAM” is not
implemented in μp1 source code.

 X

3
The function “Give up the semaphore” is
not implemented in μp1 source code.

 X

337

Table 19.7 Detailed Description of Defects Found by the Second Group of Measures
(Still Remaining in the Code) (continued)

No. Defect Description CEG COM DD RT CF

4
The check algorithm of μp2 cannot
detect coupling failures between address
lines.

 X

5
The address lines test does not cover all
16 address lines of μp2.

 X

6
The application program of μp2 has a
logic problem.

 X

7
The check algorithm of CP cannot detect
coupling failures between address lines.

 X X

8
The logic to enter the CP diagnostics test
is problematic.

X X

9
Cannot detect incorrect value of the
variable SA_TRIP_1_DEENRGZE.

 X

10
Cannot detect incorrect value of the
variable fAnalog_Input_6.

 X

11
Cannot detect incorrect value of the
variable Trip_condition.

 X

12
Cannot detect incorrect value of the
variable AIN[4].

 X

13
Cannot detect incorrect value of the
variable chLEDs_Outputs.

 X

14
Cannot detect incorrect value of the
variable have_dpm.

 X

Table 19.8 presents the exact location of each defect in the delivered source code. From Table
19.6 and 19.7, it is obvious that each measure discovered almost totally different defects. Only
three out of the fourteen defects were simultaneously found by more than one measure. This
implies the objectives of the measures are different and can be used to find different types of
defects in the SRS, SDD, and code. It is also possible that a defect could not be found using only

338

these measures but the likelihood of this is very low, although it may be impossible to discover
all existing defects through these measures.

19.2.1.2 Obtaining the Actual Number of Defects Remaining in the APP

Defects in the APP source code were identified through the Group-II measures. Unknown
remaining defects in the APP system may still contribute to failure—ignoring them will result in
an overestimation of reliability. The use of Capture/Recapture (C/R) models has been proposed
to estimate the number of defects remaining in a software engineering artifact after inspection
[Briand, 1997]. To determine the number of remaining defects, it is necessary to discuss C/R
models, their use in software engineering, and their application specifically to the APP system.

The five measures in Group-II were assigned to five inspectors whose abilities to detect defects
were different. In addition, different defects have different detection probabilities. The C/R
model introduced in NUREG/CR-6848 was applied to estimate the number of defects remaining
in the APP.

Table 19.8 Detailed Description of the Defects

No. Defect Description
Micro-
process

or
Modes Module

1
The check algorithm of μp1 cannot
detect coupling failures between
address lines.

μp1
Power-on
Normal

VAddr_Lines_Test()

2
The function “Copy the contents of
the table to the Dual Port RAM” is not
implemented in μp1 source code.

μp1
Calibration
Tuning

VCalibrate_Tune()

3
The function “Give up the
semaphore” is not implemented in
μp1 source code.

μp1
Calibration
Tuning

VCalibrate_Tune()

4
The check algorithm of μp2 cannot
detect coupling failures between
address lines.

μp2
Power-on
Normal

address_line_test()

339

 Table 19.8 Detailed Description of the Defects (continued)

No. Defect Description
Micro-
process

or
Modes Module

5
The address lines test does not cover
all 16 address lines of μp2.

μp2
Power-on,
Normal

address_line_test()

6
The application program of μp2 has a
logic problem.

μp2 Normal update_application()

7
The check algorithm of CP cannot
detect coupling failures between
address lines.

CP
Power-on
Calibration
Tuning

Addr_Line_Test()

8
The loop condition of CP’s PROM
test is problematic.

CP
Power-on
Calibration
Tuning

Chksum_Proc()

9
Cannot detect incorrect value of the
variable SA_TRIP_1_DEENRGZE.

μp1 Normal
serial interrupt
function

10
Cannot detect incorrect value of the
variable fAnalog_Input_6.

μp1 Normal application program

11
Cannot detect incorrect value of the
variable Trip_condition.

μp2 Normal application_function

12
Cannot detect incorrect value of the
variable AIN[4].

μp2 Normal application_function

13
Cannot detect incorrect value of the
variable chLEDs_Outputs.

μp1 Normal
Generate front panel
LEDs output signals
function

14
Cannot detect incorrect value of the
variable have_dpm.

μp2 Normal get_Semaphone

Defects found by the Coverage Factor measure have different characteristics than defects found
by the four other Group-II measures: their detectability does not depend on the inspector’s
ability. Thus, the C/R model was only applied to the four other measures (CEG, COM, DD, and
RT) to obtain the actual number of defects remaining in the APP system.

340

In the NUREG/CR-6848 study, the C/R model was applied only to the results of the Defect
Density measurement that was performed by multiple inspectors. The defects were at the same
level of detail. However, in this study, UMD attempted to apply the C/R model in the case of
multiple-measurement approaches and the defects discovered may not be at the same level of
detail. For example, Defect Density should discover defects more detailed than those discovered
by Requirement Traceability. Yet it is necessary to maintain all defects at the same level of
detail. That is, each defect represents only one functional problem, which is a numbered item
specified in the SRS. Applying this new criterion to the defects found by the Group-II measures,
Table 19.7 is modified as shown in Table 19.9. For example, the second and third defect were
discovered using the Requirement Traceability measure. These two defects were affecting two
sub-functions in the Calibration function of μp1. The Calibration function is a numbered
specification in μp1 SRS. Thus, these two defects should be grouped together.

Table 19.9 Modified Defects Description

No. Defect Description CEG COM DD RT

1
The check algorithm of μp1 cannot
detect coupling failures between address
lines.

 X X

2
The Calibration function of μp1 is not
correctly implemented in the source
code.

 X

3
The check algorithm of μp2 cannot
detect coupling failures between address
lines.

 X

4
The address lines test does not cover all
16 address lines of μp2.

 X

5
The application program of μp2 has a
logic problem.

 X

6
The check algorithm of CP cannot detect
coupling failures between address lines.

 X X

7
The logic to enter the CP diagnostics test
is problematic.

X X

341

The defect population size is given as:
 1, 2, 3 (19.1)

Where

 the i-th defect population size estimator

 the number of distinct defects found by t inspectors

 the number of defects found by exactly one inspector

The term in Equation 19.1 is given as:
 1 ∑ (19.2)

 1 2 1 1∑ (19.3)

1 2 1 1 6 11 2∑ (19.4)

and is given as:
 max , ∑ 12 ∑ ∑ 1,0 1, 2, 3 (19.5)

where

, 1, 2, 3 (19.6)

and

 the number of inspectors (4)

 the number of defects found by the j-th inspector

 the number of defects found by exactly k inspectors, 1, … ,

342

 Table 19.10 shows the inspection information for the APP system:

Table 19.10 Inspection Results for the APP System

Measures CEG COM DD RT

Inspector 1 3 4 5

 1 1 4 4

For the APP system:

 The total number of distinct defects is D = 7
 The number of defects found by one inspector is f1 = 4
 The number of defects found by two inspectors is f2 = 3
 The number of defects found by three inspectors is f3 = 0
 The number of defects found by four inspectors is f4 = 0

The results of Equations 19.2 to 19.5 are shown in Table 19.11.

Table 19.11 Capture/Recapture Model Results for the APP System

 1 2 3

 0.6 0.8 0.8

 0.061 0 0

 11.67 8.75 8.75

Sample coverage (SC), defined as the fraction of the detected defects, is calculated as follows:
 711.67 0.60 60.0%

 78.75 0.80 80.0%

 78.75 0.80 80.0%

343

The point estimate of the defect-detection probability is given in Table 19.12.

Table 19.12 Defects Discovery Probability

Defect No. Detection Probability (Pi)

1 0.5

2 0.25

3 0.25

4 0.25

5 0.25

6 0.5

7 0.5

From Table 19.12, the coefficient of variation (CV)—defined as the standard deviation of p over
the arithmetic mean of p—is 0.374. A Jackknife model [Otis, 1978] is appropriate when CV <
0.4 and the sample coverage is greater than 0.50. This is the case for the APP system. By using a
second-order Jackknife model, the result is:
 2 3 21 4 3 54 4 412 3 11

Therefore, the best estimation of the number of remaining defects, , for APP is 11. As
addressed earlier in this section, the C/R model was applied to the seven defects identified
through CEG, COM, DD, and RT-related inspections. These seven defects are listed in Table
19.9. Since the application of CF to APP was incomplete (due to time and resource constraints),
the defects identified through CF were not included in the C/R analysis. Thus, the remaining
APP defects estimated through C/R should not be compared with the 14 defects listed in Table
19.8, but with the seven defects listed in Table 19.9.

19.2.2 Reliability Estimation Comparison

As stated in Chapter 4, there are four operational modes in the APP system: power-on, normal,
calibration, and tuning. The failure mechanisms in the power-on, calibration, and tuning modes
are simple: any failure in these modes is considered a failure of the APP system. Unfortunately,
the detailed, actual failure information in each mode is not available to UMD. Also, it is

344

unimportant to individually consider these modes because during its actual usage, APP will be
bypassed during these modes. The most important mode is the normal operation mode. All data
in the normal operational mode is available to UMD. The true failure probability was estimated
successfully in Chapter 18 and will be used in the following to validate the RePSs and rankings.

The probability of failure and reliability estimation results from the twelve measures is shown in
Table 19.13.

Table 19.13 Reliability Estimation Results

Measure
Probability of Failure

(per demand)
Reliability

(per demand)

BLOC 0.0000843 0.9999157

CEG 6.732 × 10-13 0.999999999999327

CMM 0.0001144 0.9998856

COM 6.683 × 10-13 0.999999999999332

CF 1.018 × 10-11 0.9999999999898

CC 0.0001746 0.9998254

DD 2.312 × 10-10 0.9999999997688

FDN 6.450 × 10-11 0.9999999999355

FP 0.0000602 0.9999398

RSCR 0.0000722 0.9999278

RT 3.280 × 10-10 0.9999999996720

TC 5.805 × 10-10 0.9999999994195

It should be noted that the probabilities of failure obtained from the Group-I are much larger than
those obtained from Group-II. This is because:

1. The Extended Finite State Machine (EFSM) can model the actual structure of the APP

system. For instance, during normal operation, μp1 and μp2 work redundantly for safety
concerns. If either of the microprocessors calculates a trip condition, the APP system will
send out a trip signal. However, the actual structure of the system may be very difficult to

345

take into account in Musa’s exponential model because it is difficult to separate the
number of defects per processor and know what type of failure will occur.

2. ESFM models simulate the actual fault exposure information of the system while the
fault exposure ratio is estimated as 4.2 × 10-7 in Musa’s model. This number is outdated
and incorrect by orders of magnitude for safety critical systems.

3. The average number of defects found by Group-I is 17 and the average number of defects
found by Group-II is only three.

A more-detailed discussion of the reliability estimation results is provided in the following
subsections.

19.2.2.1 Reliability Estimation from Group-I Measures

The results from Group-I are shown in Table 19.14. The reliability-estimation results are still
very low compared with the measures in Group-II. This is mainly because the high-level
structure of the APP system and the defect type cannot be taken into account in the reliability-
estimation process for the following measurements: BLOC, CMM, CC, and RSCR.

Table 19.14 Failure Probability Results for Measures in the First Group

Measure
Number of

Defects
Probability of Failure

(per demand)
Reliability

(per demand)

BLOC 14 0.0000843 0.9999157

CMM 19 0.0001144 0.9998856

CC 29 0.0001746 0.9998254

FP 10 0.0000602 0.9999398

RSCR 12 0.0000722 0.9999278

19.2.2.2 Reliability Estimation from Group II Measures

Because the exact location and nature of the defects found by the second group of measures
could be determined, the EFSM model, the ROBDD program, or the Markov Chain Model for
the four distinct operational modes could be built based on this information.

The mechanisms of failure should also be incorporated into the models. As stated in Chapter 4,
there are four operational modes in the APP system: power-on, normal, calibration, and tuning.

346

During the normal operational mode, defects can trigger two basic types of failures. In the case
of the APP system, the failures are defined as follows:

Type I: The APP system should send out a TRIP signal but it did not;
Type II: The APP system should not send out a TRIP signal but did.

The failure mechanism in power-on, calibration, and tuning modes are simple: any failure in
these modes is considered a failure of the APP system.

From the safety point-of-view, only a Type-I failure is critical and this concern was applied to
the design of the system by using redundant microprocessors. Type-II failures should also be
considered because there could be significant expenditures as a consequence of an unnecessary
TRIP. It should be noted that only these two types of failure are considered. The third failure
type, which is identified in Chapter 10 (Coverage Factor), is neglected in the discussion because
it relates only to auxiliary failures.

The failure probability estimates obtained using measures in Group-II are shown in Table 19.15
and illustrated in Figure 19.3. The Coverage Factor was excluded from this table and figure
because it only focused on the normal operational mode.

Table 19.15 Failure Probability Results in Each Mode for Measures in the Second Group

Measures

Probability of Failure (per demand)

Power-on Normal Calibration Tuning

Type I Type II Type I Type II Type I Type II Type I Type II

CEG 0 0 0 0 2.81e-11 2.81e-11 2.81e-11 2.81e-11

COM 0 0 0 0 2.78e-11 2.78e-11 2.78e-11 2.78e-11

DD 8.45e-11 8.45e-11 1.17e-10 1.17e-10 0 0 0 0

RT 1.03e-10 1.03e-10 1.64e-10 1.64e-10 3.36e-13 3.36e-13 0 0

347

Figure 19.3 Failure Probability Estimates for Measures in the Second Group

The failure probability of the APP system can be calculated using the failure probability results
shown in Table 19.16 and the operational-mode profile presented in chapter 4. The results are
shown below:

Table 19.16 Failure Probability Results for Measures in the Second Group

Measure
Number of

Remaining Defects
Probability of Failure

(per demand)
Reliability

(per demand)

CEG 1 6.732 × 10-13 1

CF 6 1.018 × 10-11 0.9999999999898

COM 1 6.683 × 10-13 1

DD 4 2.312 × 10-10 0.99999999977

RT 5 3.280 × 10-10 0.99999999967

As shown in Figure 19.3, the probabilities of failure obtained from CEG and COM are very
close. This is because their failures are caused by the same defects in both calibration and tuning

Probability of Failure vs Different Measures

0

5E-11

1E-10

1.5E-10

2E-10

2.5E-10

3E-10

3.5E-10

CEG COM DD RT

Measures

P
f Power On

Normal

Calibration

Tuning

348

modes. No defects were found in the power-on and normal operation modes. It should be noted
that only the defects remaining in the code were considered and used to obtain the probability of
failure of the APP system.

Since both measures are specifically designed to discover requirement faults, their focus is not
defect identification in code, and their performance for reliability evaluation is low. CEG is used
to check logical relationships between inputs and outputs while completeness, COM, is used to
check the completeness of the specifications. Table 19.17 shows the original defects found in the
requirements specifications.

Table 19.17 Original Defects Found in the APP Requirement Specification

Modes
CEG46 COM

Number of Defects Number of Defects

Power-On 3 14

Normal 3 9

Calibration 1 6

Tuning 1 6

It is noticed that both CEG and COM are powerful tools to find imperfections in the SRS.
However, most of the defects found in the SRS have been fixed later, such as in the design-
development phase and the coding phase. Therefore, the reliability estimation based on the
original results is inappropriate. To get better reliability estimation, checking if the defects are
still in the code is necessary. Further research can focus on applying CEG and COM measures
directly to the SDD and the source code.

Defect density is the most powerful measure to discover the defects remaining in the code by
checking all the SRS, SDD documents, and source code. As already shown in Table 19.6, four
out of 11 defects were found by the defect-density measure. Application of this measure,
however, requires more software engineering experience than that which is required to
implement measures like CEG and COMs. To obtain a better result, it is recommended that the
checking speed of the documents should not exceed two pages per hour.

For the requirements traceability measure, the defects were found in power-on, normal operation,
and calibration mode. No defect was found in the tuning mode.

46 CEG defects documented in Chapter 7 were not partitioned per mode. Thus the total number of defects in Chapter 7 and in
Table 19.17 may not necessarily be equal. One of the defects was common to calibration and tuning.

349

Since all of the above four measures need to examine the SRS, SDD, and source code carefully,
the measurements are time-consuming. Constructing a corresponding EFSM model is also time-
consuming.

Coverage factor is a special measure in this group. A Markov Chain model is used to estimate
the reliability. In this study, because of several technical limitations, the complete fault injection
experiments could not be conducted for the three microprocessors in the APP system. Only two
safety function microprocessors were studied and the communication microprocessor was not
subjected to fault injection. Thus the probability of failure in the power-on, calibration, and
tuning mode could be obtained. Only the reliability in the normal operation mode was calculated.
This is why the probability of failure from the coverage factor measure is so low. Also the faults
were only injected in the RAM, PROM, and registers. It is obvious that the reliability has been
overestimated.

19.2.2.3 Reliability Estimation from Group-III Measures

In the case of Test Coverage, the fault-exposure ratio, K, can be updated using the extended
finite state machine models and defects found during testing. However, if no defect is found
during the testing, then the method is not applicable. The problem can be circumvented by
considering the last version with faults.

From the results, it is found that for different subsystem structures, there are distinct fault
exposure ratios. The seven defects used for estimating the new K () were only in power-on
and normal operation mode. The failure probability in power-on made a very small contribution
to the total failure probability of the APP system, so only the fault exposure ratios in normal
operation mode are considered. Therefore, from the test coverage measure, the was obtained
from the extended finite state machine results and shown in Table 19.18.

Table 19.18 Fault Exposure Ratio Results

 Fault Exposure Ratio

Musa’s K 4.2 × 10-7

New ratio K*() 4.5 × 10-12

19.2.2.4 Applying the to the Twelve Measures

As shown in Table 19.18, the actual fault exposure ratio for the APP is much less than 4.2 × 10-7.
It is proved that Musa’s K is no longer suitable for safety critical systems. By applying the new
fault-exposure ratio, the reliability for the APP system from the Test Coverage and Fault-days
Number measure are:

350

 · · . . . 0.9999999994195⁄ · · . . . 0.9999999999355⁄

By applying this new fault-exposure ratio to Musa’s model, the results from the Group-I
measures are very close to those calculated using the measures in Group-II. Table 19.19 shows
the results if this (fault-exposure ratio) obtained from the Test Coverage measure is applied
to the measures in Group-I.

Table 19.19 Updated Results if is Applied to Group-II Measures

Measure
Number of

Defects

Probability of Failure
with Old K

(per demand)

Probability of Failure
with

(per demand)

BLOC 14 0.0000843 9.03 × 10-10

CMM 19 0.0001144 1.23 × 10-09

CC 29 0.0001746 1.87 × 10-09

FP 10 0.0000602 6.45 × 10-10

RSCR 12 0.0000722 7.74 × 10-10

In conclusion, there are three approaches to update the results for the Group-I measures:

1. Considering the high-level system structure;
2. Using the new fault-exposure ratio () that can be obtained using the Test Coverage

ESFM model.
3. Obtaining the exact for each subsystem in each mode based on the number of defects

found using fault-location models [Nejad, 2002].

It is obvious that the third approach is the strongest, although it is time-consuming and not
always applicable. If the structure of the subsystem is unknown or the system cannot be divided
into separate modes, then the third approach cannot be applied. Therefore, for most systems, it is
recommended to use the second approach.

351

19.2.2.5 Validate the Ranking by Reliability Comparison

Having obtained reliability predictions based on each of the twelve measures, the estimations
obtained were compared and contrasted to each other and to the rankings established in
NUREG/GR-0019.

First, the inaccuracy ratio () is defined to quantify the quality of the software prediction:
 log

where
 is the inaccuracy ratio for a particular RePS;
 Pf is the probability of failure-per-demand from reliability testing or operational

 data;
 is the probability of failure-per-demand predicted by the particular RePS.

This definition implies that the lower the value of , the better the prediction. Table 19.20
provides the inaccuracy ratio for each of the 12 measures. The rankings based on the calculated
inaccuracy ratio and the experts’ rankings obtained in NUREG/GR-0019 are also provided in
Table 19.20. The rates of these 12 measures during the testing phase are shown as the last
column of Table 19.20.

Table 19.20 Inaccuracy Ratio Results and Rankings for Each RePS

Measure
Probability of

Failure /demand
ρ RePS

Rankings
based on
ρ RePS

Experts’
Rankings

Rate

BLOC 0.0000843 5.3764 10 11 0.4

CEG 6.732 × 10-13 2.7243 7 10 0.44

CMM 0.0001144 5.5091 11 7 0.6

COM 6.683 × 10-13 2.7211 6 12 0.36

CF 1.018 × 10-11 1.5416 5 2 0.81

CC 0.0001746 5.6927 12 3 0.72

DD 2.312 × 10-10 0.1853 2 1 0.83

352

Table 19.20 Inaccuracy Ratio Results and Rankings for each RePS (continued)

Measure
Probability of

Failure /demand
ρ RePS

Rankings
based on
ρ RePS

Experts’
Rankings

Rate

FDN 6.450 × 10-11 0.7397 4 4 0.72

FP 0.0000602 5.2303 8 9 0.5

RSCR 0.0000722 5.3095 9 5 0.69

RT 3.280 × 10-10 0.0334 1 8 0.55

TC 5.805 × 10-10 0.2146 3 6 0.68

Several conclusions can be drawn from these results as follows:

1. From the table, it is clear that RePSs that use structural information and actual defects

(Group-II RePSs) are clearly superior to RePSs that do not use structural information or
actual defects (Group-I RePSs). The rankings based on the inaccuracy ratio appear not to
be consistent with the expert-opinion rankings established in NUREG/GR-0019. UMD
concludes that this is due to the fact Group-I RePSs use an exponential reliability-
prediction model with a fault-exposure ratio parameter set to 4.2 × 10-7. This parameter
always dominates the results despite possible variations in the number of defects. This is
evidenced by the small variation of the inaccuracy ratios observed for Group-I RePSs.
Further development effort could focus on creating better prediction models from these
measures or as suggested in Section 19.2.2.4 on experimentally obtaining a more accurate
fault exposure ratio for the application instead of using a universal parameter such as the
value 4.2 × 10-7.

2. The rest of the section validates the rankings within Group-II RePSs.

In Group-II CF could not be used in the validation of the rankings because the fault-injection
experiments were not complete (see Table 19.21). Thus, UMD only compared the other four
measures in this group to the experts’ ranking. DD remains a highly rated measure while CEG
and COM are still rated low. RT is ranked higher than it should (i.e., it is found here that RT is
better than DD). UMD carefully studied the reasons for this inversion as shown below:

1) A formal approach for measuring RT can be easily established. Indeed, in the case of RT
one needs only to verify whether an item is present in the requirements documents and
the code. Figure 19.4 illustrates how a simple measurement matrix can be built to
systematically trace the requirements.

353

Table 19.21 Validation Results for Group II RePSs

Measure Rankings based on ρ RePS Experts’ Rankings

CEG 4 3

COM 3 4

CF N/A N/A

DD 2 1

RT 1 2

2) In the case of DD, checklists are available to guide the inspection process. However, the
process remains difficult to execute for the following reasons:

 For a single segment of requirement or design specification, or source code module, a

large number of items need to be verified (see the Table 19.22 extract from Ebenau
[Ebenau, 1993]).

Table 19.22 DD Measure Checklist Information

Inspection of
Number of Items That Need to

be Checked in the Checklist

Software Requirements 12

Detailed Design 16

Code 46

 Some of the items are high level and cannot be verified systematically nor answered

objectively. For instance, the checklist does not provide a clear definition of “complete,”
“correct,” and “unambiguous” for an item such as: “Are the requirements complete,
correct, and unambiguous?”

 The larger the application, the more difficult a complete measurement of defect density
becomes.

354

S
l.

N
o

R
eq

u
ir

em
en

t
Id

en
ti

fi
er

R

eq
u

ir
em

en
t

D
es

cr
ip

ti
on

Is
 it

 t
ra

ce
ab

le

to
 t

h
e

co
d

e
an

d
 b

ac
k

 t
o

re
q

u
ir

em
en

t?

C
od

e
Id

en
ti

fi
er

C
od

e
D

et
ai

ls

R
em

ar
ks

S
p

ec
if

ic
 R

eq
u

ir
em

en
ts

 –
 I

n
it

ia
li

za
ti

on

3.
1.

1.
3

T
he

 e
xt

er
na

l i
nt

er
ru

pt
s

of

th
e

Z
18

0
m

ic
ro

-p
ro

ce
ss

or

ar
e

de
fe

at
ed

 s
o

th
at

 n
o

ex
te

rn
al

 c
om

m
un

ic
at

io
ns

w

il
l o

cc
ur

 to
 in

te
rr

up
t t

he

sa
fe

ty
 f

un
ct

io
n

pr
oc

es
so

r.

Y
es

16

.2
6

o
u
t
p
o
r
t
(
I
T
C
,

0
x
0
0
)
;

/
*
*

d
e
f
e
a
t

e
x
t
e
r
n
a
l

i
n
t
e
r
r
u
p
t
s

*
*
/

3.
1.

1.
3

T
he

 d
is

cr
et

e
ou

tp
ut

s
us

ed
 b

y
th

e
sa

fe
ty

 fu
nc

tio
n

pr
oc

es
so

r
ar

e
al

l i
ni

tia
liz

ed
 to

 “
of

f.”

Y
es

16

.2
9–

17
.4

o
u
t
p
o
r
t
(
0
x
c
1
0
0
,
0
x
0
0
)
;

/
*
*

T
r
i
p

r
e
l
a
y

1

t
o

t
r
i
p
p
e
d

s
t
a
t
e

*
*
/

o
u
t
p
o
r
t
(
0
x
c
3
0
0
,
0
x
0
0
)
;

/
*
*

T
r
i
p

r
e
l
a
y

2

t
o

t
r
i
p
p
e
d

s
t
a
t
e

*
*
/

o
u
t
p
o
r
t
(
0
x
c
5
0
0
,
0
x
0
0
)
;

/
*
*

S
t
a
t
u
s

r
e
l
a
y

1

t
o

t
r
i
p
p
e
d

s
t
a
t
e

*
*
/

o
u
t
p
o
r
t
(
0
x
c
6
0
0
,
0
x
0
0
)
;

/
*
*

O
u
t
p
u
t

r
e
l
a
y

1

t
o

t
r
i
p
p
e
d

s
t
a
t
e

*
*
/

o
u
t
p
o
r
t
(
0
x
c
8
0
0
,
0
x
0
0
)
;

/
*
*

O
u
t
p
u
t

r
e
l
a
y

2

t
o

t
r
i
p
p
e
d

s
t
a
t
e

*
*
/

o
u
t
p
o
r
t
(
0
x
c
a
0
0
,
0
x
0
0
)
;

/
*
*

O
u
t
p
u
t

r
e
l
a
y

3

t
o

t
r
i
p
p
e
d

s
t
a
t
e

*
*
/

o
u
t
p
o
r
t
(
0
x
d
1
0
0
,
0
x
0
0
)
;

/
*
*

T
r
i
p

r
e
l
a
y

3

t
o

t
r
i
p
p
e
d

s
t
a
t
e

*
*
/

o
u
t
p
o
r
t
(
0
x
d
3
0
0
,
0
x
0
0
)
;

/
*
*

T
r
i
p

r
e
l
a
y

4

t
o

t
r
i
p
p
e
d

s
t
a
t
e

*
*
/

o
u
t
p
o
r
t
(
0
x
d
5
0
0
,
0
x
0
0
)
;

/
*
*

S
t
a
t
u
s

r
e
l
a
y

2

t
o

t
r
i
p
p
e
d

s
t
a
t
e

*
*
/

o
u
t
p
o
r
t
(
0
x
d
6
0
0
,
0
x
0
0
)
;

/
*
*

O
u
t
p
u
t

r
e
l
a
y

4

t
o

t
r
i
p
p
e
d

s
t
a
t
e

*
*
/

o
u
t
p
o
r
t
(
0
x
d
8
0
0
,
0
x
0
0
)
;

/
*
*

O
u
t
p
u
t

r
e
l
a
y

5

t
o

t
r
i
p
p
e
d

s
t
a
t
e

*
*
/

o
u
t
p
o
r
t
(
0
x
d
a
0
0
,
0
x
0
0
)
;

/
*
*

O
u
t
p
u
t

r
e
l
a
y

6

t
o

t
r
i
p
p
e
d

s
t
a
t
e

*
*
/

Fi

gu
re

 1
9.

4
Re

qu
ir

em
en

ts
 T

ra
ce

ab
ili

ty
 M

ea
su

re
m

en
t M

at
ri

x

355

3. As for Group-III RePSs, one cannot conclude FDN was ranked higher than TC in the case of
the APP system but the actual experts’ ratings are close.

4. As shown in column 4 and 5 of Table 19.20, the APP results only partially confirm the

experts’ rankings obtained in NUREG/GR-0019. This may be due to the following reasons:

1) It has been 10 years since the experts ranked the measures. During the past 10 years, new
tools, techniques, and methodologies have been created or proposed. Additional experiments
have been run for safety-critical and non-safety-critical systems. Our research has capitalized
on these new developments while the experts did not have access to this extra knowledge.
The experts’ ranking on the measures may thus not be in par with the current state of the art
and probably need to be updated.

2) The experts ranked the measures and not the RePSs. It may be that our modeling effort has,

in some instances, involuntarily created stronger RePSs than in other instances. In some cases
(e.g., Test Coverage), we have increased the reliability-prediction potential by adopting
strong support measures. For example, the precise definition of Test Coverage is “the
percentage of the source code covered during testing.” In this study, we have taken advantage
not only of the Test Coverage value but of the number and location of defects found during
testing.

In conclusion, the experts’ rankings could and should be updated by using the Bayesian theory so as
to reflect the strength of the measure as well as the strength of the RePS. The original experts’
rankings can serve as prior information and the APP results are evidence that can be used to update
this prior information. Further validation of this point could be obtained by collecting more data
points as evidence to further update the experts’ rankings.

The remainder of this section compares the results obtained in this study with results obtained in the
preliminary validation report (NUREG/CR-6848). The application considered in NUREG/CR-6848
was PACS, the control software activating a secure gate.

In NUREG/CR-6848, five measures (DD, TC, RT, FP, and BLOC) were ranked with respect to
their prediction error () defined as:
 | |1

where

 the probability of success-per-demand obtained from reliability testing
 the probability of success-per-demand obtained from the RePS

To be consistent with the method followed in this report, the five measures are re-ranked using
the inaccuracy ratio proposed in this section. The vales of ρ and ranking results are presented in

356

Table 19.23. The validation rankings (and ρ) for these five measures on APP system are also
listed in Table 19.23.

As one can conclude from Table 19.23, RT ranks better than DD for APP while DD and RT
ranked identically in NUREG/CR-6848. The reasons have been examined earlier in this section.

 Table 19.23 Comparison of the Rankings with Results in NUREG/CR-6848

Measures
Rankings in this

study (APP)
ρ (APP)

Rankings in
NUREG/CR-6848

(PACS 1)
ρ (PACS 1)

DD 2 0.1853 1 0.0345855
TC 3 0.2146 3 0.0395085
RT 1 0.0334 1 0.0345855
FP 4 5.2303 4 1.631691

BLOC 5 5.3764 5 3.4771213

19.3 Discussion about the Measurement Process

An estimate of the time for training, performing the different measurements, and calculating the
values of predictions given by each corresponding RePSs is given in Table 19.24. Training here is
defined as becoming familiar with the required tools prior to performing measurements. Some
measurements are very time consuming. Table 19.24 shows the total time spent for the 12 RePSs.

Table 19.24 Total Time Spent for the Twelve RePSs

Measure Total Time Spent Duration

Bugs Per Line of Code 160 hrs (20 days) Short

Cause-effect Graphing 350 hrs (44 days) Medium

Capability Maturity Model 120 hrs (15 days) Short

Completeness 512 hrs (64 days) Medium

Coverage Factor 752 hrs (94 days) Long

Cyclomatic Complexity 360 hrs (45 days) Medium

Defect Density 704 hrs (88 days) Long

Fault Days Number 240 hrs (30 days) Short

Function Point 128 hrs (16 days) Short

357

Table 19.24 Total Time Spent for the 12 RePSs (continued)

Measure Total Time Spent Duration

RSCR 360 hrs (45 days) Medium

Requirements Traceability 640 hrs (80 days) Long

Test Coverage 904 hrs (113 days) Long

The duration is defined as follows:

1. Short: The set of measurements and calculations can be finished within 300 hours
2. Medium: The sets of measurements and calculations require at least 300 hours and no more

than 600 hours
3. Long: The sets of measurements and calculations require more than 600 hours

Measurements and calculations related to BLOC, CMM, FDN, and FP RePSs can be completed
quickly because there is no need to inspect the SRS, SDD, and code. Measurements and calculations
related to CEG, Completeness, CC, and RSCR require careful inspections of the SRS or the code and
therefore require more time. Measurements related to DD and RT require inspections of all the
related documents. As a result, the RePSs measurement process for these two measures is slow. The
time required for the measurement and calculations related to coverage factor and Test Coverage
were excessive. This is because a great deal of time was spent on modifying the original APP source
code so that it could be compiled successfully by current compilers. In addition, for the measurement
of Test Coverage, a great deal of time was spent modifying the original test cases for the current
simulation environments. If there were no such compatibility problems, the measurements would
have been completed much faster.

For CC and RSCR, additional effort (30 days for each) was spent developing new correlation models
linking CC and RSCR measurements to a number of software defects.

The effort includes the time spent for tool acquisition, comparison between possible tools,
training to become familiar with the identified tools, and an initial upfront cost that would remain
identical whether small or large applications are considered and would disappear for routine
applications of the methodology. The effort also specifically includes measurement costs that
may already be part of a routine development process. Measurements and RePSs construction
were performed by graduate students that were implementing and refining the methodology as
they applied it. It is expected that a routine application of the methodology would be less time-
consuming. Finally, the APP was developed more than 10 years ago and the development
process did not benefit from current tools and methods (e.g., the effort devoted to RT
measurement could have been improved with current traceability tools).

358

Some measurements also are quite costly. Table 19.25 shows the required tools and corresponding
cost for performing measurements for these twelve measures.

Table 19.25 Cost of the Supporting Tools

RePSs Required Tools Cost

Bugs Per Line of Code RSM Software Free

Cause-effect Graphing UMD Software 1 (CEGPT) $750

Capability Maturity Model CMM Formal Assessment $50,000

Completeness TestMaster $50,000

Coverage Factor
Keil μVision 2 $320

IAR EWZ80 $900

Cyclomatic Complexity RSM Software $Free

Defect Density TestMaster $50,000

Fault Days Number UMD Software 2 (FDNPT) $750

Function Point FP Inspection $7,000

RSCR No $0

Requirements Traceability TestMaster $50,000

Test Coverage

TestMaster $50,000

Keil μVision 2 $320

IAR EWZ80 $900

For three of these 12 RePSs, corresponding measurements have to be performed by experts.
Table 19.26 presents related information.

359

 Table 19.26 Experts Required

Measure Expert Training

CMM
CMM Authorized Lead Appraiser and
Development Team

SEI Formal Training

DD Senior Software and System Engineer 10 Years Experience

FP
Function Point Analyzer and Development
Team

Function Point Training

As shown in Table 19.26, some tasks must be performed by senior-level software- or system-
engineers with 10 years training. This requirement may vary depending on the talent of the engineer,
but it is clear that experience in software engineering and nuclear systems will be necessary to find
defects in nuclear power plant safety system software source code.

19.4 Difficulties Encountered during the Measurement Process

This section describes the experience with collecting and analyzing data during the measurement
process and discusses the issues encountered. Possible solutions are briefly addressed.

Two types of data were collected and analyzed: 1) data used to predict the reliability and 2) data used
to estimate the reliability. The remainder of this section is organized as follows: Section 19.4.1
discusses the study and problems encountered with the data collection and analysis for the reliability
prediction; Section 19.4.2 discusses the study and problems encountered with the data collection and
analysis for the reliability estimation. Possible solutions to the encountered problems are briefly
addressed in Section 19.4.3.

19.4.1 Data Collection and Analysis for Reliability Prediction

For the 12 measures, detailed measurement rules should be provided to measure each primitive.
Unfortunately, these rules are imprecisely defined. As an example, in the case of the BLOC measure,
problems were encountered with the definition of a “module.” A “module” is defined as “an
independent piece of code with a well-defined interface to the rest of the product” in [Schach, 1993].
IEEE [IEEE, 1990] defines “module” in the following two ways: “A program unit that is discrete and
identifiable with respect to compiling, combining with other units, and loading,” or “A logically
separable part of a program.” Gaffney, author of BLOC [Gaffney, 1984], however, did not provide a
clear definition of “module” but only mentioned it as a “functional group.” The existence of multiple
definitions of the module concept and the lack of consensus make its measurement problematic. The
same endemic problem reoccurs for most of the measures considered.

360

For measures such as CEG, COM, DD, and RT, which need the direct inspection of the software
requirement specifications (SRS), we encountered difficulties collecting and analyzing the data
mainly because of issues with the clarity of the documents. Because the APP was developed more
than ten years prior to the research, some of the documents did not follow or only partially followed
the IEEE standards. More specifically, the first step of the inspection is typically to identify the
“functional requirements” defined in the SRS. The IEEE standards mentioned that the keyword
“shall” should be used to indicate a functional requirement. However, many segments of
specifications that used this keyword were not functional requirements. Sometimes “shall” indicated
“descriptive requirements.” Also, the SRSs under study failed to be unambiguous. For example, it
was difficult to count the number of unique cause/effect pairs for the CEG measure since the authors
of the SRS repeated themselves frequently. It should be noted that if the CEG measurement is done
manually, the results are highly dependent on the ability of the analyst. This is mainly because:

1) It is not very easy to differentiate the prime effects from the intermediate effects if the analyzer
does not have a comprehensive knowledge of the system.

2) It is not easy to identify the true logical relationship between the causes and the constraints since
the relationships are usually implied and not specified explicitly using keywords like “and,” “or,”
“either,” etc.

It also should be mentioned that for the above four measures, the measurement process was time
consuming. A considerable amount of time was spent to manually parse the natural language SRS.
There were 289 pages of SRS to be inspected and the total measurement time for the COM measure
was 512 hours (64 work days) and 350 hours for the CEG measure. In the case of DD, for a single
segment of requirement or design specification, or source code module, a large number of items need
to be verified (12 items for SRS, 16 for SDD, and 46 for code). Some of the items are high level and
cannot be verified systematically nor answered objectively. For instance, checklists available for DD
do not provide a clear definition of “complete,” “correct,” and “unambiguous” for an item such as:
“Are the requirements complete, correct, and unambiguous?”

In the case of the CMM measure, a standard CMM-level assessment had not been performed for the
company that developed the software module. Furthermore, the software module was ten years old
and most of the development team members were no longer working with the company. The CMM
assessment could only be conducted based on the available team member’s answers to the Maturity
Questionnaire. As a consequence, any results of an assessment are post-mortem and, as such, do not
qualify for a formal assessment.

For measures that require the collection of the software-development process data, we were unable to
collect the exact required data since those data were not documented or clearly documented in the
software development documents (SRS, SDD code, and V&V). For instance, in the FDN measure,
the exact effort for each development phase could not be obtained. This is because the development
effort for each team member was not recorded during the original development because the original
development had not envisioned the measurement of FDN. Even if these data had been recorded, the

361

exact effort for each phase would have been hard to measure since the development did not precisely
follow a waterfall development model. Developers did go back to work on the SRS after the code
was written.

Once the indirect indicators are measured, they are linked to reliability prediction models. Some of
the RePS models are based on the PIE [Voas, 1992] technique and require the actual operational
profile (OP). OP is used to measure software reliability by testing the software in a manner that
represents actual use or it is used to quantify the propagation of defects (or unreliability) through
EFSM models. However, determining the OP of the system is a difficult part of software reliability
assessment in general [Musa, 1992].

We assessed the infrastructure inputs related OP by inspecting the software requirement specification
and relied on a related hardware component failure database to quantify portions of the OP.
Unfortunately, some of the hardware-failure-rate information was not available in the database, i.e.,
the address line failure rate. In addition, we discovered that the information contained in the database
was typically too generic. For instance, we were looking for the failure rate for an 8 kB RAM.
However, only the general failure rate of the RAM was given without mention of the size. Also,
obtaining such information from the manufacturer revealed itself as being impossible because of the
obvious business implications.

The plant-inputs-related OP was assessed by examining the operational data. The problem
encountered here was the need to interpret the operational data available. We were not able to
analyze the data correctly without the help of the plant experts. According to their opinions, the
following three categories of data should not be considered part of the operational data:

1) Outage data: Data recorded during plant outages cannot be considered an integral part of the

normal operational data set. Indeed, data recorded during these time periods is out-of-range and
basically meaningless;

2) Missing data: Some data is missing from the data set. This data is typically labeled: “bad input,”
“shutdown,” and “under range;”

3) Aberrant data: There were several strange records either with a negative reactor flow value or an
extremely large flow value (of the order of 1026, which far exceeds normal values that are
typically of the order of 105).

Once the valid operational data was identified, a statistical extrapolation method was used to estimate
the trip condition probability due to the rarity of the events. However, the accuracy of the
extrapolation should be further validated and may jeopardize the validity of the profile.

362

19.4.2 Data Collection and Analysis for the Reliability Estimation

The quality of the safety-critical system under study is measured in terms of its reliability estimate.
Reliability was estimated through operational data. This type of operational data was obtained mainly
based on the problem records provided by the nuclear power plant that utilized the system under
study for ten years.

The main problem encountered was the analysis and interpretation of the problem records. More
specifically, since the records documented all the problems experienced with the reactor protection
system, it included the actual failures/false alarms of the entire protection system and the actual
failures/false alarms of the digital system itself. The first step of the analysis required distinguishing
actual failures of the digital system from the others. For example, one problem record described the
digital system as working improperly due to a connection problem when attempting to reinsert the
digital system into the cabinet. This problem, apparently, was not an actual digital system failure.

The second step of the analysis required distinguishing software module failures from the hardware
failures of the digital system. For example, one of the problem records documented that a software
module was sent back to its manufacturer since a trip signal was sent out when it should not have
been. However, none of the testing or other diagnostic efforts performed by the manufacturer
identified a failed component or any other problem.

Another problem encountered was the identification of the actual usage duration of each software
module. A typical safety-critical system possesses redundant units. Thus, multiple digital systems
and correspondingly, multiple software modules, were installed to monitor one nuclear reactor unit.
The actual usage duration for each such module differed. Some of the modules were in active use,
others were kept as cold spares while others might have been sent back to their manufacturer for
repair or diagnostics. The exact usage duration was difficult to determine since part of the
information necessary to determine usage was kept at the plant while other information was kept by
the manufacturer under different denominations. Sometimes the information provided by these two
organizations was not consistent.

19.4.3 Possible Solutions

As discussed in Section 19.4.1, the measurement process can be extremely time-consuming, error
prone, and highly dependent on the qualification of the inspectors involved. Two solutions to these
problems are possible: 1) Training and certification of inspectors; 2) Automation of the measurement
process.

For TC and RT, training would focus on how to trace requirements forward to the source code and
from the source code back to the requirements. For DD, trainees should understand how to inspect
different software system artifacts. For CEG and COM, trainees should know how to distinguish the
functional requirements from the descriptive requirements. For any of these measures, trainees

363

should already have some experience in developing software systems. They also should have had at
least an introductory course on software engineering.

For the measures under study, much of the measurement is manually accomplished, so training is
probably the largest factor for ensuring repeatability. The measures should be further formalized and
industry-wide standard definitions also might improve the current situation, especially if the
measurement rules that support the definition can be embedded in tools. As such, developing tools
for automatic extraction of semantic content from the different artifacts created during the
development process is one of the possible solutions.

Audit of the data collection process also should be made part of an organization’s processes. There
should be an independent evaluation of the quality of the data collected, to ascertain compliance to
standards, guidelines, specifications and procedures.

Since data collected by different companies may not always be consistent as discussed in Section
19.4.2, when multiple companies enter an interaction, sharing of information standards and tools or
data repositories between the companies should be defined.

19.5 Recommended Measures and RePSs

A panel of experts was invited to review and provide comments on the methodology and results
presented in this report. The following experts were contacted and invited to participate in the
review:

· David N. Card, Fellow, Software Productivity Consortium
· J. Dennis Lawrence, Partner, Computer Dependability Associates, LLC
· Michael R. Lyu, Professor, Chinese University of Hong Kong, and
· Allen P. Nikora, Principal Member, Jet Propulsion Laboratory

As an integral part of their review of this document and based on the results of this research, the
experts recommended a subset of the measures and corresponding RePS for use. The experts elected
to recommend a measure if the prediction error, ρ, of its related RePS was less than 1 (see Table
19.27).

Table 19.27 Recommended Measures

Measure
Probability of

Failure/demand
ρ

Recommended?
(Yes/No)

BLOC 0.0000843 5.3765 No

CEG 6.732 × 10-13 2.7243 No

364

 Table 19.27 Recommended Measures (continued)

Measure
Probability of

Failure/demand
ρ

Recommended?
(Yes/No)

CMM 0.0001144 5.5091 No

COM 6.683 × 10-13 2.7211 No

CF 1.018 × 10-11 1.5416 No

CC 0.0001746 5.6927 No

DD 2.312 × 10-10 0.1853 Yes

FDN 6.450 × 10-11 0.7397 Yes

FP 0.0000602 5.2303 No

RSCR 0.0000722 5.3095 No

RT 3.280 × 10-10 0.0334 Yes

TC 5.805 × 10-10 0.2146 Yes

19.5.1 Recommended Use of this Methodology in Regulatory Reviews

This section discusses the recommended use of the RePS theory for nuclear regulatory review.

IEEE Std 7-4.3.2 clause 5.3.1.1 [IEEE, 2003] specifies:

 The use of software quality metrics shall be considered throughout the software life cycle to

assess whether software quality requirements are being met. When software quality metrics
are used, the following life cycle phase characteristics should be considered:

 — Correctness/Completeness (Requirements phase)
 — Compliance with requirements (Design phase)
 — Compliance with design (Coding phase)
 — Functional compliance with requirements (Test and Integration phase)

— On-site functional compliance with requirements (Installation and Checkout
phase)

 — Performance history (Operation and Maintenance phase)
Table 19.28 describes how each measure supports these six characteristics and therefore supports the
regulatory review process. Symbol “√” in the table indicates that a measure supports a specific

365

characteristic. “N/A” is used when a measure is not applicable to a specific lifecycle phase.
Symbol “◊” indicates that a measure does not directly support a specific characteristic but could
assist the review process, i.e., serve as a general indicator. Group-I measures fall into the “◊”
category. These measures cannot tell us the exact nature of problems encountered. For example,
a high value of CC cannot tell us whether the application contains a large number of functional
compliance issues. However, if one compares multiple modules whose values of CC have been
assessed, a high CC for one module while another is small may indicate that the latter module
would be less likely to contain compliance with design issues. In essence, these measures should
only be used as general “indicators” of fault proneness. But in order to use these indicators, one
will need to define acceptable and unacceptable ranges of values for these indicators. For this,
the reader is referred to some of the efforts made in the software engineering literature.

Table 19.28 Measures and Life-Cycle Phase Characteristics

Measures

Correctness
Completeness
(Requirement

phase)

Compliance
with

requirements
(Design
phase)

Compliance
with design

(Coding phase)

Functional
compliance

with
requirements

(Test and
Integration

phase)

On-site
functional

compliance
with

requirements
(Installation

and Checkout
phase)

Performance
history

(Operation
and

Maintenance
phase)

BLOC N/A N/A ◊ ◊ N/A ◊

CEG √ √ √ √ N/A √

CMM ◊ ◊ ◊ ◊ N/A ◊

COM √ √ √ √ N/A √

CF N/A N/A N/A √ N/A √

CC N/A ◊ ◊ ◊ N/A ◊

DD N/A N/A N/A √ N/A √

FDN √ √ √ √ N/A √

FP ◊ ◊ ◊ ◊ N/A ◊

RSCR ◊ ◊ ◊ ◊ N/A ◊

RT N/A √ √ √ N/A √

TC N/A N/A N/A √ N/A √

366

19.6 Follow-On Issues

This section discusses the follow-on issues raised as a consequence of performing this study. The
issues are first listed and briefly discussed. A prioritization of the issues based on recommendations
of three field experts is provided at the end of this section.

19.6.1 Defect Density Robustness

Defect density is the root measure of one of the highest ranked RePSs. As such, it is the primary
element of one of the most important RePSs. The key step in this measurement is to identify defects
in the products of each software-development phase. That is, to reveal defects in the SRS, SDD, and
the code.

The quality of results obtained using this RePS is a function of the inspector’s detection efficiency.
More specifically, the question is “What is the relationship between the ability of an inspector to
detect a defect and the fault-exposure probability of this defect?” Restated: “Is an inspector more
likely to detect a defect with high exposure-probability (probability of observing the failure is high)
than with low exposure-probability (probability of observing the failure is low) or reversely? Or is
his/her detection ability independent of the fault-exposure probability of that defect?” If the inspector
mostly detects defects that have a small probability of occurrence then reliability assessments may be
of low quality. On the other hand, if the inspector detects defects that have a high likelihood of
occurrence, then reliability estimation may be precise even if the defect-detection efficiency is low.
For a safety-critical system, one would in addition want the inspector to detect defects that are safety-
relevant.

19.6.2 Test Coverage Repair

The Test Coverage (TC) RePS relies on the assumption that the number of defects found during the
testing is not zero. This assumption may not hold for safety critical software, and this was the case
for the APP system. Multiple versions of the APP test plans and source code exist. The testing of the
final version did not reveal any failures. However, the version before the final version discovered
defects. The approach currently followed by UMD uses this earlier version of the source code and
test plan to conduct the TC measurement and RePS calculation. This approach introduced errors as it
is either:

a. Too conservative if the defects found are actually fixed; this is the most likely case; or
b. Incorrect if new defects are introduced during repair and not detected by the new test cases.

The approach can be improved by considering the defect introduction and removal mechanisms in
the testing stage. More specifically, one could calculate a repair rate for the APP using the available

367

life-cycle data. One could also calculate a probability for introducing new defects due to repair using
this same life-cycle information. This would reduce the errors discussed [Shi, 2010] [Smidts, 2011].

19.6.3 Issues with the Fault Exposure Ratio

The fault exposure ratio K is used in the RePSs for several measurements (CC, RSCR, CMM,
BLOC, FP, FDN, and TC). This parameter is currently extracted from the literature. Experience from
this study has shown that:

1) K is a critical parameter for reliability estimation;
2) The values of K proposed in the literature are outdated and incorrect by orders of magnitude, in

particular for safety critical applications.

Thus, a follow on issue is to examine how to obtain an accurate value of K for each system under
study.

19.6.4 CC, RSCR, and FDN Models

Chapters 7, 13, and 15 introduced new RePSs for CC, FDN, and RSCR, respectively. These RePSs
have not been validated on other applications. A follow on issue is to validate these models on
additional applications (especially FDN since this is a highly ranked measure).

19.6.5 Cases Where No Defects Are Found

As can be seen in Table 19.17, high-ranked measures do not always detect defects in all modes of
operation. The smaller the partitioning of the application under study, the more likely it becomes that
defects are not found. This may require conducting multiple measurements in parallel or else involve
a group of inspectors.

19.6.6 Issues with Repeatability and Scalability

As has been shown in Table 19.24, the measurement process can be extremely time-consuming, error
prone, and highly dependent on the qualification of the inspectors involved. A considerable amount
of time may be spent in manually “parsing” the natural language SRS, SDD, or even the code. The
number and type of defects found may depend heavily on the inspectors.

Two solutions to these problems are possible: 1) Training and certification of inspectors; 2)
Automation of the measurement process. A follow on issue is to examine each of these avenues and
how the solutions should be implemented.

368

19.6.7 Issues with Common-Cause Failures

At this point, none of the measures considered include a measurement of common cause failure
potential. This may lead to an underestimation of the probability of failure at the software system
level since it is currently assumed there is independence between the versions. This underestimation
may be several orders of magnitude low. For measures such as Cyclomatic Complexity, Function
Point, Bugs Per Line of Code, and Requirements Specification Change Request, a CCF correction
factor will need to be investigated. This factor would represent the fraction of CCF which will be
observed. For measures such as Defect Density and Requirements Traceability, the EFSM
propagation technique will need to be modified to account for similar defects in multiple versions.

19.6.8 Issues with Uncertainty and Sensitivity

Software reliability prediction is subject to uncertainty. The sources of uncertainties in software
reliability prediction can be divided into two general categories: measurement uncertainty and model
uncertainty. The measurement uncertainty can arise from inaccuracies in the methods and tools used
to assess a quantity, from the artifact being measured, from the operator, and from other sources.
Model uncertainty can stem from simplifications, assumptions and approximations, or from
uncertainties in the values assumed by the model parameters.

An initial qualitative sensitivity analysis that accounts for measurement and parameter uncertainty
was conducted. The results are shown in Table 19.29 (note: effect of parameter uncertainty is limited
to and ; CF sensitivity equations are grouped together with Group II measures as a first
approximation of CF behavior). For each measure, quantities that drive the uncertainty are identified.
A follow on issue is to perform a quantitative sensitivity analysis for inclusion of model uncertainty.

369

Ta
bl

e
19

.2
9

In
iti

al
 S

en
si

tiv
ity

 A
na

ly
si

s
Re

su
lts

G
ro

up

M
ea

su
re

Se

ns
it

iv
it

y
E

qu
at

io
ns

I
B

L
O

C

· ·
·

·
∑ 0.

002067
·⁄

∑
4.20

.00155
·⁄

∑
1 ·

W
he

re
:

exp
· ·

·

4.20
.00155

·⁄

I
C

M
M

· ·
·

·
1 1

1
1 ·

 W
he

re

 is
 g

iv
en

 b
y

T
ab

le
 8

.3
 a

nd
:

exp
· ·

·
·

370

Ta
bl

e
19

.2
9

In
iti

al
 S

en
si

tiv
ity

 A
na

ly
si

s
Re

su
lts

 (C
on

tin
ue

d)

G
ro

up

M
ea

su
re

Se

ns
it

iv
it

y
E

qu
at

io
ns

I
C

C

· ··
·

· ··
·

··
·1 11

·
1

·

W
he

re
:

1

·
·

exp
· ·

371

Ta
bl

e
19

.2
9

In
iti

al
 S

en
si

tiv
ity

 A
na

ly
si

s
Re

su
lts

 (C
on

tin
ue

d)

G

ro
up

M

ea
su

re

S
en

si
ti

vi
ty

 E
qu

at
io

n
s

I
F

P

· ··
·

·
,

1 ·

W
he

re
:

exp
· ·

,
·

 is
 th

e
sl

op
e

of

 a
nd

 is

 th
e

in
te

rc
ep

t o
f

. T
he

 v
al

ue
s

of

 a
nd

 c

an
 b

e
de

te
rm

in
ed

 u
si

ng
 th

e
fo

llo
w

in
g

ta
bl

e:

E
n

d
 U

se
r

M
IS

O

u
ts

ou
rc

e
C

om
m

er
ci

al

S
ys

te
m

s
M

il
it

ar
y

A
ve

ra
ge

0

0.
05

0

0
0

0
0

0.
01

2.

30
25

85
09

3
0.

25

0.
1

0.
02

0.

05

0.
02

0.

03

0.
07

4.

60
51

70
18

6
1.

05

0.
4

0.
18

0.

2
0.

1
0.

22

0.
39

6.

90
77

55
27

9
N

/A

0.
85

0.

59

0.
4

0.
36

0.

47

0.
56

9.

21
03

40
37

2
N

/A

1.
5

0.
83

0.

6
0.

49

0.
68

0.

84

11

.5
12

92
54

6
N

/A

2.
54

1.

3
0.

9
0.

8
0.

94

1.
33

S

lo
pe

 =

0.

21
71

47

0.
21

52
86

0.

11
58

94
6

0.
07

87
93

43

0.
07

03
56

0.

08
56

18

0.
11

26
68

In

te
rc

ep
t =

-0
.0

5
-0

.3
40

95

-0
.1

80
47

6
-0

.0
95

23
81

-0

.1
1

-0
.1

02
86

-0

.1
15

24

A
C

A
T

 is
 a

n
in

de
x

th
at

 s
pe

ci
fi

es
 th

e
ca

te
go

ry
 o

f
th

e
ap

pl
ic

at
io

n.
 T

he
 v

al
ue

s
of

 A
C

A
T

 a
re

 s
pe

ci
fi

ed
 in

 th
e

fi
rs

t r
ow

 o
f

th
e

ta
bl

e
(i

.e
.,

A
C

A
T

 ta
ke

s
th

e
va

lu
es

 E
nd

 U
se

r,
 M

IS
, e

tc
.)

.

372

Ta
bl

e
19

.2
9

In
iti

al
 S

en
si

tiv
ity

 A
na

ly
si

s
Re

su
lts

 (C
on

tin
ue

d)

G
ro

up

M
ea

su
re

S

en
si

ti
vi

ty
 E

qu
at

io
n

s

I
R

SC
R

·2ln2
0

1
1

2ln20
1

 W
he

re
:

1

exp0.
036·

·20
··

an
d

 is
 o

bt
ai

ne
d

fr
om

 th
e

cu
rv

e-
fi

tti
ng

 p
ro

ce
ss

. T
he

 v
al

ue
 o

f
 a

nd
 th

e
re

si
du

al
s

fr
om

 th
e

fi
tte

d
m

od
el

 a
re

 g
iv

en
 b

el
ow

:

100

1

0

1
0.

93
25

89
36

7
0.

00
45

44
19

3

5

1
0.

90
48

10
27

9
0.

00
90

61
08

3

20

0.

75
0.

75
50

86
39

6
2.

57
14

 ×
 1

0-5

35

0.

5
0.

5
0

50

0.

34
0.

24
49

13
60

4
0.

00
90

41
42

3

65

0.

16
0.

09
51

89
72

1
0.

00
42

00
37

2

80

0

0.
03

29
97

15
8

0.
00

10
88

81
2

10

0
0

0.
00

75
47

10
5

5.
69

58
8

×
 1

0-5

0.
02

80
18

71
4

0.
07

50
61

77
7

373

Ta
bl

e
19

.2
9

In
iti

al
 S

en
si

tiv
ity

 A
na

ly
si

s
Re

su
lts

 (C
on

tin
ue

d)

G
ro

up

M
ea

su
re

S

en
si

ti
vi

ty
 E

qu
at

io
n

s

II

C
E

G

··
·

·
⁄

··
·

·
··

1·
1·

1
⁄

·
··

W
he

re
 S

W
 r

ep
re

se
nt

s
C

E
G

, C
O

M
, D

D
, o

r
R

T
.

 d
ep

en
ds

 o
nl

y
on

 th
e

lo
ca

tio
n

of
 th

e
de

fe
ct

;
 d

ep
en

ds
 o

n
th

e
lo

ca
tio

n
 a

nd

on
 th

e
ty

pe
 o

f
th

e
de

fe
ct

;

 d
ep

en
ds

 o
n

th
e

lo
ca

tio
n

an
d

ty
pe

 o
f

th
e

de
fe

ct
; v

ar
io

us
 it

er
at

io
ns

 in
 ti

m
e

ar
e

in
de

pe
nd

en
t;

de
fe

ct
s

ar
e

in
de

pe
nd

en
t.

N
ot

e
th

at
 th

e
used in

 p
re

vi
ou

s
ch

ap
te

rs
 b

ec
om

es
 a

 s
im

pl
e
Σ

 w
he

n
th

e
de

fe
ct

s
ar

e
in

de
pe

nd
en

t.

II

C
O

M

II

D
D

II

R
T

II

C
F

374

Ta
bl

e
19

.2
9

In
iti

al
 S

en
si

tiv
ity

 A
na

ly
si

s
Re

su
lts

 (C
on

tin
ue

d)

G
ro

up

M
ea

su
re

Se

ns
it

iv
it

y
E

qu
at

io
ns

II
I

T
C

1 ·1
··

⁄ ·
··

·
·

⁄

··
·

·
··

1·
1·

1
⁄

·
··

1
··

⁄
·ln1

··
⁄

1 1
exp

1
·

W
he

re
:

 is
 a

 f
un

ct
io

n
of

 a

nd

;
 is

 a
 f

un
ct

io
n

of

 a
nd

;

 is
 a

 f
un

ct
io

n
of

. V

ar
io

us
 it

er
at

io
ns

 in
 ti

m
e

ar
e

in
de

pe
nd

en
t;

de
fe

ct
s

ar
e

in
de

pe
nd

en
t.

N
ot

e
th

at
 th

e
used in

 p
re

vi
ou

s
ch

ap
te

rs
 b

ec
om

es
 a

 s
im

pl
e
Σ

 w
he

n
th

e
de

fe
ct

s
ar

e
in

de
pe

nd
en

t.

375

Ta
bl

e
19

.2
9

In
iti

al
 S

en
si

tiv
ity

 A
na

ly
si

s
Re

su
lts

 (C
on

tin
ue

d)

G
ro

up

M
ea

su
re

Se

ns
it

iv
it

y
E

qu
at

io
ns

II
I

F
D

N

·1
··

⁄

·
··

·
·

⁄

··
·

·
··

·
··

·
·ln1

∑∑
··

⁄
∑

1·
1·

1
⁄ ·1∑

∑
··

⁄
·ln1

··
⁄

·
·

·
·

·
·

·

 W
he

re
:

 is
 th

e
nu

m
be

r
of

 f
au

lts
 id

en
tif

ie
d

in
 th

e
la

st
 v

er
si

on
 o

f
de

ve
lo

pm
en

t c
od

e.
 T

he
 la

st
 v

er
si

on
 is

 d
ef

in
ed

 a
s

th
e

ve
rs

io
n

ri
gh

t
be

fo
re

 th
e

re
le

as
ed

 v
er

si
on

 a
nd

 th
e

la
st

 v
er

si
on

 w
hi

ch
 s

til
l c

on
ta

in
s

de
fe

ct
s

w
hi

ch
 w

ill
 b

e
fu

rt
he

r
co

rr
ec

te
d

in
 th

e
re

le
as

ed
 v

er
si

on
;

, i
s

th
e

ti
m

e
at

 w
hi

ch
 th

e
op

er
at

io
na

l p
ha

se
 s

ta
rt

s
(i

t i
s

al
so

 th
e

ti
m

e
at

 w
hi

ch
 th

e
co

de
 is

 f
ro

ze
n)

;
 is

 a
 f

un
ct

io
n

of

 a
nd

(f
or

1 to

);

 is
 a

 f
un

ct
io

n
of

 a

nd

 (
fo

r
1 to

);

 is
 a

 f
un

ct
io

n
of

 (

fo
r

1 to
)

an
d

th
e

fo
rm

 o
f

… is
us

ed
 s

ym
bo

lic
al

ly
. N

ot
e

th
at

 th
e

used in
 p

re
vi

ou
s

ch
ap

te
rs

 b
ec

om
es

 a
 s

im
pl

e
Σ

 w
he

n
th

e
de

fe
ct

s
ar

e
in

de
pe

nd
en

t.

376

19.6.9 Data Collection and Analysis

As discussed in Section 19.4, a follow on issue is to define a data collection and analysis process
based on ISO 15939 [ISO, 2007].

19.6.10 Combining Measures

A follow on effort could determine how to down-select to a smaller number of measures that can be
combined to yield a more accurate reliability estimation—an estimation that would be better than any
single measure alone.

19.6.11 Automation Tools

As shown in Table 19.24, performing some of the measurements is time consuming. It would be
helpful if automation tools were developed to assist the measurement process. However, the
development of automation tools is out of the scope of this particular research. Tools have been
used to evaluate the number of lines of code in BLOC, code cyclomatic complexity in CC, and
test coverage in TC. For other measures, i.e., CEG, COM, DD, RSCR, and RT, the measurement
process was conducted manually. No validated tools with the ability to replace humans in the
inspection of natural language-based requirements and design documents currently exist. The
development of such natural-language processing tools was not the objective of this research and
should be the focus of a follow on effort. Reliance on such tools would significantly reduce the
time necessary to apply the methods discussed in the report and would, in addition, increase the
repeatability of the measurement process. Approaches to automation will be discussed in
Chapter 20.

19.6.12 Priority Ranking of the Follow-On Issues

The experts provided a ranking of the follow-on issues displayed in Table 19.30 and identified
possible solutions to each of the high-priority issues.

377

 Table 19.30 Priority Ranking for Follow-On Issues

Follow on Issue Priority
Overall

Rankings
Recommendations

Repeatability H 1 Perform Requirements Review studies;

Data collection process
and Data Analysis
(Detailed Guidelines)

H 1

Define a data collection and analysis process based
on ISO 15939 for each of the measures selected
(i.e., Measures Recommended in Table 19.27). This
standard provides a detailed process to ensure the
quality of the data collection; Draft piloted;

Uncertainty (failure
probability distribution
for predictions based on
different measures)

H 1

Consider both Measurement Uncertainty and
Model Uncertainty; The uncertainty can be reduced
by ensuring the quality of the data collection and
repeatability; Reduce the model uncertainty from
OP, EFSM and Parameters.

Combining measures M 5

Additional applications M 4

Common Cause
Failures

M 6

Cases with no defect M 6

Tools/Automation L 8

Old Parameters L 8

378

19.7 References

[Briand, 1997] L.C. Briand et al. “Quantitative Evaluation of Capture-Recapture Models to

Control Software Inspections,” presented at The 8th International Symposium
on Software Reliability Engineering, Albuquerque, NM, USA, 1997.

[Chao, 1992] A. Chao, S.M. Lee and S.L. Jeng. “Estimating Population Size for Capture-
Recapture Data When Capture Probabilities Vary by Time and Individual
Animal,” Biometrics, vol. 48, pp. 201–16, 1992.

[Ebenau, 1993] R.G. Ebenau and S.H. Strauss. Software Inspection Process. McGraw-Hill,
1993.

[Gaffney, 1984] J.E. Gaffney. “Estimating the Number of Faults in Code.” IEEE
Transactions on Software Engineering, vol. 10, pp. 459–64, 1984.

[IEEE, 1990] “IEEE Standard Glossary of Software Engineering Terminology,” IEEE Std.
610, 1990.

[IEEE, 2003] “IEEE Standard Criteria for Digital Computers in Safety Systems of Nuclear
Power Generating Stations,” IEEE Std. 7-4.3.2, 2003.

[ISO, 2007] ISO/IEC 15939:2007, “Systems and software engineering – Measurement
process,” ISO, 2007.

[Musa, 1992] J. Musa. “The Operational Profile in Software Reliability Engineering: An
Overview,” presented at 3rd International Symposium on Software Reliability
Engineering, 1992.

[Nejad, 2002] H.S. Nejad, M. Li and C. Smidts. “On the Location of Faults in a Software
System,” Master’s Thesis, University of Maryland, College Park, 2002.

[Otis, 1978] D.L. Otis et al. “Statistical Inference from Capture Data on Closed Animal
Populations,” Wildlife Monographs, vol. 62, pp. 1–135, 1978.

[Schach, 1993] S.R. Schach. Software Engineering. 2nd ed., Homewood, IL: Aksen
Associates Inc., 1993.

[Shi, 2010] Y. Shi and C. Smidts. “Predicting the Types and Locations of Faults
Introduced during an Imperfect Repair Process and their Impact on
Reliability,” International Journal of Systems Assurance Engineering and
Management. vol. 1, pp. 36–43, 2010.

[Smidts, 2011] C. Smidts and Y. Shi. “Predicting Residual Software Fault Content and their
Location during Multi-Phase Functional Testing Using Test Coverage,”
International Journal of Reliability and Safety. 2011.

[Voas, 1992] J.M. Voas. “PIE: A Dynamic Failure-Based Technique,” IEEE Transactions
on Software Engineering, vol. 18, pp. 717–27, 1992.

379

20. DEVELOPMENT AND USE OF AUTOMATION TOOLS

This chapter discusses the development or increased use of automation tools as discussed in
Section 19.6.11.

The RePS methodology has been validated on PACS 1, PACS 2, and the APP. However, many
of the measurements and processes required to predict reliability were manually performed or
used limited automation. As addressed in chapter 19, 10 out of the 12 measurements and related
reliability predictions required more than 30 days effort to complete.

Measurements related to Defect Density (DD), Requirements Traceability (RT), and Test
Coverage (TC), which were identified in chapter 19 as the best candidates for reliability
prediction, cannot be fully automated. More specifically, current tools for inspecting
requirements documents have not been validated. Also, currently there is no available tool
support for inspecting design documents. A number of tools exist claiming the ability to perform
automated requirements traceability and test-coverage analysis. A follow on issue is to evaluate
existing tools.

Construction of the Extended Finite State Machine (EFSM), which is used to propagate the
defects uncovered by various measurement processes, is time-consuming. Current tools used for
EFSM construction provide only limited support in automatically propagating the identified
defects. Further development is required to automate straightforward but tedious activities.

The purpose of future efforts would be to develop an automated reliability prediction tool. This
CASE tool should provide for:

1. Construction of the EFSM from requirements documents
2. Building the operational profile (OP)
3. Mapping the defects uncovered by different measurement processes to the constructed

EFSM
4. Mapping the OP to the EFSM
5. Running the modified EFSM and obtaining reliability predictions

This follow on development effort should first evaluate existing tools that were designed to aid
the measurements process for DD, RT, and TC and determine whether these tools implement the
claimed functionalities as well as assess their efficiency and effectiveness. A new tool for
assessing the quality of software code and documents would be based on the most efficient and
effective of these tools. New functionalities should be developed as required.

To meet the above objectives, the following activities should be performed:

380

1. Construct the EFSM semi-automatically based on the requirements documents and the
procedure, which will be described in detail in Appendix A.

2. Obtain the OP (operational profile) using the following possible approaches:

2.1 If some operational data is available, develop a function that could either

automatically or semi-automatically transform the information to a format that
can be mapped into the constructed EFSM

2.2 If PRA records are available, develop a function that could either automatically or
semi-automatically transfer and transform the information into a form that can be
interpreted by the EFSM

2.3 If hardware-failure information is available, also develop a function that could
either automatically or semi-automatically transfer the information to the EFSM

3. Develop a function that could either automatically or semi-automatically map the

uncovered defects into the EFSM.

 4. Connect the obtained OP, uncovered defects, and the constructed EFSM and create a
function for reliability prediction. The entire process is illustrated in Figure 20.1.

381

Figure 20.1 Structure of the Automated Reliability Prediction System

5. Systematically evaluate current tools used for measurement processes.

5.1 Evaluate the tools for requirements analysis. Example tools are the NASA ARM
(Automated Requirements Measurement, 1997) and the SEI QuARS (Quality
Analyzer for Requirements Specifications 2005) [Lami, 2005].

5.2 Evaluate currently available code inspection tools.
5.3 Evaluate currently available requirements traceability analysis tools.
5.4 Evaluate currently available code coverage tools.
5.5 Select efficient and effective tools.

382

20.1 References

[Lami, 2005] G. Lami. “QuARS: A Tool for Analyzing Requirements.” Technical Report,
CMU/SEI-2005-TR-014, 2005.

A-1

APPENDIX A: EXTENDED FINITE STATE MACHINE AND ITS
CONSTRUCTION PROCEDURES47

As specified in Section 5.1, the PIE concept was introduced to describe the software failure
mechanism if one knows the location of the defects. How to implement the PIE concept for
reliability quantification is discussed in this appendix. [Shi, 2009]

In the original assessment method, P, I, and E are quantified statistically using mutation [Voas,
1992]. This method, however, is neither able to combine the operational profile nor able to
consider defects that do not appear in the source code such as requirements or design errors (e.g.,
“missing functions”). Moreover, the large amount of mutants required hampers the practical
implementation of the method for complex systems.

In this appendix, a simple, convenient, and effective method to solve this problem using an
Extended Finite State Machine (EFSM) [Wang, 1993] model is proposed. An EFSM describes a
system’s dynamic behavior using hierarchically arranged states and transitions. A state describes
a condition of the system; and the transition visually describes the new system state as a result of
a triggering event. The operational profile of the software system is mapped into the model to
analytically represent the probabilities of the system traversing each execution state. More
specifically, an EFSM is a septuple (Σ, Γ, S, T, P, V, OP), where:

 Σ is the set of software input variables. These variables cross the boundary of the

application.
 Γ is the set of software output variables. These variables cross the boundary of the

application.
 S is a finite, non-empty set of states. A state usually corresponds to the real-world

condition of the system.
 T is the set of transitions. An event causes a change of state and this change of state is

represented by a transition from one state to another.
 P is the set of predicates, the truth value of the predicates is attached to the relevant

transition.
 V is the set of variables defined and used within the boundary of the application, and
 OP is the set of probabilities of the input variables.

47 Extract from “On the Use of Extended Finite State Machine Models for Software Fault Propagation and Software Reliability
Estimation,” by Ying Shi, et al. Published in the International Topical Meeting on Nuclear Plant Instrumentation Control, and
Human-Machine Interface Technologies, Knoxville, TN, March 5-9, 2009. Copyright 2009 by the American Nuclear Society, La
Grange Park, Illinois.

A-2

The method proposed for assessing software reliability based on an EFSM proceeds in five
stages:

1) Construct a high-level EFSM based on the Software Requirement Specifications (SRS)
2) Identify, record and classify the defects
3) Modify the high-level EFSM by mapping the identified defects
4) Map the operational profile of the software to the appropriate variables (or transitions)
5) Obtain the probability of failure by executing the modified EFSM

As stated before, the failure probability can be assessed by calculating the product of the
execution probability, the infection probability, and the propagation probability. The first three
steps of the proposed method are used to construct the EFSM model and identify the infected
states. The execution probability can be determined through Step 4 by mapping the operational
profile to the EFSM. The overall failure probability can be obtained through execution of the
EFSM in Step 5.

Generally speaking, the proposed approach is based on constructing and refining the EFSM
model. Both construction and refinement steps are rule-based processes. Different rules for
handling different requirement specifications and different types of defects are provided. Thus,
the approach is actually a Rule-based Model Refinement Process (RMRP).

The advantages of this approach are:

1) it can avoid time- and labor-intensive mutation testing;
2) it can combine the operational profile which reflects the actual usage of the software

system; and
3) it allows assessment of the impact of requirements defects, e.g., “missing functions,” on

software reliability; 4) tools are available for executing the constructed EFSM model.

Each of the five steps for assessing software reliability based on an EFSM is discussed in turn in
the following sections.

A.1 Step 1: Construct of a High-Level EFSM Based On the SRS

This step is used to construct a High-Level EFSM (HLEFSM) based on the SRS. This step is
independent of the defect identification process and corresponding results, i.e., the defects
identified.

The HLEFSM can be systematically constructed by mapping each occurrence of a function
specification to a transition. The HLEFSM will be manually constructed based on the SRS.
Figure A.1 shows a typical prototype outline for an SRS [IEEE, 1998].

A-3

Figure A.1 Typical Prototype Outline for SRS

The general procedure to be followed for constructing a HLEFSM is illustrated in Figure A.2.

A-4

START

Go to Functional Requirements Section (3.1)

Link the Beginning State and Ending State of
the function currently examined

Identify the variables

Examine function 3.1.1, the f irst bulleted
function

Create HLEFSM ENTRY and EXIT States

Link this Beginning state w ith the logically
previous state

Is this the
logically last

bulleted function?

Link the Ending state of this logically last
bulleted function w ith the EXIT State

END

Y
E

S
Y

e s

Examine the next function

Identify the Beginning State and Ending State
of the function currently examined

Is this the last
bulleted function?

No

No

Figure A.2 SRS-Based HLEFSM Construction

The general construction procedure includes:

a) Study the SRS and focus on the Functional Requirements section (Section 3.1 in Figure
A.1). It should be noted that there exists several other SRS prototypes [IEEE, 1998]. For
those prototypes, one can still find a section similar to the Functional Requirements
section that describes the functions of the software system.

b) Create an ENTRY state and an EXIT state for the entire application.
c) Examine the first bulleted48 function defined under 3.1.1 in Figure A.1.

48 A bulleted function is a function explicitly documented using a bullet in the SRS document for distinguishing it from other
functions.

A-5

d) Define the corresponding states of the function (normally it is logically the first
function of the software system): the starting state : and the ending state : of the function .

e) Identify the following elements:
i. Specify the input variables of function based on Section 3.1.1.2

“Input:” iv could be part of Σ or V or a combination of Σ and V.
ii. Specify the predicates . Normally, the predicates can be found in Section

3.1.1.1 “Introduction.”
iii. Specify the output variables of function based on Section 3.1.1.4

“Output:” could also be part of Γ or V or a combination of Γ and V.
iv. Specify the variables stored in , denoted as , and the variables stored

in , denoted as , since a state is the condition of an extended finite

state machine at a certain time and is represented by a set of variables and their
potential values. It should be noted that not all of the variables stored in
will be used by function that is . The predicates also should be

part of the variables stored in and . Those variables, denoted

as , which are neither used as the input variables nor used as the predicates
of function will remain the same and be part of the variables stored in the
output. Thus and .

f) Link the beginning state and the ending state of function by a transition, : and
 is the set of the function and its associated predicates , , ,

pointing from starting state to the ending state .
g) For function , link the starting state to the ENTRY state. For function , link the

starting state to the ending state of the logically previous function . The logical
relationship between the functions should be specified in the “introduction” subsection of
the description of the bulleted function. The variables stored in the starting state of
function , , should be the variables stored in the ending state of its logically

previous function, plus some inputs from Σ. That is, ,

where .
h) Iterate step d) to step g) for the next function until all the bulleted functions are

represented in the HLEFSM. It should be noted that the HLEFSM model should remain
at a high level to minimize the construction effort. Only the bulleted functions, i.e., 3.1.1,
3.1.2 etc. shown in Figure A.1 should be represented in this HLEFSM model. There is no
need at this point to further break down the bulleted functions and display their
corresponding sub-functions.

i) Link the ending state of the logically last bulleted function to the EXIT state. Normally,
the logically last bulleted function will send out all required outputs and reset all
variables to their initial values for the next round of processing.

A-6

Example 1: To better illustrate the above EFSM construction step, a paragraph excerpted from
PACS (Personal Access Control System49) SRS and its associated EFSM elements
identifications are shown in Table A.1.

Table A.1 EFSM Construction Step 1 for Example 1

PACS SRS: Software will validate the entrant’s card data (SSN and last name). If correct data,
software will display “Enter PIN.”
Function 1 Function f1: card validation function;

 Starting State of the function Si(f1):card is awaiting for validation;

 Ending state of the function So(f1):card has been validated;

 Input variables iv(f1) = {SSN, Last name};

 Output variables ov(f1) = {card validation results};

 Predicates N/A

 Variables stored in the starting state
In this case, the variables stored in Si(f1) will all be used by
function f1. That is,

 1 1()
iS fV iv f

 Variables stored in the ending state 1 1()
oS fV ov f

Function 2 Function f2: card validation results display function;

 Starting State of the function Si(f2): card validation results are awaiting to be displayed;

 Ending state of the function So(f2): card validation results have been displayed;

 Input variables iv(f2) = {card validation results};

 Output variables ov(f2) = {“Enter PIN” displayed};

 Predicates p(f2) ={card data = correct}.

 Variables stored in the starting state 2 2 2() ()
iS fV iv f p f

 Variables stored in the ending state 2 2()
oS fV ov f

A.2 Step 2: Identify, Record, and Classify the Defects

This step is used to identify defects through software inspection or testing. Software defects can
be uncovered by using different inspection and testing techniques [Fagan, 1976] [Beizer, 1990].
All the defects identified through inspection or testing should be recorded properly for further
references and examinations. Table A.2 or similar table should be generated.

49 PACS is a system which provides privileged physical access to rooms/buildings, etc. The user needs to swipe his card and
enter a four-digit PIN. The application verifies this against a database and if authorized, provides access to the room/building by
opening the gate.

A-7

Table A.2 Example Table for Recording Identified Defects

NO. Defect Description Defect Location Defect Type Variables/Functions Affected

1

2

…

The possible instances or further description of each field are shown in Table A.3. In the Defect
Description column, the inspector should provide a general description of the defect using plain
English sentences; in the Defect Location column, one should record where the defect originated,
i.e., either in the SRS, Software Design Documents (SDD), or Code. The module name or function
name (associated to the location of the defect) should be provided as well. The specific defect
type should be documented in the Defect Type column of the table. The exact affected
variable/function should be specified in detail in the Variable/Functions Affected column of
Table A.2.

Table A.3 Possible Instances or Further Description for Each Field in Table A.2

Item Possible Instances of Each Field in Table A.2

Defect Description Plain English sentence.

Defect Location SRS; SDD; Code
Function name (if the defect is in SRS);
Module name (if the defect is in SDD or code)

Defect Type

Missing function; Extra function; Incorrect function; Ambiguous function;
Missing input; Extra input; Input with incorrect/ambiguous value; Input with
incorrect/ambiguous type; Input with incorrect/ambiguous range; Missing output;
Extra output; Output with incorrect/ambiguous value; Output with
incorrect/ambiguous type; Output with incorrect/ambiguous range;
Missing predicate; Extra predicate; Incorrect/ambiguous predicate.

Variables/Functions
Affected

The exact name of the affected variables or functions given in the documents.

Using the same PACS SRS described in step 1 as an example, the following table should be
generated:

A-8

Table A.4 Record of Identified Defects for Example 1

NO. Defect Description Defect Location
Defect
Type

Variables/Functions
Affected

1
This requirement specification does
not specify the case where the data
stored in the card is not correct.

PACS SRS: Card
validation results
display function

Missing
predicate

 = {card data =
incorrect}

A.3 Step 3: Modify the HLEFSM by Mapping the Identified Defects

Once defects have been identified, they should be mapped into the HLEFSM and the infected
states should be identified for later assessment of their final impacts. The defect mapping process
ultimately modifies the HLEFSM. The modified EFSM obtained is therefore an octuple (Σ, Γ, S,
T, P, V, OP, D) where D is the set of defects discovered through inspection.

The defect mapping procedures are shown in Figure A.3. The following subsections will
describe how to localize the defects in the HLEFSM and how to modify a HLEFSM and the
obtained low-level EFSM (LLEFSM).

A-9

Figure A.3 General Procedures for Defect Mapping

A.3.1 Section A: Localize the Defects in the HLEFSM:

One must know the exact locations of the defects to correctly modify the HLEFSM. The
localization of the defects is based on tracing among the development documents: SRS, SDD,
and code that have been inspected. Figure A.4 illustrates the detailed tracing procedures.

A.3.2 Section B: Modify the HLEFSM:

The infected state should be identified during the EFSM modification process. The process of
definition and identification of the infected state is discussed next. If a defect found was directly
related to a bulleted function, (i.e., the defect is a bulleted function-level defect,) there is no need
to split the HLEFSM. A new state or transition should be created or certain variables within the

A-10

transitions should be flagged to reflect the infections. It should be mentioned that all the defects
should be represented by a variable, i.e., variable , and attached to the transitions. If with the
initial value of 0 is assigned to 1, it means there is a defect along with the transition. Thus, the
attributes of the transition have now changed from , to , , .

Figure A.4 Flowchart for Localizing the Defects

A-11

Using the defect mapping procedures, the original and the modified EFSM for example 1 is
shown below:

Figure A.5 Original EFSM for Example 1

Figure A.6 Modified EFSM for Example 1

A.3.3 Section C: Split the HLEFSM to a LLEFSM

If a defect is not directly related to a bulleted function, the HLEFSM model should be
decomposed to a lower level of modeling. This is because a defect could be within a bulleted
function while only part of the bulleted function is infected and will fail to perform adequately.

A-12

Thus, one needs to break down the bulleted function to the level where the defect can be
represented directly50.

The general procedures for the construction of the HLEFSM are still valid for the construction of
the LLEFSM. However, special attention should be paid to the following issues:

1) Function has a hierarchical structure, i.e., it is the parent function of its sub-functions , 1,2, … , . These identified sub-functions act as child functions;
2) The I/O connections between the child functions can be easily determined by following

Steps (c) to (f) of the general construction procedures for the bulleted functions (Step 1)
but applying it now to the “Processing” section of the bulleted function. One should
determine the interface between the child functions and their parent function by linking
the beginning state of the parent function with the beginning state of its first child
function and directly linking the ending state of the last child function with
the ending state of its parent function .

3) The input and output of the child functions may not be only in the “input” and “output”
section of their parent function. The “processing” part also needs to be manually examined
to identify the input and output of the child functions.

A.3.4 Step 4: Map the OP to the Appropriate Variables (or Transitions)

Generally, the operational profile is defined as , in EFSM, where is the set of
input variables and is the set of probabilities of . As a very important attribute of the
EFSM, OP should be predetermined and then mapped into the EFSM constructed through steps 1
to 3. If there is any predicate existing in the constructed EFSM, the probability of the execution
of each branch needs to be determined since there are multiple subsequent states after the
predicate.

If the predicate is only a function of the input variables from set Σ, which are crossing the
boundary of the application, the probability of execution of each branch is usually determined by
analyzing the operational data or can be found in various databases.

If the predicate is a function of internal variables from set V, i.e., variables which are within the
boundary of the application, the probability of execution of each branch can be calculated based
on input variables from set Σ because the internal variables are actually functions of the input
variables from set Σ. For instance, consider the case where a predicate is determined by the value
of an internal variable which is a function of variable , that is, . Variable is from
set Σ whose OP is known either by analyzing operational data or by searching in databases.
Thus, the OP of variable can be analytically calculated through function . If function

 is a complex function, the input/output table as suggested in Garret [Garret, 1995] should be

50 A defect can be represented directly if the variable/function/sub-function which contains the defect is visible in the model since
the level of detail in the model reaches the variable/function/sub-function.

A-13

utilized to obtain the value of based on which the execution probability of each branch can be
determined.

It should be mentioned that the mapping process does not entail as much work as one might
think because the constructed EFSM is a compact version of the actual application since only
defect related sections are modeled in detail. Furthermore, for safety critical systems, the
relationship between the internal variables and the variables crossing the boundary of the system
is kept simple to reduce the calculation error.

A.3.5 Step 5: Obtain the Failure Probability by Executing the Constructed EFSM

Application of the procedure described in Steps 1 to Step 4 yields the execution probability and
the infected state. As for the propagation probability, it is assumed to be equal to 1. If a low-level
defect is detected, experimental methods such as fault injection can be used to assess the exact
propagation probability.

The failure probability can be obtained by executing the constructed EFSM. The execution of the
EFSM can be implemented using an automatic tool such as TestMaster. TestMaster is a test
design tool that uses the EFSM notation to model a system. TestMaster and similar tools capture
system dynamic internal and external behaviors by modeling a system through various states and
transitions. A state in a TestMaster model usually corresponds to the real-world condition of the
system. An event causes a change of state and is represented by a transition from one state to
another. TestMaster allows models to capture the history of the system and enables
requirements-based extended finite state machine notation. It also allows for the specification of
the likelihood that events or transitions from a state will occur. Therefore, the operational profile
can be easily integrated into the model. Thus, the probability of failure from unresolved known
defects can be assessed by simply executing the constructed TestMaster model.

First, TestMaster will execute all the possible paths of the constructed EFSM model. The paths
which contain defect(s) can be recognized by TestMaster automatically. Thus, the probability of
execution of the i-th path with defect(s) can be calculated. The probability of failure is:

where

 the probability of failure
 the probability of execution of the i-th path with defect(s)

A-14

A.4 References

[Beizer, 1990] B. Beizer. Software Testing Techniques. 2nd ed. Van Nostrand Reinhold,

1990.
[IEEE, 1998] “IEEE recommended practice for software requirements specifications,”

IEEE Std. 830, 1998.
[Fagan, 1976] M.E. Fagan. “Design and Code inspections to reduce errors in program

development.” IBM Systems Journal, vol. 15, no. 3, pp. 182–211, 1976.
[Garrett, 1995] C. Garrett, S. Guarro and G. Apostolakis, “Dynamic Flowgraph

Methodology for Assessing the Dependability of Embedded Software
Systems.” IEEE Transactions on Systems, Man and Cybernetics, 1995.

[Shi, 2009] Y. Shi, M. Li and C. Smidts. “On the Use of Extended Finite State
Machine Models for Software Fault Propagation and Software Reliability
Estimation,” in Proc. 6th American Nuclear Society International Topical
Meeting on Nuclear Plant Instrumentation, Controls, and Human Machine
Interface Technology, 2009.

[Voas, 1992] J.M. Voas. “PIE: A Dynamic Failure-Based Technique,” IEEE
Transactions on Software Engineering, vol. 18, pp. 717–727, 1992.

[Wang, 1993] C.J. Wang and M.T. Liu. “Generating Test Cases for EFSM with Given
Fault Models,” in Proc. 12th Annual Joint Conference of the IEEE
Computer and Communications Societies, 1993.

B-1

APPENDIX B: LIST OF SYMBOLS

 Chapter 4

 Operational profile

 Operational profile for subsystem 1

 Operational profile for subsystem 2

 Operational profile for subsystem

 Operational profile for the voter

 Operational profile for subsystem

 Operational profile for the first system mode of subsystem

 Operational profile for the n-th system mode of subsystem

 Operational profile for the plant inputs

 Operational profile for the infrastructure inputs

 Operational profile for the APP system

 Operational profile for μp1

 Operational profile for μp2

 Operational profile for CP Pr Probability of failure per demand

 Average failure rate Pr Updated probability of failure per demand

 Unbiased failure rate

 Failures

 Hours

B-2

 Chapter 5

 Failure probability (unreliability)

 Propagation probability for the i-th defect

 Infection probability for the i-th defect

 Execution probability for the i-th defect

 g-th input/output path Pr Probability of traversing the g-th path

 Probability of failure caused by defect

 Probability that the q-th transition is traversed in the g-th path

 Transition index

 Path index

 Number of transitions in the g-th path

 Failure rate

 Software reliability

 Fault exposure ratio

 Linear execution time

 Number of defects

 Execution time

 New fault exposure ratio

 Chapter 6

 Total number of defects in the software

 Module index

 Number of modules

B-3

 Function point count

 Number of lines of code for the i-th module

 Reliability estimation for the APP system using the BLOC measure

 Fault exposure ratio, in failure/defect

 Number of defects estimated using the BLOC measure

 Number of defects estimated using the BLOC measure

 Linear execution time 1 Linear execution time of μp1 of the APP system 2 Linear execution time of μp2 of the APP system

 Linear execution time of CP of the APP system 1 Average execution-time-per-demand of μp1 2 Average execution-time-per-demand of μp2

 Average execution-time-per-demand of CP

 Chapter 7

 Ambiguities in a program remaining to be eliminated

 Total number of ambiguities identified % Percentage of ambiguities remaining over indentified

 Actually implemented cause-effect graph

 The cause set of the ACEG

 The observable effect set of the ACEG

 The Boolean function set of the ACEG

 The constraint set of the ACEG

 Benchmark cause-effect graph

B-4

 The cause set of the BCEG

 The observable effect set of the BCEG

 The Boolean function set of the BCEG

 The constraint set of the BCEG

 The j-th distinct observable effect in the ACEG

 The number of distinct effects in the union set

 The peer observable effect in the BCEG corresponding to

 A Boolean function in corresponding to

 A Boolean function in corresponding to

 The set of causes appearing in

 The set of causes appearing in

 The union set of and

 The number of distinct causes in

 A cause state vector, which represents a state combination of all causes

 The k-th vector of

 Chapter 8

 Reliability estimation for the APP system using the CMM measure.

 Fault Exposure Ratio, in failures/defect

 Number of defects estimated using the CMM measure

 Average execution-time-per-demand, in seconds/demand

 Linear execution time of a system, in seconds

, Number of delivered critical defects (severity 1)

, Number of delivered significant defects (severity 2)

B-5

1 Linear execution time of μp1 of the APP system 2 Linear execution time of μp2 of the APP system

 Linear execution time of CP of the APP system 1 Average execution-time-per-demand of μp1 2 Average execution-time-per-demand of μp2

 Average execution-time-per-demand of CP

 Chapter 9

 Completeness measure

 The weight of the i-th derived measure

 The i-th derived measure

 The fraction of functions satisfactorily defined

 The fraction of data references having an origin

 The fraction of defined functions used

 The fraction of referenced functions defined

The fraction of decision points whose conditions and condition options are
all used

 The fraction of condition options having processing

The fraction of calling routines whose parameters agree with the called
routines defined parameters

 The fraction of condition options that are set

 The fraction of set condition options processed

 The fraction of data references having a destination

 The number of functions not satisfactorily defined

 The number of functions

 The number of data references not having an origin

B-6

 The number of data references

 The number of defined functions not used

 The number of defined functions

 The number of referenced functions not defined

 The number of referenced functions

 The number of decision points missing condition(s)

 The number of decision points

 The number of condition options having no processing

 The number of condition options

The number of calling routines whose parameters not agreeing with the
called routines defined parameters

 The number of calling routines

 The number of condition options not set

 The number of set condition options having no processing

 The number of set condition options

 The number of data references having no destination

 Chapter 10

 Coverage factor of a fault-tolerance mechanism

 The probability of 1 when

 A variable characterizing the handling of a particular fault/activity pair

 The global input space of a fault-tolerance mechanism

 Fault Space

 Activity space, or activation space

 A fault/activity pair, or a point in space

B-7

 The probability of occurrence of

 The value of for a given point

 is the expected value of

 The number of occurrences of the Normal State for an experiment

 The number of occurrences of the Fail-safe State for an experiment

 The number of occurrences of the Normal State for an experiment

 The number of occurrences of the Fail-safe State for an experiment

 The total number of experiments with analog input inside the “Barn shape”

 The total number of experiments with analog input outside the “Barn shape”

The weight of experiments such that the analog input is inside the “Barn
shape”

The weight of experiments such that the analog input is outside the “Barn
shape”

 The failure rate of a microprocessor

 The failure rate of the i-th primary component

The rate at which the system deals with the fault injected and generates the
result

The probability that the system is brought back to the Normal State when an
erroneous state is recovered

The probability that the system remains in the Recoverable State when an
erroneous state cannot be recovered

The probability that the system enters the Failure State 1 when an erroneous
state leads to the system failure

The probability that the system enters the Failure State 2 when an erroneous
state leads to the system failure

 Failure rate of RAM

 Failure rate of PROM

 Failure rate of EEPROM

 Failure rate of DPM

B-8

 Failure rate of Address Bus Line

 Failure rate of CP register

The number of occurrences of the Recoverable State for an experiment such
that the analog input is inside the “Barn shape”

The number of occurrences of the Recoverable State for an experiment such
that the analog input is outside the “Barn shape”

The number of occurrences of the Failure State 1 for an experiment such
that the analog input is outside the “Barn shape”

The number of occurrences of the Failure State 3 for an experiment such
that the analog input is outside the “Barn shape”

The number of occurrences of the Failure State 2 for an experiment such
that the analog input is inside the “Barn shape”

The number of occurrences of the Failure State 3 for an experiment such
that the analog input is inside the “Barn shape”

 A column vector whose elements are the system state probabilities at time

 The probability that the system is in a state at time

 A finite and countable number of states for a state space

 The matrix of the transition rates

 The probability the system is in “Normal State” at time

 The probability that the system is in “Recoverable State” at time

 The probability that the system is in “Fail-safe State” at time

 the probability that the system is in “Failure State 1” at time

 The probability that the system is in “Failure State 2” at time

 The probability that the system is in “Failure State 3” at time

 The reliability of a microprocessor

 The reliability of the whole APP system

 The probability of the i-th type of failure

B-9

 Chapter 11

 The cyclomatic complexity measure of the i-th module

 The number of edges of the i-th module

 The number of nodes of the i-th module % Percentage of modules whose cyclomatic complexity is less than 4 %
Percentage of modules whose cyclomatic complexity is greater than or
equal to 4 and less than 10 %
Percentage of modules whose cyclomatic complexity is greater than or
equal to 10 and less than 16 %
Percentage of modules whose cyclomatic complexity is greater than or
equal to 16 and less than 20 %
Percentage of modules whose cyclomatic complexity is greater than or
equal to 20 and less than 30 %
Percentage of modules whose cyclomatic complexity is greater than or
equal to 30 and less than 80 %
Percentage of modules whose cyclomatic complexity is greater than or
equal to 80 and less than 100 %
Percentage of modules whose cyclomatic complexity is greater than or
equal to 100 and less than 200 %
Percentage of modules whose cyclomatic complexity is greater than or
equal to 200

The percentage of modules whose cyclomatic complexity belong to the i-th
level

The number of modules whose cyclomatic complexity belong to the i-th
level

 The SLI value of the cyclomatic complexity factor

 Failure likelihood used for calculations

 The number of faults remaining in the delivered source code

 A universal constant, estimated by fitting experiment data

 The amount of activity in developing the delivered source code

 Universal constant, estimated by fitting experiment data

 The Success Likelihood Index of the entire software product

B-10

 The size of the delivered source code in terms of LOC

Reliability estimation for the APP system accounting for the effect of
Cyclomatic Complexity (CC)

 Fault Exposure Ratio, in failure/defect

 Number of defects estimated using the CC measure

 Average execution-time-per-demand, in seconds/demand

 Linear execution time of a system, in seconds 1 Linear execution time of μp1 of the APP system 2 Linear execution time of μp2 of the APP system

 Linear execution time of CP of the APP system 1 Average execution-time-per-demand of μp1 of the APP system 2 Average execution-time-per-demand of μp2 of the APP system

 Average execution-time-per-demand of CP of the APP system

 Actual time to develop the software, in calendar months

 Nominal time to develop the software, in calendar months

 The size of developed source code, in KLOC

 The size of finally delivered source code, in KLOC

 The size of source code discarded during development, in KLOC

 The size of new code developed from scratch, in KLOC

 The equivalent size of adapted code, in KLOC

 The equivalent size of reused code, in KLOC

 The equivalent size of off-the-shelf software, in KLOC

 Percentage of assessment and assimilation

 Adaptation adjustment factor

 Adaptation adjustment modifier

B-11

 Percentage of code re-engineered by automation

 Percentage of code modified

 Percentage of design modified

Percentage of integration effort required for integrating adapted or reused
software

 Percentage of software understanding

 Programmer unfamiliarity with software

 The weight of the i-th influence factor

 The SLI value of the i-th influence factor

 Chapter 12

 Defect Density

An index reflecting the development stage. A value of 1 represents the
requirements stage, a value of 2 represents the design stage and a value of 3
represents the coding stage

 The index identifying the specific inspector

,
The number of unique defects detected by the j-th inspector during the i-th
development stage in the current version of the software , The number of defects found in the l-th stage and fixed in the k-th stage

The number of defects found by exactly m inspectors and remaining in the
code stage

 Total number of inspectors

 The number of source lines of code (LOC) in thousands

 Chapter 13

 Fault-days for the total system

 Fault-days for the i-th fault

 Date at which the i-th fault was introduced into the system

B-12

 Date at which the i-th fault was removed from the system

 Total number of faults

 Ending date of the phase in which the fault was introduced/removed

 Beginning date of the phase in which the fault was introduced/removed

 Expected fault count at time

 A category of faults introduced during phase

 A life cycle phase

 Life cycle time

 Estimate of fault introduction rate in phase

 Intensity function of per-fault detection in phase

 Expected change in fault count due to each repair in phase

 Unadjusted estimate of the fault introduction rate of the j-th fault categories

 A constant

 Fault potential per function point

 Fraction of faults that originated in phase

, Mean effort necessary to develop a function point in phase

 Expected change in fault count due to 1 repair in the life cycle phase

 A life cycle phase

 Number of requested repairs that are fixed in the life cycle phase

 Number of repairs requested in the life cycle phase

 The intensity function of per-fault detection

 Fault-detection rate

 Fault-detection efficiency

 Effort necessary to develop a function point

B-13

 at which the considered phase originates

 Date at which type faults are introduced into a system

, Date at which type faults are removed from a system ∆ , Number of type faults (critical and significant) removed during phase

, Expected number of type faults at the beginning of phase

, Expected number of type faults at the end of phase

, Fault-days number per fault of type removed during phase

 Removal date of faults remaining in the delivered source code

Ending date of testing phase, which is the last phase in the software
development life cycle of the APP system

 Fault-days number per fault of type remaining in the delivered source code

,
Number of type faults (critical and significant) remaining in the delivered
source code ∆ The fault-days number at time ∆

 The fault-days number at time

 Estimate of fault introduction rate

 Intensity function of per-fault detection

 Expected change in fault count due to each repair

 Expected fault count at time

 The apparent fault-days number ; , , , A function of , , , and which relates to

 The exact fault-days number

, Total number of delivered faults in APP estimated using the FDN measure

 Reliability estimation for the APP system using the FDN measure

 Fault exposure ratio, in failures/fault

 Number of defects in APP estimated using the FDN measure

B-14

,
Number of delivered critical defects (severity 1) estimated using the FDN
measure

,
Number of delivered significant defects (severity 2) estimated using the
FDN measure

 Average execution-time-per-demand, in seconds/demand

 Linear execution time, in seconds 1 Linear execution time of Microprocessor 1 (μp1) of the APP system 2 Linear execution time of Microprocessor 2 (μp2) of the APP system

Linear execution time of Communication Microprocessor (CP) of the APP
system 1
Average execution-time-per-demand of Microprocessor 1 (μp1) of the APP
system 2
Average execution-time-per-demand of Microprocessor 2 (μp2) of the APP
system

Average execution-time-per-demand of Communication Microprocessor
(CP) of the APP system

 Chapter 14

 The delivered defect density for the APP system, in defects/function point

, The number of total delivered defects for the APP system

 The function point count for the APP system

 Reliability estimation for the APP system using the FP measure

 Fault Exposure Ratio, in failure/defect

 Number of defects estimated using the FP measure

 Average execution-time-per-demand, in seconds/demand

 Linear execution time of a system, in second

, Number of delivered critical defects (severity 1)

, Number of delivered significant defects (severity 2 1 Linear execution time of Microprocessor 1 (μp1) of the APP system

B-15

2 Linear execution time of Microprocessor 2 (μp2) of the APP system

Linear execution time of Communication Microprocessor (CP) of the APP
system 1
Average execution-time-per-demand of Microprocessor 1 (μp1) of the APP
system 2
Average execution-time-per-demand of Microprocessor 2 (μp2) of the APP
system

Average execution-time-per-demand of Communication Microprocessor
(CP) of the APP system

 Chapter 15

 Measure of requirements Evolution and Volatility Factor

Size of changed source code corresponding to requirements specification
change requests, in Kilo Line of Code (KLOC)

 Size of the delivered source code, in KLOC

Size of added source code corresponding to requirements specification
change requests, in KLOC

Size of deleted source code corresponding to requirements specification
change requests, in KLOC

Size of modified source code corresponding to requirements specification
change requests, in KLOC

 Number of faults remaining in the delivered source code

 Size of the delivered source code in terms of LOC

 Success likelihood index of a software product

 Reliability estimation for the APP system based on REVL

 Fault exposure ratio, in failure/defect

 Number of defects estimated based on REVL

 Average execution-time-per-demand, in seconds/demand

 Linear execution time of a system, in second 1 Linear execution time of Microprocessor 1 (μp1) of the APP system

B-16

2 Linear execution time of Microprocessor 2 (μp2) of the APP system

Linear execution time of Communication Microprocessor (CP) of the APP
system 1
Average execution-time-per-demand of Microprocessor 1 (μp1) of the APP
system 2
Average execution-time-per-demand of Microprocessor 2 (μp2) of the APP
system

Average execution-time-per-demand of Communication Microprocessor
(CP) of the APP system

 Chapter 16

 The value of the measure requirements traceability

 The number of requirements met by the architecture

 The number of original requirements

 Chapter 17

 The value of the test coverage

 The number of requirements implemented

 The number of requirements that should have been implemented

The number of requirements that should be implemented plus the number of
requirements that were added

The number of lines of code that are being executed by the test data listed in
the test plan

 The total number of lines of code

 The number of cycles given by the simulation environment

 The frequency of μp2 (16 MHz)

 The number of defects found by test cases provided in the test plan

 The defect coverage

 Failure intensity

B-17

 Value of the fault exposure ratio during the n-th execution

 The linear execution time

 The number of defects remaining in the software

 The average execution-time-per-demand

 The number of demands

 The probability of failure-per-demand corresponding to the known defects

 Chapter 18

 Failures

 Years

 Failure rate

 Average execution time per trial

 Failure rate per trial

 Chapter 19

 Fault Exposure Ratio

 The total number of modules

 The number of lines of code (LOC) for each module

 The number of known defects found by inspection and testing

 Linear execution time

 The average execution-time/demand

 Severity Level

 The number and locations of defects found by the CEG measure

 Operational Profile

B-18

 The propagation probability for the i-th defect

 The infection probability for the i-th defect

 The execution probability for the i-th defect

 The number of defects estimated by the CMM measure

 The number and locations of defects found by the COM measure

 The probability that the system remains in the i-th reliable state

 The size of the delivered source code in terms of LOC

 A universal constant

 A universal constant

 The Success Likelihood Index for the CC measure

 The number and locations of defects found by the DD measure

 The number of defects estimated by the FDN measure

 The number of defects estimated by the FP measure

 The Success Likelihood Index for the RSCR measure

 The number and locations of defects found by the RT measure

 Fault exposure ratio

The number and locations of defects found by testing in an earlier version of
code , , Coefficients

 Test coverage

 The i-th defect population size estimator

 The number of distinct defects found by inspectors

 The number of defects found by exactly one inspector

 The number of inspectors

 The number of defects found by the j-th inspector

B-19

 The number of defects found by exactly inspectors

 The inaccuracy ratio for a particular RePS

The probability of failure-per-demand from the reliability testing or
operational data

 The probability of failure-per-demand predicted by the particular RePS

 The probability of success-per-demand obtained from reliability testing

 The probability of success-per-demand obtained from the RePS

 Severity level as a function of function point count

 Function point count

 Size of the delivered source code in terms of LOC

 Failure likelihood used for calculations

 The Heaviside step function, where 0, 0 and 1, 0

 The Dirac delta function, where

 The lower boundary of level

 The upper boundary of level

 CC of module

 The slope of ,

 The intercept of ,

 An index that specifies the category of the application

 A variable obtained from the curve-fitting process

 Size of changed source code

 Size of delivered source code

 The location of a defect

 The type of a defect

 The number of faults identified in the last version of development code

B-20

 A function of , , , and which relates to

 The number of distinct defects found by inspectors

 The apparent fault-days number

 The defect coverage

 The number of requirements implemented

The number of requirements that should be implemented plus the number of
requirements that were added

The number of lines of code that are being executed by the test data listed in
the test plan

 The total number of lines of code

 Appendix A

The set of software input variables; these variables cross the boundary of the
application

The set of software output variables; these variables cross the boundary of
the application

A finite, non-empty set of states; a state usually corresponds to the real-
world condition of the system

The set of transitions; an event causes a change of state and this change of
state is represented by a transition from one state to another

The set of predicates, the truth value of the predicates is attached to the
relevant transition

 The set of variables defined and used within the boundary of the application

 The set of probabilities of the input variables

The first explicitly documented function; logically the first function of the
software system

 The starting state of

 The ending state of

 The set of input variables

 The set of predicates

B-21

 The set of output variables

 The variables stored in

 The variables stored in

Variables neither used as the input variables nor used as the predicates of
that remain the same and are part of the variables stored in the output

 A transition; the set of the function and its associated predicates

 The bulleted function-level defects

 An internal variable that is a function of

Variable from the set whose OP is known either by analyzing operational
data or by searching in databases

 A complex function used to analytically calculate the variable , given

 The probability of failure

 The probability of execution of the i-th path with defect(s)

NRC FORM 335
(12-2010)
NRCMD 3.7

U.S. NUCLEAR REGULATORY COMMISSION 1. REPORT NUMBER
(Assigned by NRC, Add Vol., Supp., Rev.,
and Addendum Numbers, if any.)

BIBLIOGRAPHIC DATA SHEET
(See instructions on the reverse) NUREG/CR-7042

3. DATE REPORT PUBLISHED2. TITLE AND SUBTITLE

A Large Scale Validation of a Methodology for Assessing Software Reliability

5. AUTHOR(S)

C. S. Smidts, Y. Shi, M. Li, W. Kong, J. Dai

MONTH

Julv
4. FIN OR GRANT NUMBER

N6878
6. TYPE OF REPORT

Technical

YEAR

2011

7. PERIOD COVERED (Inclusive Dates)

8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Commissim, and mailing address; if contractor,
provide name and mailing address.)

Reliability and Risk Laboratory
Nuclear Engineering Program
The Ohio State University
Columbus, Ohio

9. SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type "Same as above"; if contractor, provide NRC Division, Office or Region, U.S. Nuclear Regulatory Commission,
and mailing address.)

Division of Engineering
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

10. SUPPLEMENTARY NOTES

R. Shaffer S. Arndt N. Carte and M. Waterman Proiect Manaaers
11. ABSTRACT (200 words or less)

This report summarizes the results of a research program to validate a method for predicting software reliability using software
quality metrics. The method is termed the Reliability Prediction System (RePS). The RePS methodology was initially validated
on a small control system application with a set of five software quality metrics. The effort described in this report is a validation
of the RePS methodology using twelve software quality metrics.

The application used to validate the RePS methodology was based on a safety-related digital module typical of what might be
used in a nuclear power plant. The module contained both discrete and high-level analog input and output circuits that read
signals and produced outputs for actuating system equipment, controlling processes, or providing alarms and indications. The
transfer functions performed between the inputs and outputs were dependent on the software installed in the application.

The twelve RePS software quality metrics are ranked based on their prediction capabilities. The rankings are compared with
those obtained through an expert opinion elicitation effort and with those obtained through the small scale validation effort. The
research provides evidence that the twelve metrics used in the RePS methodology can be used to predict software reliability in
safety-critical applications.

12. KEY WORDSIDESCRIPTORS (Ust words or phrases that will assist researchers in locating the report.)

RePS, software reliability, software quality, software metrics

NRC FORM 335 (12-2010)

13. AVAILABILITY STATEMENT

unlimited
14. SECURITY CLASSIFICATION

(This Page)

unclassified
(This Report)

unclassified
15. NUMBER OF PAGES

16. PRICE

U
N

IT
E

D
 S

TA
T

E
S

N

U
C

L
E

A
R

 R
E

G
U

L
A

T
O

R
Y

 C
O

M
M

IS
S

IO
N

W
A

S
H

IN
G

T
O

N
, D

C
 20555-0001

O

F
F

IC
IA

L B
U

S
IN

E
S

S

N
U

R
EG

/C
R

-7042
 A LA

R
G

E SC
A

LE VA
LID

A
TIO

N
 O

F A M
ETH

O
D

O
LO

G
Y FO

R

A
SSESSIN

G
 SO

FTW
A

R
E R

ELIA
B

ILITY
JU

LY 2011

	1smrecyclelogo.pdf
	Page 1

