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ABSTRACT 
 
This report summarizes the results of a research program initiated by the U.S. Nuclear 
Regulatory Commission at the University of Maryland1 to validate a method for predicting 
software reliability. The method is termed the Reliability Prediction System (RePS). The RePS 
methodology was initially presented in NUREG/GR-0019, “Software Engineering Measures for 
Predicting Software Reliability in Safety Critical Digital Systems” and validated on a small 
control system application with a set of five RePSs in NUREG/CR-6848, “Validation of a 
Methodology for Assessing Software Quality.” The current effort is a validation of the RePS 
methodology with respect to its ability to predict software quality (measured in this report and in 
NUREG/GR-0019 in terms of software reliability) and, to a lesser extent, its usability when 
applied to safety-critical applications. 
 
The application under validation, herein defined as APP, is based on a safety-related digital 
module typical of what might be used in a nuclear power plant. The APP module contains both 
discrete and high-level analog input and output circuits. These circuits read input signals from a 
plant and send outputs that can be used to provide trips or actuations of system equipment, 
control a process, or provide alarms and indications. The transfer functions performed between 
the inputs and outputs are dependent on the software that is installed in the module. 
 
The research described in this report provides evidence that twelve selected software engineering 
measures in the form of RePSs can be used (with different degrees of accuracy) to predict the 
reliability of software in safety-critical applications. These twelve measures are ranked based on 
their prediction ability. The rankings are then compared with those obtained through an expert 
opinion elicitation effort, as described in NUREG/GR-0019, and with those obtained through a 
small-scale validation, as described in NUREG/CR-6848. 

                                                 
1 The research was initially performed at the University of Maryland and the report was completed at The Ohio State University. 
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FOREWORD 
 

 
This report summarizes the results of a research program initiated by the U.S. Nuclear 
Regulatory Commission at the University of Maryland and documented in its present form by 
Ohio State University to validate a method for predicting software quality and reliability. The 
method is termed the Reliability Prediction System (RePS). The RePS methodology was initially 
presented in NUREG/GR-0019, “Software Engineering Measures for Predicting Software 
Reliability in Safety Critical Digital Systems” (ML003775310) and validated on a small control 
system application with a set of five RePSs in NUREG/CR-6848, “Validation of a Methodology 
for Assessing Software Quality” (ML042170285). 
 
Since the initial study was limited to five measures and considered a small application, the study 
only partially validated the expert opinion rankings and RePS theory and thus was not yet 
conclusive. Validation on an application of larger size was required. The objective of the 
research described in this report was to perform a large-scale validation of the methodology 
proposed in NUREG/GR-0019 for twelve measures for all life-cycle phases and apply it to a 
nuclear safety application. The purpose of the validation was to determine the predictive ability 
and practical applicability of the methodology to nuclear industry safety systems. The validation 
results provide insights to guide NRC review and endorsement of IEEE standards such as IEEE 
Std 1061-1998, IEEE Standard for a Software Quality Metrics Methodology. 
 
For this study  new RePSs were developed for the measures Cyclomatic Complexity, Cause and 
Effect Graphing, Requirements Specification Change Requests, Fault-days Number, Capability 
and Maturity Model, Completeness, and Coverage Factor. In this current study, the mean time to 
failure (MTTF) measure was not applied and an alternative approach for assessing the failure 
rate was introduced. 
 
A summary description of the twelve measures is provided, and the results of the RePS software 
reliability predictions are displayed and analyzed. These predictions are then validated by 
comparison to a software reliability estimate obtained from operational data and statistical 
inference. The comparison between the NUREG/GR-0019 ratings and the RePS prediction error 
is also made, and the efficacy of the proposed methodology for predicting software quality is 
determined. 
 
The current regulatory review process does not use metrics to assess the potential reliability of 
digital instrumentation and control systems in quantitative terms. The goal of the research 
described in this report was to identify methods that could improve the regulatory review process 
by giving it a more objective technical basis. While some of the models in this report use generic 
industry data, experimental data, and subjective assessments, much of the modeling is based on 
direct measurements of the application under study and, as such, is purely objective in nature. 
Thus, the use of the proposed RePSs models (i.e., of the highly accurate RePSs) could potentially 
yield better results than what can be obtained from the current review process. 
 
A correlation of the metrics in this report with current NRC regulatory review practice suggests 
some potential applicability of the metrics for use in licensing activities. The metrics described in 
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this report provide varying degrees of support to the software lifecycle phase characteristics 
endorsed by current NRC regulatory guidance; however, some metrics may prove to be too 
costly or time consuming to implement for the benefit derived. The ultimate feasibility of using 
these measures in the NRC regulatory process for digital safety systems is outside the scope of 
this report. 
 
The report advances the study of software quality metrics for potential use in nuclear safety 
applications and concludes with follow-on activities needed to address issues that were identified 
in the report. The report provides a priority ranking for follow-up activities that may be needed if 
future decisions support developing products to be incorporated into the NRC regulatory review 
process. 
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1. INTRODUCTION 
 
 

1.1  Background 
 
The current regulatory review process does not use metrics to assess the potential reliability of 
digital instrumentation and control systems in quantitative terms. The goal of the research 
described in this report was to identify methods that could improve the regulatory review process 
by giving it a more objective technical basis. While some of the models in this report use generic 
industry data, experimental data, and subjective assessments, much of the modeling is based on 
direct measurements of the application under study and, as such, is purely objective in nature. 
Thus, the use of the proposed RePSs models (i.e., of the highly accurate RePSs) could potentially 
yield better results than what can be obtained from the current review process. 
 
As one of the most important characteristics of software quality [ISO, 2001], software reliability 
concerns itself with how well software functions meet the requirements of the customer [Musa, 
1987]. Software reliability is defined [IEEE, 1991] as the probability of failure-free software 
operation for a specified period of time in a specified environment. Failures are the result of the 
triggering of software faults. Triggering of such faults occurs when the right external input 
conditions are met, i.e., the inputs direct the execution towards the location of a fault. In addition, 
the defective state of the application (or product) persists until the output results in a significant 
change of the output conditions when compared to the “correct” or “expected” output conditions. 
Whether or not the defective state persists depends on the logical structure of the application, on 
the types of operations encoded, etc. The input conditions are defined by the operational 
environment in which the application runs. Thus, software reliability is essentially determined by 
product characteristics and the operational environment. Product characteristics are further 
determined by project characteristics (the type of application, the project’s functional size) and 
by development characteristics (the development team’s skill level, the schedule, the tools, and 
development methods). These characteristics influence the likelihood of faults being introduced 
into the application/product.  
 
All the above characteristics can be explicitly or implicitly reflected by software engineering 
measures. Therefore, one inference is that software engineering measures determine software 
reliability. 
 
Software reliability, in this study, is defined to be the probability that the software-based digital 
system will successfully perform its intended safety function, for all conditions under which it is 
expected to respond, upon demand, and with no unintended functions that might affect system 
safety. 
 
A study sponsored by the U.S. Nuclear Regulatory Commission (NRC) (NUREG/GR-0019, 
[Smidts, 2000]) systematically ranked 40 software engineering measures with respect to their 
ability to predict software reliability using expert opinion elicitation. These measures are listed in 
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the Lawrence Livermore National Laboratory (LLNL) report [LLNL, 1998] and IEEE Std. 
982.1-1988 [IEEE 982.1, 1988]. Additional  measures are identified in NUREG/GR-0019. 
 
The concept of a Reliability Prediction System (RePS) was proposed in the NRC study to bridge 
the gap between measures and reliability (see Figure 1.1). A RePS is defined as “a complete set 
of software engineering measures from which software reliability can be predicted.” Figure 1.1 
shows the constitution of the RePS. The construction of a RePS starts with the “Measure,” which 
is also the “root” of a RePS. Support measures are identified in order to connect the measure to 
reliability. The set of the “measure” and “support measures” constitutes a RePS. The “Model” 
between the measures and reliability is generally termed a Software Reliability Model (SRM). 
 

 
 

 Figure 1.1 RePS Constitution 
 
A small, experimental validation of the expert-opinion-based rankings was performed using six 
of the measures documented in NUREG/CR-6848 [Smidts, 2004]. These measures were “mean 
time to failure,” “defect density” (DD), “test coverage” (TC), “requirements traceability” (RT), 
“function point” (FP) analysis and “bugs per line of code” 
 (BLOC) (Gaffney estimate). The application used in the validation study, PACS (Personnel 
Access Control System) (see NUREG/CR-6848 [Smidts, 2004]), is a simplified version of an 
automated personnel entry access system controlling a gate used to provide privileged physical 
access to rooms and buildings. The application was developed industrially using the waterfall 
lifecycle and a Capability Maturity Model (CMM) level 4 software development process. The 
application contains approximately 800 lines of code and was developed in C++. 
 
Different software engineering measures were collected at different stages of the software 
development life-cycle (e.g., requirements, design, coding (implementation), and integration and 
test2) and hence different RePSs can be developed for different phases of the life-cycle. The 
small-scale validation study performed for the NRC demonstrated the University of Maryland 
(UMD) research team’s ability to construct RePSs during the test phase (i.e., from measures 
collected during the test phase) and assessed the difference between reliability estimates 
produced by these RePSs and actual operational reliability. PACS reliability (ps) was assessed by 
                                                 
2 The four stages listed (requirements, design, coding, and integration and test) are key development stages in the “waterfall” 
software development lifecycle model which is widely used in software development. The waterfall model is the recommended 
lifecycle for safety-critical applications. Variations of the waterfall lifecycle development model exist as well as radically 
different life-cycles, e.g., “spiral” software-development model, “incremental” software-development model, etc. In such models, 
the four listed stages may not follow one another in sequence. However, these four stages are always the essential stages in each 
development model. Thus, the methodology proposed in this report is the basis that can be extended (with some required 
adjustments) to all the development models.  
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testing the code against an expected operational profile. In addition, six RePSs were established 
for the test phase. From these RePSs, the UMD research team obtained six reliability estimates 
that were compared with ps. The prediction error defined as the relative difference between ps 
and the estimated value was used to rank the measures. This ranking was found to be consistent 
with the rankings obtained through expert opinion elicitation. 
 
Since the study was limited to six measures, and used what is considered to be a small 
application, the study only partially validated the expert opinion rankings and RePS theory—thus 
the study was not conclusive. Validation on an application of larger size was required in which 
more measures needed to be considered and their corresponding RePSs needed to be constructed. 
Additionally, the six RePSs already constructed were refined to provide better software 
reliability estimates. This was not done during the NUREG/CR-6848 [Smidts, 2004] study 
because the UMD research team were under the requirement to limit the construction of the 
RePSs to current state-of-the-art validation tools, techniques, methodologies, and published 
literature. 
 
This report documents a large scale validation of the methodology. It is a continuation of 
research started in NUREG/GR-0019 [Smidts, 2000] and in NUREG/CR-6848 [Smidts, 2004].  
 
 

1.2  Objective 
 
The objective of this research was to perform a large-scale validation of the methodology 
proposed in NUREG/GR-0019 [Smidts, 2000] and apply it to a nuclear-safety application. This 
was done by applying the methodology to a set of twelve, pre-determined software engineering 
measures (including five of the six measures that served in the initial validation study described 
in NUREG/CR-6848 [Smidts, 2004]). RePSs are developed for these twelve measures for all 
life-cycle phases. In this research, the application of the RePSs to a nuclear power plant reactor 
safety-control system (Plant X) was limited to the testing phase because the post-mortem nature 
of the study did not allow reconstruction of the required state of the application throughout the 
development life-cycle. Such validation helps determine the predictive ability and practical 
applicability of the methodology to the nuclear power industry.  
 
Also, the validation results could help NRC determine whether or not to endorse a standard set of 
metrics, such as those described in IEEE Std 1061-1998 (IEEE Standard for a Software Quality 
Metrics Methodology) [IEEE, 1998]. 
 
Chapters 2 to 18 present the details of the theory and its application to the safety-critical system 
selected. Chapter 19 summarizes the analyses of the results  and presents lessons learned, as well 
as issues to be addressed to further the use of RePS models. Chapter 19 also provides a 
discussion of how this methodology can be applied to support regulatory reviews of software 
used in nuclear power plant DI&C systems.  
 
Chapter 20 provides an extended discussion of the potential for increased efficiency and 
effectiveness of the methodology through automation. 
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2. RESEARCH METHODOLOGY 
 
 

2.1  Overview 
 
The research methodology is described below. It consists of six main steps. These are 
 
1. Selection of the Application (APP) 
2. Measures/Families Selection 
3. Measurement Formalization 
4. Reliability Assessment 
5. Construction of Reliability Prediction Systems 
6. Measurement and Analysis 
 
The above methodology was developed in NUREG/CR-6848 and is applied in this research. 
Each step is described below. 
 
 

2.2  Selection of the Application 
 
Software used by nuclear power plants typically belongs to a class of high-integrity, safety-
critical, and real-time software systems. The system selected for this study should, to the extent 
possible, reproduce these same characteristics. 
 
The UMD research team selected a typical Reactor Protection System (RPS) multi-dimensional 
trip function that uses a number of reactor variables. The function is designed to prevent power 
operation with reactor power greater than that defined by a function of reactor coolant system 
flow and reactor core neutron flux imbalance (i.e., flux in the top half of the reactor core minus 
flux in the bottom half of the reactor core).  
 
The APP was modeled on a typical nuclear power industry APP protection system trip function. 
The APP contained both discrete and high-level analog input and output circuits. These circuits 
read input signals from the plant and sent outputs that could be used to provide trips or actuations 
of safety system equipment, control a process, or provide alarms and indications. The transfer 
functions performed between the inputs and outputs were dependent on the software installed in 
the module. The APP function was developed using the processes described in the following 
standards: 
 
• ANSI/IEEE Standard 830 (1984): IEEE Guide to Software Requirements Specifications. 
• ANSI/IEEE Standard 1016 (1987): IEEE Recommended Practice for Software Design 

Descriptions. 
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• NRC Regulatory Guide 1.152: Criteria for Programmable Digital Computer System 
Software in Safety-Related Systems of Nuclear Power Plants. 

• ANSI/IEEE/ANS Standard 7-4.3.2 (1982): Application Criteria for Programmable Digital 
Computer Systems in Safety Systems of Nuclear Power Generating Stations.  

• ANSI/IEEE Std 279-1971. “Criteria for Protection Systems for Nuclear Power 
Generating Stations.” 

• IEEE Std 603-1991. “IEEE Standard Criteria for Safety Systems for Nuclear Power 
Generating Stations.” 

• IEEE Std 730.1-1989. “IEEE Standard for Quality Assurance Plans.” 
 
It should be noted that the APP was designed to be safety related. As such, it would have been 
developed following NUREG-0800 Chapter 7, BTP-14. The APP documentation available to the 
research team did not explicitly reference BTP-14, however, it cites many of the references 
found in the NUREG-0800 Chapter 7 BTP-143. 
 
The following documents were provided to the contractor by the system developer: 
 
• APP Instruction Manual 
• APP Module-Design Specification 
• APP Design Requirements  
• APP Module μp1 System [Software Requirements Specification] SRS 
• APP Module μp1 System [Software Design Description] SDD 
• APP Module μp1 System Software Code 
• APP Module μp1 Flux/Delta Flux/Flow Application SRS 
• APP Module μp1 Flux/Delta Flux/Flow Application SDD 
• APP Module μp1 Flux/Delta Flux/Flow Application Software Code 
• APP Module μp2 System SRS 
• APP Module μp2 System SDD 
• APP Module μp2 System Software Code 
• APP Module μp2 Flux/Delta Flux/Flow Application SRS 
• APP Module μp2 Flux/Delta Flux/Flow Application SDD 
• APP Module μp2 Flux/Delta Flux/Flow Application Software Code 
• APP Module Communication Processor SRS 
• APP Module Communication Processor SDD 
• APP Module Communication Processor Software Code APP CTC and SMC System SRS 
• APP CTC and SMC System SDD 
• APP CTC and SMC System Software Code 
• APP Flux/Flow CTC App SRS 
• APP Flux/Flow CTC App SDD 
• APP Flux/Flow CTC App Software Code 
• APP Module Software V&V Plan 
• Final V&V Report for APP Module Software 
• APP Test Plan for μp1 
• APP Test Plan for μp2 

                                                 
3 NUREG-0800 Chapter 7 BTP-14 cites 28 references among which 17 are not applicable to APP. Among the remaining 11 
references, six are also references in the APP documentation. 
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• APP Test Plan  for Communication Processor 
• APP Test Summary Report for μp1 
• APP Test Summary Report for μp2 
• APP Test Summary Report for Communication Processor 
 
 

2.3  Measures/Families Selection 
 
In order to perform a validation of the ranking of measures defined in NUREG/GR-0019 
[Smidts, 2000], two software engineering measures were selected from the high-ranked 
categories, six from the medium-ranked categories, and four from the low-ranked categories that 
were identified in NUREG/GR-0019 [Smidts, 2000]. This selection of 12 measures allowed a 
partial validation of the ranking. 
 
The set of measures selected for this study is listed below. 
 
1. Highly-ranked measures: Defect density (DD), Coverage factor (CF). 
2. Medium ranked measures: Fault-days number (FDN), Cyclomatic complexity (CC), 

Requirement specification change request (RSCR), Test coverage (TC), Software 
capability maturity model (CMM), Requirements traceability (RT). 

3. Low-ranked Measures:  Function point analysis (FPA), Cause and effect graphing (CEG), 
Bugs per line of code (Gaffney) (BLOC), Completeness (COM).  

 
A detailed discussion of the measures selection process follows in Chapter 3. 
 
 

2.4  Measurement Formalization 
 
For a measurement to be useful it must be repeatable. Experience with NUREG/GR-0019 
[Smidts, 2000] has shown that no standard definition of the measures exists, or at least no 
standard definition that ensures repeatability of the measurement. To address these issues, the 
UMD team began by reviewing the definitions of the measures [IEEE 982.1, 1988] [IEEE 982.2, 
1988] to define precise and rigorous measurement rules. This step was seen as necessary due to 
the inherent limitations of the IEEE standard dictionaries [IEEE 982.1, 1988] and [IEEE 982.2, 
1988]. This set of measurement rules is documented in Chapters 6 to 17. The values of the 
selected measures were then obtained by applying these established rules to the APP system. 
 
Note that IEEE revised IEEE Std. 982.1-1988 in 2005 (see [IEEE 982.1, 2005]). IEEE Std. 
982.1-2005 includes minor modifications for two of the twelve measures (Defect Density and 
Test Coverage) used in this research and adds maintainability and availability measures that are 
not related to this research. The definitions of defect density and test coverage and the 
approaches for measuring them have not been modified. Therefore, the release of IEEE Std. 
982.1-2005 should not have significant effect on the results presented in this research. 
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2.5  Reliability Assessment 
 
The quality of APP is measured in terms of its reliability estimate. Reliability is defined here as 
the probability that the digital system will successfully perform its intended safety function (for 
the distribution of conditions to which it is expected to respond) upon demand and with no 
unintended functions that might affect system safety. The UMD team assessed APP reliability 
using operational data. The operational data and consequent analysis are documented in 
Chapter 18. 
 
 

2.6  Reliability Prediction Systems 
 
The measurements do not directly reflect reliability. NUREG/GR-0019 [Smidts, 2000] 
recognizes the Reliability Prediction System (RePS) as a way to bridge the gap between the 
measurement and the reliability. RePSs for the measures selected were identified and additional 
measurements were carried out as required. In particular, the UMD team developed an 
operational profile to support quantification. This operational profile is documented in Chapter 4. 
RePS construction is discussed in Chapter 5 and further elaborated in Chapters 6 to 17. 
 
 

2.7  Assessment of Measure Predictive Ability 
 
The next step was to assess the ability of each measure to predict reliability by comparing the 
reliability of the code with the predicted reliability. Discrepancies between these two values were 
then analyzed. This analysis is presented in Chapter 19. 
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3. SELECTION OF MEASURES 
 
 
This chapter discusses the rationale for the selection of the measures used in the project. The 
final selection of the measures includes “Defect density,” “Coverage factor,” “Fault days 
number,” “Cyclomatic complexity,” “Requirement specification change request,” “Test 
coverage,” “Software capability maturity model,” “Requirements traceability,” “Function point 
analysis,” “Cause and effect graphing,” “Bugs per line of code” (Gaffney [Gaffney, 1984]), and 
“Completeness.” 
 
 

3.1  Criteria for Measure Selection 
 
Measures for the validation project were selected based upon the following criteria: 
 
1.  Ranking levels 
2.  Measure applicability 
3.  Data availability 
4.  Coverage of different families 
 
Each of the above criteria is described below. 
 
 

3.2  Ranking Levels 
 
This project was designed to validate the results presented in NUREG/GR-0019 [Smidts, 2000], 
“Software Engineering Measures for Predicting Software Reliability in Safety Critical Digital 
Systems.” In that study, forty4 measures were ranked based on their ability to predict software 
reliability in safety-critical digital systems. This study documented in NUREG/GR-0019 must be 
validated to confirm that highly ranked measures can accurately predict software reliability. High 
prediction quality means that the prediction is close to the actual software reliability value. 
 
A complete validation could be performed by: 1) predicting software reliability from each of the 
pre-selected forty measures in NUREG/GR-0019; and then 2) comparing predicted reliability 
with actual reliability obtained through reliability testing. However, the limited schedule and 
budget of the current research constrained UMD’s ability to perform such a brute-force 
experiment on all forty measures. An alternative method was proposed whereby: a) two 
measures were selected from the high-ranked measures, six from the medium-ranked measures, 

                                                 
4The initial study involved 30 measures. The experts then identified an additional 10 missing measures bringing the total number 
of measures involved in the study to 40.  
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and four from the low-ranked measures; b) the above experiment was performed on these twelve 
measures; and c) the results were extrapolated to the whole spectrum of measures. 
 
The forty measures available during the testing phase were classified into high-ranked, medium-
ranked, and low-ranked measures by comparing the predicted reliability with the actually 
reliability (rate) using the following thresholds5:  
 
1.   High-ranked measures:   0.75 ≤ rate ≤ 0.83  
2.   Medium-ranked measures:  0.51 ≤ rate < 0.75   
3.   Low-ranked measures:   0.30 ≤ rate < 0.51  
 
Table 3.1 lists the high-ranked measures, medium-ranked measures, and low-ranked measures.  
 

Table 3.1 Measures Ranking Classification 
 

Measure Rate Rank No. Ranking Class

Failure rate 0.83 1 

High 

Code defect density 0.83 2 

Coverage factor 0.81 3 

Mean time to failure 0.79 4 

Cumulative failure profile 0.76 5 

Design defect density 0.75 6 

Fault density 0.75 7 

Fault-days number 0.72 8 

Medium 

Cyclomatic complexity 0.72 9 

Mutation score 0.71 10 

Minimal unit test case determination 0.7 11 

Modular test coverage 0.7 12 

Requirements specification change requests 0.69 13 

Test coverage 0.68 14 

Class coupling 0.66 15 

Class hierarchy nesting level 0.66 16 

Error distribution 0.66 17 

Number of children (NOC) 0.66 18 

Number of class methods 0.66 19 
 
 

                                                 
5 These thresholds are determined by the mean (μ) and standard deviation (σ) of the distribution of the rates of the measures. 
Rates define the degree to which measures can be used to predict software reliability. These rates are real numbers ranging from 
0 to 1. Rates of 1 indicate measures deemed crucial to the prediction of software reliability. Rates of 0 correspond to measures 
that definitely should not be used. The rate of a measure is obtained by aggregating the experts’ opinions. The intervals 
correspond to: μ+σ≤ rate ≤ upper limit, μ-δ ≤ rate < μ+σ, lower limit ≤ rate < μ - σ. Please refer to NUREG/GR-0019 for details.  
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Table 3.1 Measures Ranking Classification (continued) 
 

Measure Rate Rank No. Ranking Class 

Lack of cohesion in methods (LCOM) 0.65 20 

Medium 

Weighted method per class (WMC) 0.65 21 

Man hours per major defect detected 0.63 22 

Functional test coverage  0.62 23 

Reviews, inspections and walkthroughs 0.61 24 

Software capability maturity model 0.6 25 

Data flow complexity 0.59 26 

Requirements traceability 0.55 27 

System design complexity 0.53 28 

Number of faults remaining (error seeding) 0.51 29 

Number of key classes 0.51 30 

Function point analysis 0.5 31 

Low 

Mutation testing (error seeding) 0.5 32 

Requirements compliance 0.5 33 

Full function point 0.48 34 

Graph-theoretic static architecture complexity 0.46 35 

Feature point analysis 0.45 36 

Cause and effect graphing 0.44 37 

Bugs per line of code (Gaffney) 0.4 38 

Cohesion 0.33 39 

Completeness 0.36 40 
 
The measures “Defect density,” (which includes “Code defect density” [ranks No. 2] and 
“Design defect density” [No. 6]) and “Coverage factor” [No. 3] were chosen as high-ranked 
measures. The measures “Fault-days number” [No. 8], “Cyclomatic complexity” [No. 9], 
“Requirements specification change request” [No. 13], “Test coverage” [No. 14], “Software 
capability maturity model” [No. 25], and “Requirements traceability” [No. 27] were selected as 
the medium-ranked measures. The low-ranked measures included “Function point analysis” [No. 
31], “Cause and effect graphing” [No. 37], “Bugs per line of code (Gaffney estimate)” [No. 38], 
and “Completeness” [No. 40].  
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3.3  Measure Applicability 
 
Measure applicability is an important criterion by which measures were selected. Since the APP 
code was written in ANSI C and Assembly language, only non-Object Oriented (OO) measures 
could be considered as a part of the pool of measures. 
 
 

3.4  Data Availability 
 
Data availability is another criterion that limits the selection. None of the measures were directly 
available. However, base data from which software engineering measures could be calculated 
were mostly available in the testing phase and either totally or partially unavailable in other 
phases of the life-cycle (see Table 3.2). 
 
 

3.5  Coverage of Different Families 
 
As addressed in Section 2.3 of NUREG/GR-0019: 

 
Measures can be related to a small number of concepts such as for instance the concept of 
complexity, the concept of software failure or software fault. Although the number of 
these concepts is certainly limited, the number of software engineering measures 
certainly does not seem to be. Therefore a many-to-one relationship must exist between 
measures and primary concepts. These primary concepts are at the basis of groups of 
software engineering measures, which in this study are called families. Two measures are 
said to belong to the same family if, and only if, they measure the same quantity (or more 
precisely, concept) using alternate means of evaluation. For example, the family 
Functional Size contains measures “Function Point” and “Feature Point.” Feature point 
analysis is a revised version of function point analysis appropriate for real-time 
embedded systems. Both measures are based on the same fundamental concepts. 
[Albrecht, 1979] [Jones, 1986] [Jones, 1991] 

 
In this study, the attempt was made to select measures from as many families as possible so as to 
obtain a broad coverage of semantic concepts6. The twelve selected measures were chosen from 
the following families: “Fault detected per unit of size,” “Fault-tolerant coverage factor,” “Time 
taken to detect and remove faults,” “Module structural complexity,” “Requirements specification 
change requests,” “Test coverage,” “Software development maturity,” “Requirements 
traceability,” “Functional size,” “Cause and effect graphing,” “Estimate of faults remaining in 
code,” and “Completeness” (see Table 3.2). This selection reflects a bias toward failure- and 
fault-related families as well as requirements-related families. This is due to a strong belief that 
software reliability is largely based upon faulty characteristics of the artifact and the quality of 
requirements used to build the artifact. 
                                                 
6The “semantic” concept was also termed as “family” which is defined as a set of software engineering measures that evaluate the 
same quantity.  
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3.6  Final Selection 
 
Table 3.2 lists several characteristics of the pre-selected measures including: the family to which 
the measure pertains, the measure applicability, the availability of APP data, and the ranking 
class.  
 
The final selection is thus as follows:  “Defect density,” “Coverage factor,” “Fault days number,” 
“Cyclomatic complexity,” “Requirement specification change request,” “Test coverage,” 
“Software capability maturity model,” “Requirements traceability,” “Function point analysis,” 
“Cause and effect graphing,” “Bugs per line of code” (Gaffney estimate), and “Completeness.” 
In Table 3.2, these measures are in boldface. The applicable life-cycle phases of each measure 
are provided in Table 3.3. 
 

Table 3.2 Measure, Family, Measure Applicability, Data Availability, and Ranking Class 
 

Measure Family 
Measure 

Applicability
Data 

Availability 
Ranking 

Class

Failure rate Failure rate Applicable Available 

High 

Mean time to failure Failure rate Applicable Available 

Cumulative failure profile Failure rate Applicable Not Available 

Coverage factor 
Fault-tolerant 
coverage factor

Applicable Available 

Code defect density 
Fault detected per 
unit of size

Applicable Available 

Design defect density 
Fault detected per 
unit of size 

Applicable Available 

Fault density 
Fault detected per 
unit of size 

Applicable Available 
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Table 3.2 Measure, Family, Measure Applicability, Data Availability, and Ranking Class (continued) 
 

Measure Family 
Measure 

Applicability
Data 

Availability 
Ranking 

Class

Modular test coverage Test coverage Applicable Available 

 
Medium

Test coverage Test coverage Applicable Available 

Fault-days number 
Time taken to 
detect and remove 
faults 

Applicable Available 

Functional test coverage Test coverage Applicable Available 

System design complexity 
System architectural 
complexity 

Applicable Available 

Mutation score Test adequacy Applicable Available 

Minimal unit test case 
determination 

Module structural 
complexity 

Applicable Available 

Requirements 
specification change 
requests 

Requirements 
specification change 
requests 

Applicable Available 

Error distribution Error distribution Applicable Available 

Class coupling Coupling Not Applicable - 

Class hierarchy nesting 
level 

Class inheritance 
depth 

Not Applicable - 

Number of children (NOC) 
Class inheritance 
breadth 

Not Applicable - 

Number of class methods 
Class behavioral 
complexity 

Not Applicable - 

Lack of cohesion in 
methods (LCOM) 

Cohesion Not Applicable - 

Weighted method per class 
(WMC) 

Class structural 
complexity 

Not Applicable - 

Man hours per major defect 
detected 

Time taken to detect 
and remove faults 

Applicable Available 

Reviews, inspections and 
walkthroughs 

Reviews, inspections 
and walkthroughs 

Applicable Available 
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Table 3.2 Measure, Family, Measure Applicability, Data Availability, and Ranking Class (continued) 
 

Measure Family 
Measure 

Applicability 
Data 

Availability 
Ranking 

Class

Software capability 
maturity model 

Software 
development 
maturity

Applicable Available 

MediumRequirements traceability 
Requirements 
traceability

Applicable Available 

Number of key classes Functional size Not Applicable - 

Number of faults remaining 
(error seeding) 

Estimate faults 
remaining in code 

Applicable Available 

Cyclomatic complexity 
Module structural 
complexity

Applicable Available 

Low 

Data flow complexity 
System architectural 
complexity 

Applicable Available 

Requirements compliance 
Requirements 
compliance 

Applicable Available 

Mutation testing (error 
seeding) 

Estimate faults 
remaining in code 

Applicable Available 

Cause and effect graphing 
Cause and effect 
graphing

Applicable Available 

Full function point Functional size Applicable Available 

Function point analysis Functional size Applicable Available 

Graph-theoretic static 
architecture complexity 

System architectural 
complexity 

Applicable Available 

Feature point analysis Functional size Applicable Available 

Cohesion Cohesion Applicable Available 

Completeness Completeness Applicable Available 
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Table 3.3 Applicable Life-Cycle Phases of the Selected Measures 
 

Family Measures Applicable Life Cycle Phases 

Estimate of Faults Remaining 
per Unit of Size 

BLOC Coding, Testing, Operation 

Cause and Effect Graphing CEG 
Requirements, Design, Coding, Testing, 
Operation 

Software Development 
Maturity 

CMM 
Requirements, Design, Coding, Testing, 
Operation 

Completeness COM 
Requirements, Design, Coding, Testing, 
Operation 

Fault-Tolerant Coverage 
Factor 

CF Testing, Operation 

Module Structural 
Complexity 

CC Design, Coding, Testing, Operation 

Faults Detected per Unit of 
Size 

DD Testing, Operation 

Time Taken to Detect and 
Remove Faults 

FDN 
Requirements, Design, Coding, Testing, 
Operation 

Functional Size FP 
Requirements, Design, Coding, Testing, 
Operation 

Requirements Specification 
Change Request 

RSCR 
Requirements, Design, Coding, Testing, 
Operation 

Requirement Traceability RT Design, Coding, Testing, Operation 

Test Coverage TC Testing, Operation 
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4. OPERATIONAL PROFILE 
 
 

4.1 Introduction 
 
The operational profile (OP) is a quantitative characterization of the way in which a system will 
be used [Musa, 1992]. It associates a set of probabilities to the program input space and therefore 
describes the behavior of the system. The determination of the OP for a system is crucial because 
OP can help guide managerial and engineering decisions throughout the entire software 
development life cycle [Musa, 1992]. For instance, OP can assist in the allocation of resources 
for development, help manage the reviews on the basis of expected use, and act as a guideline for 
software testing.  
 
The OP of a system is also a major deciding factor in assessing its reliability. Software reliability 
is the ability of a software system or component to perform its intended functions under stated 
conditions for a specific period of time [IEEE, 1991]. The OP is used to measure software 
reliability by testing the software in a manner that represents actual use or it is used to quantify 
the propagation of defects (or unreliability) through extended finite state machine models [Li, 
2004] [Smidts, 2004]. However, determining the OP of the system is a challenging part of 
software reliability assessment in general [Shukla, 2004].  
 
The OP is traditionally evaluated by enumerating field inputs and evaluating their occurrence 
frequencies. Musa pioneered a five-step approach to develop the OP. His approach is based on 
collecting information on customers and users, identifying the system modes, determining the 
functional profile, and recording the input states and their associated occurrence probabilities 
experienced in field operation. Expert opinion, instead, is normally used to estimate the hardware 
components-related OP due to the lack of field data.  
 
Musa’s approach has been widely utilized and adapted in the literature to generate the OP. Some 
of these applications are summarized below: 
 
 Chruscielski and Tian applied Musa's approach to a Lockheed Martin Tactical Aircraft 

System's cartridge support system [Chruscielski, 1997]. User surveys were used instead of 
field data.  
 

 Elbaum and Narla [Elbaum, 2001] refined Musa’s approach by addressing heterogeneous 
user groups. They discovered that a single OP only “averages” the usage and “obscures” the 
real information about the operational probabilities. They utilized clustering to identify 
groups of similar customers.  
 

 Gittens, et al., proposed an extended OP model which is composed of the process profile, 
structural profile, and data profile. The process profile addresses the processes and associated 
frequencies. The structural profile accounts for the system structure, the configuration or 
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structure of the actual application, and the data profile covers the inputs to the application 
from different users [Gittens, 2004].  

 
In this research, the probabilities for individual operations instead of end-to-end operations are 
considered. Musa’s approach and other extended approaches all require either field data or 
historic usage data. These approaches use an assumption that field data or historic usage data 
cover the entire input domain. This assumption is not always true and these approaches are not 
always successful simply because some input data may not be available, especially for safety 
critical control systems.  
 
There are at least two reasons why the entire input data spectrum is often unavailable. First, the 
system may not be widely used. Therefore, very little field and historic usage data can be 
obtained. Second, the field data may not cover the entire spectrum of the input domain because 
some conditions may be extremely rare. Further many inputs may not be visible. The derivation 
of a generic OP generation method for safety critical systems based on limited available data is 
presented in this chapter. 
 
Since the different values of the environmental inputs will have major effects on processing, 
Musa’s [Musa, 1992] recommended approach for identifying the environmental variables is to 
have several experienced system design engineers brainstorm a list of those variables that might 
necessitate the program to respond in different ways. Furthermore, Sandfoss [Sandfoss, 1997] 
suggests that estimation of occurrence probabilities could be based on numbers obtained from 
project documentation, engineering judgment, and system development experience. According to 
Gittens [Gittens, 2004], a specific OP should include all users and all operating conditions that 
can affect the system. In this research their approaches have been extended and a systematic 
method to identify those environmental variables and estimate all the environmental inputs has 
been generated. 
 
This chapter is structured as follows. Section 4.2 describes the generic architecture of the safety 
critical system under study. The method for OP generation will be introduced in Section 4.3 
along with a detailed example. 
 

4.2 Generic Architecture of Reactive Systems 
 
Reactive systems continuously react with their environment and must satisfy timing constraints 
to be able to take into account all the external events [Ouab, 1995]. Such reactive systems may 
be used to implement a safety critical application.  
 
A typical reactive system is composed of components such as sensors, actuators, voters and 
controllers (software and hardware). Both sensors and actuators are used to implement the 
mechanisms that interact with the reactive system's environment. Sensors are used to acquire the 
plant input information7. Safety critical systems are designed to control and monitor these 
systems. The outputs from the different controllers are provided to the voter and the voting 

                                                 
7 The term “plant” has a broad definition. Complex systems such as nuclear power plants, aircrafts, and military systems are 
considered “plants.”  
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results are sent to the actuators, which are used to maintain interaction with the plant, i.e. 
perform corresponding actions. The voter can be a hardware component or an independent 
software-based system. If an accident condition is identified by the voter, a safety protection 
action will be initialized. For instance, in a nuclear power plant, if the reactor’s power 
distribution parameter exceeds its allowable limits, the reactor protection system will issue a trip 
signal to shutdown the reactor and inform the operator. 
 
It should be noted that the notion of sensors and actuators can be extended to human beings. 
Human beings may indeed provide inputs (as sensors) and receive output from the controller and 
then take further actions (as actuators). 
 

4.3 APP Architecture 
 

The APP application under study was a model of a nuclear reactor protection system that falls 
into the reactive system category and in addition is a safety critical system. Figure 4.1 depicts the 
architecture of the APP system. Three layers coexist: the application software layer, the system 
software layer, and the infrastructure layer. 
 

 
Figure 4.1 The APP Architecture 

 
The top layer is an application software layer that contains the safety control algorithms, which 
implement the intended functionality. The APP application software receives the plant inputs, 
and then determines whether the reactor is operating normally. If this is not the case, a trip signal 
is issued to shutdown the reactor. Although this layer can independently perform its intended 
function, the features that monitor and assure the healthy functioning of this layer are not 
implemented in this layer. Such features include, but are not limited to, online diagnostics for 
critical hardware components such as memory, timely enforcement of each cycle to assure the 
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system can react in a real-time manner, etc. The APP system contains a layer that implements 
these features and is depicted in Figure 4.1 as the system software layer. This layer is also called 
the health-monitoring layer.  
 
The status of the system hardware components will be determined through well-defined 
diagnostics procedures. It is worth noting that the operating system for large-scale, safety critical 
control systems falls into this layer also. The system software layer also receives plant inputs to 
monitor the status of the sensors and to determine whether the inputs are in a normal range. If 
this layer detects anomalies, it will first maintain the entire control system in a fail-safe situation 
(for instance, shutdown the reactor in the nuclear industry) and then issue an alarm signal or its 
equivalent (for instance, trip signal in the nuclear industry). Communications are used to share 
information between these two layers. 
 
The lowest layer is the infrastructure layer, which acts as the infrastructure of the system. It is 
obvious that the normal operation of the safety critical system relies on the successful operation 
of this layer. Failure of any hardware component may lead to the malfunction of the system. 
Such failures cannot be neglected in modern safety critical systems. The failure rates of hardware 
components have been reduced to the level of 10-7 failures per hour or less in light of 
contemporary manufacturing technologies [Poloski, 1998]. 
 
It should be pointed out that the division between layers may be somewhat arbitrary. Further the 
three layers are not independent. Application software, system software, and the infrastructure 
are required to work together to perform the system function. Failure modes between layers are 
interdependent. In the case of the APP, the possible impact of failures of the infrastructure layer 
on the application software is handled by the system software, which conducts the online 
monitoring of the infrastructure layer.  
 
The counterparts to “plant inputs” are “infrastructure inputs,” which include the hardware and 
software health statuses. The infrastructure input is an important component of the OP. This is 
because the input inevitably influences the way in which the system software executes. The 
infrastructure inputs are normally invisible and typically are not included in the OP. The 
customers generally are not aware of these infrastructure inputs [Musa, 1992]. 
 

4.4  Generating the Operational Profile 
 
After studying the general architecture of reactive systems, one can conclude that an OP for such 
systems should address operating conditions for each subsystem and the operating conditions for 
the voter if it is an independent software-based system. As for each subsystem, both the 
operating conditions for the application software and the system software should be considered. 
That is,  
 , , … , ,      (4.1) 
where 
 
  OP for subsystem 1 
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  OP for subsystem 2 
  OP for subsystem n 

  OP for the voter if it is a software-based system 
 
The OP for each sub-system with the exception of the voter is discussed in this section. 
 
According to Musa, the system modes (subsystem modes) need to be determined before 
generating the OP. A system mode is a set of functions or operations that are grouped together 
for convenience for analyzing the system's operational behavior. A system can switch between 
system modes so that only one system mode is in effect at a given time, or different system 
modes can exist simultaneously, sharing the same computer resources [Musa, 1992]. After 
determining the system modes, the OP must be generated for each mode. Thus the general 
complete OP for a subsystem with multiple operational modes is: 
 1, … ,      (4.2) 
where 

 OP for subsystem i 

 OP for the first system mode of subsystem i 

 OP for the n-th system mode of subsystem i 

 
In general, an OP of a software system is the complete set of all the input probabilities in a given 
operational mode. Therefore, there is a high level system input which is used to determine the 
system mode. This type of input can be expressed as the probability of the system modes.  
 
Based on the discussion in the previous section, the OP for a subsystem in a specific operational 
mode, , is a pair of two elements: the element denoted as  that represents the OP for the 
plant inputs, and the element denoted as  that represents the OP for the infrastructure inputs. 
Therefore the complete set of an OP in operational mode j can be expressed as: 
 ,      (4.3) 

 
The construction of these two elements is discussed in turn in the following subsections.  
 
There are two subsystems, μp1 and μp2, in the APP system used to implement the trip function. 
These two subsystems work independently. Each subsystem receives inputs from sensors and 
conducts its own internal calculations. Whether or not to send out a trip signal depends on the 
calculation results. The APP voter is a hardware component. There is a communication processor 
(CP) which handles communications between the two subsystems and other equipment outside 
the APP system. CP is only required during the power-up sequence, calibration, and tuning 
modes. CP only uses the infrastructure inputs as do μp1 and μp2 but is not related to the “plant 
inputs.” Thus, the OP for the APP system should include the operational conditions for these 
three subsystems: 
 , ,       (4.4) 
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where 
  OP for the APP system 
  OP for μp1 

  OP for μp2 
  OP for CP 
 
The APP possesses four distinct operational modes: Power On, Normal, Calibration, and Tuning 
[APP,  1]. 
 
1. The “Power On Mode” includes the initialization function and the self test procedures for 

each microprocessor in the APP. The system will not be put into action until it is 
successfully powered on. 

2. The “Normal Mode” is the main working mode for the APP. In this mode the APP 
monitors the nuclear power plant operating conditions.  

3. The “Calibration Mode” is chosen if there is a need to perform an input or output 
calibration.  

4. The “Tuning Mode” is chosen if there is a need to reload the parameters used for the 
application algorithm. 

 
There is a switch on the APP front panel that is used to force the APP to switch from one mode 
to another. The probability of each system mode is shown in Table 4.1 and the composition of 
the OP for each operational mode is also shown. 
 

Table 4.1 Composition of the Operational Profile for the APP Operational Modes 
 

Operational 
Mode 

Operational Profile 
Probability

   ,  

Power On 
μp1 

Infrastructure 
Inputs 

μp2 
Infrastructure 

Inputs 

CP 
Infrastructure 

Inputs
∅ 1.004×10-6 

Normal 
μp1 

Infrastructure 
Inputs 

μp2 
Infrastructure 

Inputs 
∅ 

Plant-Specific 
Inputs 

0.992 

Calibration 
μp1 

Infrastructure 
Inputs 

μp2 
Infrastructure 

Inputs 

CP 
Infrastructure 

Inputs 

Fixed Plant 
Inputs 

0.004 

Tuning 
μp1 

Infrastructure 
Inputs 

μp2 
Infrastructure 

Inputs 

CP 
Infrastructure 

Inputs 

Fixed Plant 
Inputs 

0.004 

 
 
As shown in Table 4.1, in the power-on mode, the APP is not ready to receive inputs from the 
nuclear power plant system. UMD conducted experiments and the results revealed the average 
“power-on” duration to be around 20 s. This included the initialization procedures and “power-
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on” self tests for all three microprocessors. UMD also understood that plant outages required the 
APP module to be shut down. Outage data will be shown later in Table 4.9. This data was 
obtained from a nuclear power plant that had been using a similar APP module in which there 
had been 19 outages in 12 years. Thus, the probability of the APP being in this mode can be 
estimated as  20 spower on 19 power ons12 yr 3600 s/hr 24 hr/dy 365 dy/yr 1.004 10  

 
During the normal mode, the APP system implements a reactor protection (or trip) function that 
evaluated core power distribution [USNRC, 1995]. The trip function is used to prevent operation 
when reactor power is greater than that defined by a function of the reactor coolant system (RCS) 
flow rate and when the indicated power imbalance exceeds safety limits. A reactor trip will be 
issued by the APP system if the total power (flux) or power distribution exceeds a pre-
determined safety boundary. This function is implemented by the APP system application 
software. The APP system software is used to diagnose whether its hardware components are in 
healthy condition. In the case of the APP, the two subsets of OPs are: 
 
1. OP for APP infrastructure inputs. The infrastructure inputs of the APP consist of the 

statuses of all hardware components identified through the procedures predefined in the 
system software. 

2. OP for APP plant inputs. The inputs to the APP include four analog inputs. The 
application software obtains these inputs from the plant and conducts the calculation 
based on the predefined algorithms. The system software also reads these inputs to verify 
whether the input components function normally. The actuator functions according to the 
output of the application and system software against the inputs. The four inputs are the 
measured reactor power in the top half of the reactor core as represented by neutron flux 
monitoring instrumentation ( ), the measured reactor power in the bottom half of the 
reactor core ( ), and reactor coolant flow rates represented by pressure differential 
measurement instruments in the RCS hot leg loop A ( ) and the RCS hot leg loop B 
( ). The plant inputs OP consists of the probability distribution of these four inputs.  

 
Per discussion with a APP system expert the calibration and tuning are performed every two 
weeks and the calibration and tuning required approximately 2 hours to perform. Thus, the 
probability that the APP is in a calibration or tuning mode can be estimated as  
 26 calyr 2 hrcal24 hr/dy 365 dy/yr 0.006 

 
Also, a functional test is performed every 45 days (or 8 tests/year) requiring 2 hr/test. Thus, the 
probability that APP is in a functional test mode per year can be estimated as: 
 8 testsyr 2 hrtest24 hr/dy 365 dy/yr 0.002 
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While in these modes, the APP would be bypassed and would not receive any actual plant inputs. 
Instead, fixed plant inputs would be used to perform the calibration and tuning functions. These 
fixed inputs, however, act as parameters and do not need to be determined as part of the OP. The 
sum of the calibration and tuning probability and the functional test probability are divided 
between the calibration and tuning probabilities in Table 4.1 above (i.e., 0.004 for each mode). 
 
The following subsections provide a general discussion of the OP construction. Further, a 
construction of the infrastructure inputs OP is discussed followed by the plant inputs OP. An 
application of this approach to the APP system is then illustrated. 
 

4.4.1  A Guided Operational Profile Construction 
 
The concept of OP has been used in automated software reliability-engineered testing and 
software reliability assessment studies [Li, 2003] [Li, 2004] [Widmaier, 2000]. 
 
Musa [Musa, 1992] pioneered a five-step approach to develop the OP. As shown in Figure 4.2, 
his approach is based on collecting information on customers and users, identifying the system 
modes, determining the functional profile, and recording the input states and their associated 
occurrence probabilities experienced in field operation. The Musa approach is user and customer 
centric and is most relevant for applications with a large user and customer group. In the case of 
the APP, the number of customers and users was limited and focus was mostly on physical 
system parameters and infrastructure parameters rather than on functions which may depend on 
the type of user or consumer. Furthermore, portions of the data space that represented the most 
significant portions of the OP may not have been encountered in the field (such as hardware 
failure modes, or physical input conditions that trigger trip conditions) and corresponding data 
may not exist. The approach used to generate the APP OP is discussed in this section. 
 
 

 
 

Figure 4.2 Musa’s Five-Step Approach for OP Development 
 
 
 
 

Customer 
Profile 

User Profile

System-mode 
Profile

Functional Profile

Operational Profile
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Figure 4.3 Test Environment 

 
The automated software reliability-engineered testing process involves developing a test oracle 
represented by an Extended Finite State Machine (EFSM) model using a tool named TestMaster 
[TestMaster, 2000] [TestMaster, 2004]. The EFSM model is constructed based on the software 
requirements specification8. The TestMaster tool is used to build the EFSM model and execute 
this model to generate test scripts in accordance with the OP. The test scripts are then executed 
on the software under test (SUT) using WinRunner [WinRunner, 2001] as a test harness. The 
results of the tests (numbers of failures and trials) are recorded and used to calculate reliability. 

 
TestMaster is a test design tool that uses the EFSM notation to model a system [TestMaster, 
2000]. TestMaster captures system dynamic internal and external behaviors by modeling a 
system through various states and transitions. A state in a TestMaster model usually corresponds 
to the real-world condition of the system. An event causes a change of state and is represented by 
a transition from one state to another [TestMaster, 2004]. TestMaster allows models to capture 
the history of the system and enables requirements-based extended finite state machine notation. 
It also allows for the specification of the likelihood that events or transitions from a state will 
occur. Therefore, the OP can be easily integrated in the model.  
 
Figure 4.4 depicts an example EFSM that models the PROM (Programmable Read Only 
Memory) test function in the APP system. 
 

PROM Test Passed

PROM Test Test Results PROM Test Failed

Hardware Failed

Watchdog
Timer Set

== 55H
Operation
Continues

== BBH

== Anything Else

Stayed in
Halt Loop

 
Figure 4.4 An Example EFSM Model for the APP system 

 
The PROM test compares the checksum of the PROM with a predefined value. The value 55H 
will be written to a specific status address if the test passes or BBH if it fails. Any value other 
than 55H or BBH is not expected but may occur if the hardware fails during the status writing 
operation.  
 

                                                 
8 Please refer to Chapter 5 for a more detailed discussion on EFSM and Appendix A for EFSM construction procedures. 
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After completing the model, software tests are created automatically with a test script generator. 
A test is defined as a path from the entry to the exit state. The test generator develops tests by 
identifying a path through the diagram from the entry to the exit state. The path is a sequence of 
events and actions that traverses the diagram, defining an actual-use scenario. As for the above 
example, the ordered state series {PROM Test, Test Results, PROM Test Passed, Operation 
Continues} (denoted as ), {PROM Test, Test Results, PROM Test Failed, Watchdog Timer 
Set, Stayed in Halt Loop}(denoted as ), and {PROM Test, Test Results, Hardware Failed, 
Watchdog Timer Set, Stayed in Halt Loop} (denoted as ) are possible paths. 
  
TestMaster implements several test strategies such as Full Cover, Transition Cover, and Profile 
Cover. The strategy used to generate test cases is Profile Cover. Profile Cover generates a pre-
specified number of  test cases in accordance with the likelihood of each path. In TestMaster, 
the likelihood of a path is the product of the likelihoods of transitions that traverse this path. 
Only likelihoods for the three conditional transitions count: 
 
 , 55  occurs  
 , :  occurs  
 , : Anything else occurs, as shown in Figure 4.4 
 
This is because likelihoods for other transitions are 0.0. Therefore, we have: 
 Pr Pr ,  Pr Pr ,  Pr Pr ,  
 
As such, we define the OP for the example in Figure 4.4, , as: 
 , , Pr , , , , Pr , , , , Pr ,  

 
It should be noted that: Pr , Pr , Pr , 1 
 
The OP is generally defined as: 
 : , Pr  
 
Where  is the set of OP,  is the set of occurrences of the multiple transitions (multiple options 
after one state), and Pr  is the set of probabilities of . In other words: 
 ,  
 
Where i is the index for the occurrence and j is the index for the transitions within each 
occurrence. Pr , 1 
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holds for the i-th occurrence.  
 
This OP definition is different from Musa’s in the sense that the point of interest is transitions 
instead of each individual input. It is worth noting that the condition for a transition may be the 
combination of multiple inputs. This issue will be addressed later in this chapter. 
 
The other OP application is the determination of the software unreliability (probability of failure) 
from the defects using an EFSM. In this study, the defects are propagated by using an EFSM. 
This method proceeds in three stages: 
 

1. Construction of an EFSM representing a user’s requirements and embedding a user’s 
profile information. The OP is represented as the set of probabilities of the transitions. 

2. Mapping of the defects to this model and the actual tagging of the states and transitions. 

3. Executing the model to evaluate the impact of the defects identified by the TestMaster test 
generator using Full Coverage.  

 
The Full Coverage generates all paths and then paths with tagged defects are identified and their 
associated probabilities extracted. The sum of these probabilities is the failure probability per 
demand.  
 
Some conditions in the EFSM are determined by multiple input variables. The determination of 
the likelihoods of these conditions from the input profile (contains likelihood for individual 
input) can be very complicated, especially if the individual inputs are statistically dependent. Not 
all likelihoods for individual inputs are required, especially in the software-reliability 
propagation study—only the likelihoods of the paths that traverse the defects are required. By 
using our method, one can improve the OP generation efficiency by simply not considering the 
non-defect-related transitions.  
 
In summary, the OP is defined in both applications as the occurrence probability of transitions 
rather than the occurrence probability of inputs. Identification and exploration of the multiple 
transitions, termed “OP events” throughout this chapter, guide the construction of such OPs. It is 
worth noting that this method is within Musa’s OP framework. The high-level principles are 
applicable to this study. The procedures for constructing the OP are discussed in detail in the 
following subsections.  

 

4.4.2  Method for Identifying Infrastructure Inputs Related to the OP 
 
As shown in the generic reactive system architecture, the normal operation of such a system 
heavily depends on the infrastructure inputs. In order to obtain a complete OP, each of the 
infrastructure inputs should be identified. The infrastructure inputs usually cannot be obtained 
from the field. This is simply because the failures of these hardware components are rare and 
hardly observed, sometimes even over their entire performance periods. 
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The six-step method discussed below was used to define the OP for the infrastructure inputs:  
 
1. Collect required documents; 
2. Construct the EFSM; 
3. Identify the hardware-related OP events;  
4. Identify the hardware components related to OP events identified in Step 3; 
5. Model the OP events identified in Step 3 using fault trees;  
6. Quantify the fault trees established in Step 5. 
 
These six steps are explained in turn.  
 
Step 1: Collect Required Documents:  
 
The required documents are: 
 
1. Requirements specifications for the system 
2. Requirements specification for the application software 
3. Requirements specification for the system software 
4. Basic failure rate information  
 
The requirements specifications documents clearly define the software functionality and the 
software-hardware interaction. These documents are used to construct the EFSM, to identify 
hardware related OP events, and to construct the fault tree. Failure rate databases were used to 
quantify the fault trees in Step 6.  
 
Step 2: Construct the EFSM. The EFSM was constructed based on the requirements 
specifications. Figure 4.4 depicts an example EFSM based on the requirements given in Figure 
4.5. A discussion on EFSM construction is presented in Chapter 5 and Appendix A. Please refer 
to [Savage, 1997] for an in-depth explanation. 
 

 

Figure 4.5 Excerpt from the APP SRS 
 
 

“A code Checksum shall be performed in the ‘Power-Up Self Tests’ and ‘On-Line Diagnostics’ operations. 
This is done by adding all of the programmed address locations in PROM and comparing the final value to 
a preprogrammed checksum value. A code checksum is a calculated number that represents a summation of 
all of the code bytes. The code checksum shall be stored at the end of the PROM. 
 
The test shall start by reading the program memory data bytes and summing all of the values. This process 
shall continue until all of the code memory locations have been read and a checksum has been generated. 
 
The calculated value shall be compared to the reference checksum stored in RAM. If the values match, the 
algorithm shall update the status byte in the status table with the value 55H and increment the status 
counter by one count. If the checksums don’t match, then BBH shall be written instead to the status byte and 
the status counter shall not be incremented.”
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Step 3: Identify the hardware-related OP events. This can be done by scrutinizing all OP events 
to see if any transition condition relates to the hardware status. For instance, the OP event in 
Figure 4.3 is the occurrence of the multiple transitions after the state Test Results. All three 
transitions were hardware related and hence this OP event is hardware-related. In general, most 
system software OP events are hardware-related.  
 
The example in Figure 4.4 is used to illustrate how to identify the hardware-related OP events. 
This EFSM is constructed based on the fragment of SRS in Figure 4.5. As a general rule, most 
hardware components and the application algorithms should be examined in most safety critical 
systems. These components include but are not limited to, RAM (Random Access Memory), 
ROM (Read-Only Memory), PROM, EEPROM (Electrical Erasable PROM), Data Bus Line and 
Address Bus Line, input and output devices (for instance, A/D (analog to digital), D/A (digital to 
analog) converters), etc. The software components are the calculation algorithm, the input 
reading algorithm and so on. 
 
From Figure 4.4, the hardware-related OP events are identified and presented in Table 4.2. 
 
 

Table 4.2 Identified Hardware-Related OP Events for PROM Diagnostics in the APP system 
 

No. OP Events 

1 The probability of 55H being written into APP status table 

2 The probability of BBH being written into APP status table 

3 The probability of neither 55H nor BBH being written into APP status table 

 
Step 4:  Identify hardware components related to OP events identified in Step 3 
 
The hardware components that contribute to the OP events in Table 4.2 can be either explicitly 
identified from the SRS in Figure 4.5, (for instance, the hardware component PROM is easily 
identified); or from background knowledge about the workings of the control system (for 
instance, the check-sum operation involves read/write activities), and the RAM that contains the 
intermediate results of the checksum. In principle, normally the components under examination 
plus the components involved in the process should be considered. The hardware components for 
each OP event listed in Table 4.2 were examined in turn. Table 4.3 summarizes the findings for 
the OP Event 1 and Table 4.4 for the OP events 2 and 3. 
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Table 4.3 Hardware Components Related to OP Event 1 
 

No. Requirements Basic Components

1 

This is done by adding all of the programmed address 
locations in PROM and comparing the final value to a 
preprogrammed checksum value. A code checksum is a 
calculated number that represents a summation of all of the 
code bytes. The code checksum shall be stored at the end of 
the PROM.  

PROM 

RAM 

Components Involved in 
Read/Write Operation 

Register 

2 

The test shall start by reading the program memory data bytes 
and summing all of the values. This process shall continue 
until all of the code memory locations have been read and a 
checksum has been generated. 

Components Involved in 
Read/Write Operation 

Register 

3 
The calculated value shall be compared to the reference 
checksum stored in RAM.  

RAM 

Components Involved in 
Read/Write Operation 

Register 

4 
If the values match, the algorithm shall update the status byte 
in the APP status table with the value 55H and increment the 
status counter by one count.  

RAM 

Components Involved in 
Read/Write Operation 

Register 

5 
If the checksums don’t match, then BBH shall be written 
instead to the status byte and the status counter shall not be 
incremented. 

RAM 

Components Involved in 
Read/Write Operation 

Register 
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Table 4.4 Basic Components for Events 2 and 3 

Event No. Event Basic Components 

2 
The probabilities of BBH is written into the APP 
status table 

PROM 

RAM 

Components Involved in 
Read/Write Operation 

Register 

3 
The probabilities of neither 55H nor BBH is written 
into the APP status table 

RAM 

Components Involved in 
Read/Write Operation 

Register 

 
Step 5: Model the OP events identified in Step 3 using fault trees 
 
Fault tree analysis is a mature technique widely used in the reliability and risk analysis fields. 
This technique is restricted only to the identification of the system elements and events that lead 
to one particular undesired failure. The undesired failure event appears as the top event, and this 
is linked to more basic fault events by logic gates. In this study the fault tree is used to model the 
OP events. 
 
For example, the fault trees for events 2 and 3 are shown in Figure 4.6 and Figure 4.7 
respectively. The PROM test result is BBH if any of the following four events occur: PROM 
fails, the RAM that contains the intermediate checksum results fails, the R/W operation fails (due 
to control bus, data bus, or address bus failures), or the Central Processing Unit (CPU) fails. 
 
Step 6: Quantify fault trees established in Step 5 
 
The basic events presented in Figure 4.6 and Figure 4.7, such as RAM fails, and PROM fails, 
need to be quantified. The ideal solution is to obtain failure rate information from the hardware 
manufacturer. This approach normally does not work due to the proprietary nature of such 
information. Some public databases, such as the RAC database [RAC, 1995], MIL-HDBK-217 
[MIL, 1995] and the Nuclear Regulation Commission (NRC) database [Poloski, 1998, 
NUREG/CR-5750] can be used for the probabilistic modeling of digital systems. The use of such 
databases may lead to sacrificing the precision of the data. The failure rate for a specific 
component may not be found but information for similar hardware may be available. For 
instance, the specific RAM used in APP cannot be found in those databases. A failure rate for a 
general RAM device is used instead. Table 4.5 shows the failure rate of the APP hardware 
components. 
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Figure 4.6 Fault Tree for Event 2 

 
 

 
Figure 4.7 Fault Tree for Event 3 
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Table 4.5 Failure Rate for APP Hardware Components 
 

Hardware 
Components 

Description 
Sub-Components 

Failure Rate 
(failure/hour) 

Components 
Failure Rate 
(failure/hour)

RAM  8K byte 3.3E-7 3.3E-7 
DPM Dual Port RAM 1.7E-8 1.7E-8 

PROM  64K byte 2.6E-8 2.6E-8 

EEPROM 64K byte 2.4E-9 2.4E-9 

CPU register N/A 6.1E-8 6.1E-8 

Latch  N/A 1.2E-8 1.2E-8 

Address bus line Line Bus Driver 4.6E-7 
5.22E-7 

 Line Bus Receiver 6.2E-8 

Data bus line Line Bus Driver 4.6E-7 
5.22E-7 

 Line Bus Receiver 6.2E-8 

Control line Line Bus Driver 4.6E-7 
5.22E-7 

 Line Bus Receiver 6.2E-8 

MUX For analog input 3.3E-8 3.3E-8 
 
The results of this step are summarized in Table 4.6 and Table 4.7. 
 

Table 4.6 OP Events Quantification Results 
 

Events 
Hardware 

Components
Failure Rate 
(failure/hour)

Resources Results  

The probability of 
BBH is written into 
the APP status 
table. 

PROM λ1 = 2.6E-8 NUREG/CR-5750 

7.13×10-5/demand 

RAM λ2 = 3.3E-7 NUREG/CR-5750 

Components 
Involved in 
Read/Write 
Operation 

λ3 = 1.6E-6 NUREG/CR-5750 

Microprocessor λ4 = 3.3E-8 NUREG/CR-5750 

The probability of 
neither 55H nor 
BBH is written into 
the APP status 
table. 

RAM λ2 = 3.3E-7 NUREG/CR-5750 

7.03×10-5/demand 

Components 
Involved in 
Read/Write 
Operation 

λ3 = 1.6E-6 NUREG/CR-5750 

Microprocessor λ4 = 3.3E-8 NUREG/CR-5750 
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Table 4.7 Operational Profile for APP PROM Diagnostics Test 
 

No. Event Operational Profile (per demand)

1   PROM Test Status Flag is 55H  P1 = 1 - P2 - P3 = 0.9998584 

2   PROM Test Status Flag is BBH P2 = 7.13×10-5 

3   PROM Test Status Flag is neither 55H nor BBH P3 = 7.03×10-5 
 
It should be noted that simply using the failure rate data from the databases is based on the 
assumption that the infrastructure inputs related to hardware components have not been replaced. 
If any hardware component has been replaced, the classical renewal theory should be applied to 
obtain a more accurate OP. For the case of the APP system, as will be stated later in Chapter 18, 
some hardware components such as EEPROM, AVIM (Analog Voltage Isolation Process) and 
5V DC regulator had been replaced. Thus, the renewal theory should be incorporated to the OP 
estimation.  
 
For instance, the EEPROM of the APP module used in a power plant unit had been replaced by a 
new EEPROM. The old EEPROM had been deployed for 77,040 hours and the new EEPROM 
was deployed for 18,000 hours. The failure rate information given in the databases is an average 
value (2.4×10-9 failure/hour). In this particular study, the estimation of reliability is on a per 
demand basis. If one neglects the occurrence of this replacement and assumes the cycle time for 
one calculation is 0.129 s, the probability of failure per demand is:  
 Pr 2.4 10 /3600 / 0.129 8.6 10 /  

 
If the replacement is taken into account, the average failure rate throughout the entire 
deployment period can be roughly estimated as: 
 ln 2.4 10 18,00077,040 18,000 5.61 10 /  

 
Therefore the probability of failure per demand of the EEPROM can be updated to: 
 Pr 5.61 10 /3600 / 0.129 /2.01 10 /  
 

4.4.3  Estimating the Plant Inputs Based on Plant Operational Data 
 
The plant inputs are gathered from the field through sensors. Ideally the OP for plant inputs can 
be derived from the plant's operational data if this data set is complete. By “complete,” it is 
meant that both normal and abnormal data are available. In the case of the APP, “normal data” 
corresponds to situations under which the reactor operates within the power distribution envelope 
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shown in Figure 4.8; “abnormal data” corresponds to situations under which the data is outside 
the power distribution envelope. The truth, however, is that abnormal conditions are extremely 
rare.  
 
The following steps describe the general procedure used to estimate the OP of plant inputs based 
on plant operational data. 
 
1. Construct the EFSM for the application software. The algorithm used in the application 

software is given in Figure 4.9. In other words, if the power and power distribution (as 
represented by neutron flux measurements) is outside the power distribution envelope, 
the application software trips; otherwise it does not. The notions in Figure 4.9 are: DF is 
the measured neutron flux imbalance, P is the reactor thermal power, TT is the maximum 
reactor thermal power, B1, B2, B3, B4, M1 and M2 are setpoints (coefficients). The 
corresponding EFSM is shown in Figure 4.8.  

 
Figure 4.8 Barn Shape of the Power Distribution Trip Condition 

 
2. Identify the OP events. The OP events and the associated conditions are defined in Figure 

4.9. The results are presented in Table 4.8. 
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Figure 4.9 EFSM for APP Application Software 
 
 

Table 4.8 APP Application Software Algorithm 
 

Event Condition

1 

2 
 and 

 

3  

4 
 and 

5  

6 Normal condition 

 
 
3.      Derive the data sets representing individual OP event’s conditions from the normal field 

operation data. 
 
UMD obtained a data set that contained eleven-years of normal operational data (hour by hour) 
from a nuclear power plant. There were 88,418 distinct data records. Each record included the 
total reactor coolant flow, the neutron detector flux difference, and other critical plant 
parameters. An example of such records is shown in Figure 4.10.  
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where:  
 NI 5 PR FLUX    the current flux percentage 
 RPS CH A TOTAL RCS FLOW the total reactor coolant system flow of reactor protection 

system channel A 
 RC LOOP A FLOW  the flow of reactor coolant loop A; 
 RC LOOP B FLOW  the flow of reactor coolant loop B; 
 NI 5 DETECTOR FLUX DIFF the detector flux difference; 
 CORE THERMAL POWER BEST current thermal power percentage; 
 INCORE IMBALANCE   the indicator of core delta flux. 
 

Figure 4.10 Example of Plant Operational Data 
 
 
After a careful study of the data set, UMD identified three classes of data that could not be 
treated as normal operational data. The three classes are described in turn: 
 
1) Outage Data. 
 
Data recorded during outages cannot be considered an integral part of the normal operational 
data set. Indeed, data recorded during these time periods is out-of-range and basically 
meaningless. The plant owner provided UMD with outage start date and end date information for 
the power plant, as shown in Table 4.9. There are 15,094 records falling within these time 
intervals.  
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Table 4.9 Outage Information for Plant 
 

From To 

4/27/95 3:59 AM 5/10/95 10:30 PM 

11/2/95 1:00 AM 12/10/95 4:58 AM 

2/28/96 9:02 AM 3/1/96 1:59 PM 

10/4/96 12:33 AM 2/12/97 8:54 PM 

3/28/97 2:42 PM 4/11/97 4:12 PM 

6/13/97 4:30 PM 7/3/97 2:52 PM 

9/18/97 3:41 AM 12/24/97 11:55 PM 

12/28/97 3:55 PM 12/31/97 11:59 PM 

1/1/98 12:01 AM 2/11/98 3:04 AM 

2/15/98 3:47 AM 2/19/98 12:38 AM 

8/8/98 9:11 AM 8/25/98 8:46 PM 

5/21/99 1:18 AM 7/3/99 5:00 PM 

2/17/00 3:35 PM 3/2/00 2:10 AM 

11/24/00 1:10 AM 1/9/01 11:48 PM 

3/23/02 4:48 PM 4/26/02 11:46 AM 

9/20/03 2:11 PM 12/13/03 2:00 AM 

12/18/03 8:00 AM 1/1/04 2:00 PM 

4/9/05 9:27 AM 5/11/05 9:20 AM 

10/7/06 12:00 AM 11/30/06 12:00 AM 
 
 
2) Missing Data 
 
Some operational data was missing from the data set. This data typically was labeled: “bad 
input,” “shut down,” or “under range.” The plant APP system expert stated that these records 
likely corresponded to data recorded during maintenance or test activities. Therefore, the data 
cannot be considered an integral part of the normal operational data either. The number of data 
records affected was 792. 
 
3) Aberrant Data 
 
There were 21 strange records either with a negative reactor coolant flow value or an extremely 
large reactor flow value (of the order of 1026 which far exceeds the normal values that are 
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typically of the order of 105). This data was suspicious, so UMD eliminated this data from 
consideration9. 
 
The total number of operational data points, with each data point representing the equivalent of 
one hour of operating history is: 
 88,418 15,094 792 21 72,511 hours 
 
The number of data points falling within each domain (OP event) was then counted and is 
reported in Table 4.10. 
 

Table 4.10 Number of Trip Data Sets Falling within Each Domain 
 

Event Condition Number of Data Sets 

1 2 

2 
 and 

 
0 

 

3 7 

4 
 and 

 
0 

5  1 

6 Normal condition 72,501 

 
 
It is clear that for conditions 1, 3 and 5, the probability of occurrence of the condition can be 
estimated as the number of data points over the total number of operational data points. 
Therefore, the probability of occurrence of conditions 1, 3 and 5 is respectively: 
 2 trips72,511 hr 2.758 10  trip/hr 

 7 trips72,511 hr 9.654 10  trip/hr 

 1 trip72,511 hr 1.379 10  trip/hr 

 

                                                 
9 It would seem that one of the reasons that the records may show these “strange records” might be a failure of the hardware or 
software in the system or failure of systems that provide inputs to the system. These “strange records” may also reflect additional 
maintenance/outage data.  
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Because there are no data points (events) within the domains of conditions 2 and 4, one could 
conclude that the probabilities of occurrence of these two conditions are zero. However, to obtain 
a more accurate estimation, a statistical extrapolation method can be applied. The data sets that 
can be used for the extrapolation are those in area 1 and area 2 in Figure 4.11. The number of 
data points in area 1 is forty five and in area 2 is one.  
 
 

 
Figure 4.11 Data used for Statistical Extrapolation 

 
 

The Shapiro-Wilk test is applied to test the normality of the 45 data points in Area 1. This test 
evaluates the null hypothesis  (i.e. data set ( , , … , ) comes from a normally distributed 
population) using the test statistics: 
 
 ∑∑  (4.5)

 
where coefficients  are functions of the expected value and covariance matrix of the order 
statistics of random variables from the standard normal distribution and would be fixed for a 
given sample size and ( , , … , ) are ordered sample values. 
 
The guiding principle of the test is to construct a regression of ordered sample values on 
corresponding expected normal order statistics, which should be linear for a data set from a 
normally distributed population.  represents the linear fit of the regression, i.e., the closer  is 
to a value of 1, the more evidence exists that ( , , … , ) are normally distributed.  
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In the test, the -value illustrates the probability of obtaining a particular value of the test 
statistics or a more extreme value of this statistic under the null hypothesis. As shown in 
Table 4.11, the possibility of observing  0.969387 or smaller is 27.51% (larger than 10%). 
This result, which includes both the value of  and that of , offers sufficient evidence that the 
null hypothesis is reasonable. Consequently, the hypothesis that the data points come from a 
normal distribution cannot be rejected. 
 

Table 4.11 Tests for Normality Results 
 

 
For this distribution, the mean of the data points is 30.32 and the standard deviation is 15.29. The 
extrapolation result is: 0 30.3215.29 0.023 

 
where  is the cdf of the standard deviation. 
 
Therefore, the probability of occurrence of condition 2 is a conditional probability calculated as: 
 45 data points72,511 hr 0.023 1.427 10  data points/hr 

 
For condition 4, obviously, the fact that there exists only 1 data point in area 2 is not sufficient to 
perform a valid statistical extrapolation. Traditionally, the maximum likelihood and unbiased 
estimate of the failure rate  is given in Equation 4.6 [Ireson, 1966] if we assume  failures are 
observed in  hours of operating time: 
 
  (4.6)

                                                             
A common solution to failure rate estimation when no failure event has been observed is to take 
one half as the numerator ( ) in Equation 4.6 [Welker, 1974]. Thus, the probability of the 
occurrence of condition 4 can be roughly estimated as 0.5 data points/72,511 hr = 6.9×10-6 data 
point/hr. 
 
The analysis presented above yields the OP for the APP application software summarized in 
Table 4.12. 

Tests for Normality

Test Statistic P Value 

Shapiro-Wilk  0.969387 Pr  0.2751 
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Table 4.12 Operational Profile for APP Application Software 
 
Event Condition Probability Probability

1  2.758 × 10-5 9.8828 × 10-10/demand 

2 
 and 

 
1.427 × 10-5 5.1134 × 10-10/demand 

3  9.654 × 10-5 3.4594 × 10-9/demand 

4 
 and 

6.9 × 10-6 2.4725 × 10-10/demand 

5  1.379 × 10-5 4.9414 × 10-10/demand 

6 Normal condition 0.99984 0.9999999943/demand 
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5. RELIABILITY ESTIMATION CONSIDERATIONS 
 
 
This chapter establishes a basis for estimating software reliability from the number of defects 
remaining in the software. The concept of fault exposure ratio, , introduced by Musa [Musa, 
1987] is revisited. A new concept, entitled “new ” ( ), is proposed to replace Musa’s fault-
exposure ratio. This  is based on an analytical analysis of fault-propagation phenomena and, 
as such, eliminates the effort of estimating some parameters (such as linear execution time) using 
Musa’s method.  
 
 

5.1  Estimation of Reliability Based on Remaining Known Defects 
 
Generally, software fails due to defects introduced during the development process. A defect 
leads to a failure if the following occurs: 1) the defect is triggered (executed), 2) such execution 
modifies the computational state, and 3) the abnormal state propagates to the output and 
manifests itself as an abnormal output, i.e., a failure [Voas, 1992] [Li, 2004]. 
 
The “Propagation, Infection, Execution” (PIE) concept [Voas, 1992] is borrowed to describe this 
failure mechanism. The acronym PIE corresponds to the three program characteristics above: the 
probability that a particular section of a program (termed “location”) is executed (termed 
“execution” and denoted as E), the probability that the execution of such section affects the data 
state (termed “infection” and denoted as I), and the probability that such an infection of the data 
state has an effect on program output (termed “propagation” and denoted  as P). Thus the failure 
probability (unreliability)  is given in Equation 5.1: 
 
   (5.1) 
where 
  The propagation probability for the i-th defect 
  The infection probability for the i-th defect 

 The execution probability for the i-th defect 
 
In the original PIE method, P, I, and E are statistically quantified using mutation [Voas, 1992]. 
However, this method is unable to combine the OP and unable to consider defects that do not 
appear in the source code (e.g., requirements errors like missing functions). In addition, the large 
amount of required mutants hinders the practical implementation of this method.  
 
In this study, a simple, convenient, and effective method to solve this problem is proposed using 
an extended finite state machine model (EFSM) [Wang 1993]. EFSMs describe a system’s 
dynamic behavior using hierarchically arranged states and transitions. A state describes a 
condition of the system and the transition can graphically describe the system’s new state as the 
result of a triggering event.  
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The method proceeds in three stages:  
 

1. Construction of an EFSM representing the user’s requirements and embedding the 
user’s OP information;  

 2. Mapping of the defects to this model and actual tagging of the states and transitions;  
 3. Execution of the model to evaluate the impact of the defects.  
 
Assume a defective or faulty transition  (the transition that, when executed, leads to at least a 
faulty state in the system), and , , …  is the set of  input/output paths in the 
EFSM that traverse this defect. An input/output path is defined as a path in the EFSM model that 
starts from the start state at the very top level (denoted as top level 0) and ends with the final or 
exit state at level 0 and is the set of all the transitions along the path. Let (pd(g)) = (dg1, dg2, ... dgn) 
be the g-th input/output path consisting of n transitions and  Pr(pd(g)) be the probability of 
traversing the g-th path. The probability of failure caused by this defect can then be determined 
by: 
 ∑                  (5.2) 
where: ∏       (5.3) 
and: 

 Conditional probability that the q-th transition is traversed in the g-th path  
   Transition index 
   Path index  
   Number of transitions in the g-th path 
 
Equations 5.2 and 5.3 also hold true if there are multiple defects M. In this case, these M defects 
first need to be mapped and tagged into the EFSM. Pd then becomes the set of paths 
encompassing M defects. The parameter m in (5.2) is then replaced with m(M), number of 
input/output paths containing at least one of the M defects. This feature solves a critical problem 
in the software engineering literature: the interaction among multiple defects and its effect on the 
fault propagation process.  
 
It should be noted that Equations 5.2 and 5.3 are based on an assumption that P and I are equal to 
1. If this assumption does not hold, the EFSM model must be modified (refined to a lower level 
of modeling) in such a manner that P and I are equal to 1.  
 
A defect does not infect and/or propagate if its execution is not triggered. For example, a 
correctly implemented code segment (written in C syntax) and its associated EFSM are given in 
Figure 5.1.  
 
Assume that the real implementation contains a defect in the predicate: the threshold is 6 instead 
of 4. We deduce that if 6, then this defect will not infect the software state because  will be 
0. Similarly, if 4, this defect will not infect the software execution since  will be 1. Only if 4 6 will this defect infect the system by assigning  the value 1 instead of 0. Thus the 
condition under which the defect does not infect the software is 6 and 4. The faulty 
code and the decomposed EFSM are given in Figure 5.2. The bold branch indicates the defect 
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and its corresponding state and transition in the EFSM. By following the same principle and 
consideration, the non-propagation condition is identified and the EFSM is decomposed in a 
manner that assures I equals 1. The process of decomposition of the EFSM may also be stopped 
whenever conservative estimates of probabilities of failure become acceptable. 
 

Correct Code EFSM 

… 
if (x > 4) 
   y = 0; 
else  
   y = 1; 
… 
 

Correct Code and Its EFSM 
 
  

Faulty Code EFSM 

… 
if (x > 6) 
   y = 0; 
else  
   y = 1; 
… 
 

Figure 5.1 Faulty Code and Its EFSM 
 
 
The following measures utilize EFSM to propagate the defects found during the measurement 
process: Completeness (Chapter 9), Defect Density (Chapter 12), Requirements Traceability 
(Chapter 16), and Test Coverage (Chapter 17). 
 
 

5.2  Reliability Estimation from the Unknown Defects 
 
The method described in Section 5.1 is limited to known defects, i.e., defects found by inspection 
and testing. The known defects discovered by inspection relate to the measures Completeness, 
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Defect Density, and Requirement Traceability. The Test Coverage measure also uses this method 
to obtain the fault exposure ratio for a specific application through propagation of defects found 
by testing. Unknown defects that may remain in the application will contribute to application 
failure, and not accounting for these defects will result in an overestimation of reliability. 
Therefore, to improve this method, one needs to: 1) estimate the number of unknown defects 
remaining in the application and 2) investigate the unknown defects’ contribution to the 
probability of failure. In this section the number of defects remaining (both known and 
unknown) is obtained by means described in the following chapters and then used to analytically 
estimate the reliability.  
 

5.2.1  Reliability Estimation from the Number of Defects Remaining 
 
Once the number of defects remaining is determined, the software reliability of the system can be 
estimated using Equations 5.4 and 5.5. Musa [Musa, 1987] proposed the concept of fault 
exposure ratio  and its relation to the failure rate) and  (the number of defects remaining—
including both known and unknown unresolved defects). 

  (5.4) 

Then, the software reliability at time t is10: 

  (5.5) 
Where: 

 Fault exposure ratio, the average value is 4.2 × 10–7 [Musa, 1987]  
 Linear execution time, s. 
 Number of defects 

 Execution time, s 
 
TL is the linear execution time, defined as the execution time of the software if each statement 
executes only once. 
 
As seen from Equation 5.4, the failure rate λ is constant if no change is made to the software. The 
failure rate λ will vary during software development phases (such as testing) as faults are being 
introduced, detected, and/or removed (thus N and K will change). It will also vary as the code is 
modified structurally (thus K or TL will change). On the other hand, λ will not vary during 
operation when the code is frozen. 
 
The value of K has become obsolete for modern safety-critical systems. For example, if one 
evaluates safety critical software reliability within a one-year period using Equation 5.5, the time 
t is roughly 3.15 × 107 seconds. For a real-time system, TL is normally less than one second (e.g., 
                                                 
10 “If a program has been released and no changes will be made, the failure intensity of this program is a constant. For the basic 
execution time model and the logarithmic Poisson model, the failure process is then described by a simple homogeneous Poisson 
process with failure intensity as a parameter. The number of failures in a given time period follows a Poisson distribution. The 
failure intervals thus follow an exponential distribution [Musa, 1998].” It should be pointed out that although there are quite a 
few software reliability models available, Musa’s basic execution time model (used here) is one of the two models (with Musa’s 
logarithmic Poisson model) that have been fully validated and confirmed through many practical applications [Dale, 1982] 
[Derriennic, 1995] [Farr, 1996] [Jones, 1991] [Musa, 1975] [Malaiya, 1992]. 
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0.129 s). Furthermore, assuming only one fault remains in the code, the reliability is calculated 
as: 
 . . . 1.8 10  
 
This implies that software with only one fault remaining almost definitely fails at the end of one 
year. This conclusion contradicts existing power plant field data.  
 
To address this contradiction between theory and evidence, the concept of  (new K) is 
proposed to simplify Equation 5.5: 
 

      (5.6) 

 
where t is the execution time. The execution time is either the time-per-demand or the length of a 
year. The latter is normally used in the nuclear industry.  
 
Both K and   will vary as a function of life-cycle phases because the structural properties of 
the code and the number of defects in the code changes. 
 
Then the probability of failure (unreliability) simply becomes a function of the number of defects 
(assume the failure rate is very small for safety critical systems): 
 1      (5.7) 
 
It is worth noting that  is an average value and can be analytically estimated from the known 
defects remaining in the software using the EFSM technique. The precision of the estimation 
statistically depends on the number of defects propagated and the time over which the defects 
existed in the life cycle. Defect locations also influence the value of . In this study it is 
assumed the average value of  obtained from the known defects represents the value of the  
of the unknown defects. This is an assumption which needs further study to validate it or to find 
a way to improve it. Some studies [Lait, 1998] have demonstrated that different defect detection 
techniques may reveal different types of defects. It is reasonable to assume that the combination 
of different defect detection techniques may reveal the majority of defects and thus increase the 
validity of this assumption. 
 
The remaining defects are classified into two groups: known and unknown. Let us assume that 
the number of known remaining defects is N1, and the number of unknown defects is N2. Thus, 
the total number of remaining defects is: 
 

      (5.8) 
 
The unreliability contributed from N1 and N2 are:  
 

     (5.9) 
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and 
 
 

                 (5.10) 
respectively. 
 
The N1 defects can be mapped into the EFSM and thus pf1 can be propagated. The average  is 
obtained from Equation 5.9 as: 
 

     (5.11) 

 
Equation 5.7 can then be written as: 
 1 11 2     (5.12) 

 
where N1 is the number of known but unresolved defects and N2 is the number of unknown and 
unresolved defects. Note that when no known, unresolved defects exist, one can still apply the 
technique using the last known and resolved defects and obtain a conservative estimation of . 
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6. BUGS PER LINE OF CODE 
 
The goal of this measure is estimate the number of faults in a program module per line of code. 
This measure is simplistic and ignores many aspects of the software and its development, so it is 
not likely to be very accurate. 
 
This measure can only be applied when source code is available. As listed in Table 3.3, the 
applicable life cycle phases for the BLOC measure are Coding, Testing, and Operation. 

6.1  Definition 
  
Gaffney [Gaffney, 1984] established that the total number of defects in the software (F) could be 
empirically expressed as a function of the number of lines of code. That is: 
 ∑ 4.2 0.00155                                                        (6.1) 

where 
  The module index 
  The number of modules 
  The number of lines of code for the i-th module 
 
Gaffney justified the power factor of 4/3 in [Gaffney, 1984] based on Halstead’s formula 
[Halstead, 1977]. The coefficients of 4.2 and 0.0015 were estimated based on the Akiyama 
assembly code data [Halstead, 1977] [Gaffney, 1984]. The experts engaged in the NUREG/GR-
0019 study [Smidts, 2000] concluded that these coefficients are meaningful for modern 
programming languages such as C or C++, but did not express confidence in this measure’s 
ability to predict reliability and therefore ranked it very low. It is obvious that size is not the only 
factor that influences reliability. However, at this point, no validated model exists that includes 
additional factors (such as the developers’ skill) in the BLOC model. As illustrated in Figure 1.1, 
such additional factors, if identified and validated, can be easily incorporated in to the RePS 
model and can be used as support measures. Since the current RePS from BLOC only considers 
size, its prediction ability is limited. 
 

6.2  Measurement Rules 
 
The BLOC definition identified two primitives in Equation 6.1: the module and the Lines of 
Code (LOC) for each module. The module index, however, is used to numerate the module and 
is not considered a primitive. The counting rules for the two primitives are described in turn in 
Section 6.2.1 and 6.2.2. 
 
The counting rules have been customized to the specific language (C language) used in the APP 
development process. The software on the safety microprocessor 1 (μp1) and communication 
microprocessor (CP) were developed using the Archimedes C-51 compiler, version 4.23; the 
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software on safety microprocessor 2 (μp2) was developed using the Softools compiler, version 
1.60f. Due to the obsolescence of these tools, the software was ported to the Keil PK51 
Professional Developer’s Kit and IAR EWZ80, version 4.06a-2, respectively. The major 
modifications are the replacements of some obsolete keywords with their equivalents in the new 
compilers. Consequently, the porting does not change the results. 
 

6.2.1  Module 
 
A module is defined as “an independent piece of code with a well-defined interface to the rest of 
the product” in [Schach, 1993]. IEEE [IEEE, 1990] defines module in the following two ways: 
“A program unit that is discrete and identifiable with respect to compiling, combining with other 
units, and loading,” or “A logically separable part of a program.” Gaffney [Gaffney, 1984], 
however, did not provide a clear definition but mentions a module as a “functional group.” 
 
The existence of multiple definitions of the module concept and the lack of consensus make its 
measurement problematic.  
 
In the previous validation study [Smidts, 2004], the system under study was implemented using 
the C++ language. The researchers thus defined a class as a module since a class is a functional 
group, an independent piece of code with a well-defined interface to the rest of the product, and a 
logically separable part of a program. 
 
In this study, the definition of a module needs to be modified because the system under study 
was coded using the C language. The individual file rather than the function is considered as a 
module due to the dependency among functions in a file introduced by global variables. 
 
The APP software is composed of two types of user-defined files: the source file (.c file) and the 
header file (.h file). The .c file contains the major software implementation while the .h file 
mainly contains the declaration of (global) variables, the function prototypes (function 
declarations), and macros or inline functions. A header file cannot be considered individually to 
be a module because it does not provide any functionality. Rather, a .c file together with the .h 
files included in it becomes an independent piece of code with a well-defined interface to the rest 
of the product. As such, a module is defined as a .c file together with all the user-defined .h files 
it includes. 
 
The counting rule for the module is to enumerate all .c files in the APP software package. The 
user-defined .h files need to be identified per .c file to facilitate the LOC counting. 
 

6.2.2  LOC 
 
The C language used in the APP software development is a super set of the ANSI C language. 
”Super set” means that additional features such as keywords are added into the standard ANSI C 
language to reflect the characteristics of the embedded system development. It is worth noting 
that development environments (C compilers) differ in terms of keywords.  
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The LOC counting is heavily language- and keyword-dependent. Because two C compilers were 
used in the APP development, the LOC measurement rules needed to encompass the difference. 
Because only a limited number of features are added into the two compilers, the most efficient 
way to conduct the measurement was to measure according to the ANSI C standard for the first 
round, and then identify all added features and count them separately in the second round.  
 
The following counting rules reflect this idea: the general ANSI C counting rules are introduced 
and are followed by the individual compiler. 
 

6.2.2.1  LOC Counting Rules for ANSI C 
 
Rule 0:  Logical statement in a module (a .c file plus all user defined .h files it includes) 

counts. Each statement counts 1. A statement normally ends with “;”. Exceptions 
are specified below. 

 
Rule 1:  Statements that count 

The “while” statement: starts with the keyword “while” and ends with the finish 
of the condition “)” 
The “if” statement: starts with the keyword “while” and ends with the finish of the 
condition “)” 

  The “else” keyword followed by “if” statement 
  The definition of a function: ends with “)” 
  The “switch” statement: ends with “)” 
  The “case” statement: ends with “:” 
  The “default” statement: ends with “:” 
  The “for” statement: ends with “)” 
  Other statements: end with “;” 
 
Rule 2:  Statements that do not count 
  Blank lines 
  Comment: starts with /* and ends with */ 
  Preprocessor directive: starts with # and ends with a hard return 
  The beginning of a statement block, the left bracket “{” 
  The end of a statement block, the right bracket “}” 
  The “else” keyword itself 

Other statements that cannot be classified by Rule 1 and Rule 2. These must be 
part of a statement that spans multiple physical lines. 

 

6.2.2.2  LOC Counting Rules for Keil C 
 
The Keil C compiler introduces the keywords in Table 6.1 in addition to the ANSI C standard. 
These new keywords are part of the statement and do not impact the counting rules described in 
the previous section. However, part of the functions in the μp1 software was implemented using 
assembly language. This section describes the counting rules for the C51 family assembly code. 
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Table 6.1 Additional Keywords in Keil Environment 
 

_at_ alien bdata 

bit code compact 

data far idata 

interrupt large pdata 

_priority_ reentrant sbit 

sfr sfr16 small 

_task_ using xdata

 
 
Rule 0:  Physical statement counts. Each statement counts 1. 
 
Rule 1:  Statements that count 

Instructive statement: starts with a valid instruction, including “MOV,” “MOVX,” 
“JMP,” “INC,” “DJNZ,” “CJNE,” “RET” and more (summarized in Table 6.2). 

 
Rule 2:  Statements that do not count: 
  Blank line 
  Comment: starts with “;” 
  Label statement; ends with “:” 

Preprocessor directive: starts with the keywords “NAME,” “PUBLIC,” 
“EXTRN,” “DPR_START_ADDR,” “SCODE,” “RSEG,” “END,”  
“_ _ERROR_ _,” “EVEN,” “EXTERN,” “LABEL,” “ORG,” “PUBLIC,” 
“SEGMENT,” “SET.” 

  Other statements that cannot be classified by Rule 1 and Rule 2. 
 
 

Table 6.2 C51 Assembly Instructions 
 

BIT BSEG  CODE 

CSEG DATA DB  

DBIT DD DS 

DSB DSD DSEG 

DSW  DW IDATA 

ISEG LIT PROC 

ENDP sfr sfr16 

sbit USING XDATA 

XSEG   
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6.2.2.3  LOC Counting Rules for IAR C 
 
IAR C Compiler introduces the following keywords in addition to the ANSI C standard: “sfr,” 
“no_init,” “interrupt,” “monitor,” “using,” “_C_task.” These new keywords are part of the 
statement (modifier) and do not impact the counting rules described in the previous section. 
 
The original μp1 software implementation contains pieces of embedded assembly code. This 
feature is not supported by IAR C Compiler. These pieces were rewritten to implement the same 
functionality.  
 
Unlike the μp1 software, the μp2 software does not contain functions implemented in assembler. 
The counting rules for the assembly code were not developed.  
 

6.2.2.4  Considerations for General Use 
 
Most of the above counting rules, especially the rules for ANSI C, are generic to any C code. 
Although the rules for the two compilers are specific, the principle of counting the instructions is 
generic also. In conclusion this set of rules can be easily customized to any embedded software 
developed using C and assembly languages. 

 

6.3  Measurement Results 
 
It should be noted that the definition of F (the total number of defects in the software) includes 
an assumption that smaller modules are less-fault prone. Thus, the result of F might be highly 
dependent on the definition of module. The higher the level module definition used, the less F 
calculated by Equation 6.1. For the APP system, there can be two levels of definition of module: 
 
1. Each “.c” and “.h” files (i.e., “SF1PROG” along with its header files is a module), 
2. Each function or subroutine (i.e., the “Main function” of “SF1PROG” is a module). 
 
Table 6.3 lists modules (according to the definition level 1), the corresponding number of lines 
of code for the source code and header files, and the corresponding value of Fi. The number of 
defects, F, per module is also shown. The total number of defects remaining in the APP source 
code is approximately equal to 115 (rounded up to an integer). 
 
Similarly, Table 6.4 lists the measurement results according to the second level module 
definition. The total number of defects remaining in the APP source code is approximately 530. 
 
One header file may appear multiple times in different modules. Since each file is included in a 
module individually, a header file’s defect contribution to one module is independent of its 
contribution to other modules. As such, one header file counts separately in different modules. It 
should also be mentioned that the header files are those developed by the APP development team 
and do not include standard library header files. There are sufficient reasons to believe that those 
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standard header files have higher reliability than modules assessed by Equation 6.1 due to their 
large usage in a number of applications and the consequent thorough testing they have 
undergone.  Consequently, those files are not considered in this research. 

 
Table 6.3 Bugs Per Line of Code Results (By Definition Level 1) 

 

  Module LOC 
Header 

Files’ LOC
Total LOC Fi F 

 
μp1 

 

SF1APP 226 254 480 9.84 

53.54 

SF1CALTN 245 163 408 8.74 

SF1FUNCT 285 163 448 9.34 

SF1PROG 234 254 488 9.96 

SF1TEST1 159 163 322 7.51 

SF1TEST2 205 163 368 8.15 

 
μp2 

APP1 206 0 206 6.02 

31.66 

CAL_TUNE 318 0 318 7.46 

MAIN 379 0 379 8.31 

ON_LINE 44 0 44 4.43 

POWER_ON 154 0 154 5.44 

CP 

COMMONLI 76 114 190 5.84 

29.25 
COMMPOW 241 114 355 7.97 

COMMPROC 120 114 234 6.36 

COMMSER 317 114 431 9.08 

Total  3,209 1,616 4,825 114.45 114.45 

 
Table 6.4 Bugs Per Line of Code Results (By Definition Level 2) 

 

  LOC Fi Total

 
μp1 

 

SF1APP 480 24.55 

 
243.25 

SF1CALTN 408 32.03 

SF1FUNCT 448 70.05 

SF1PROG 488 49.23 

SF1TEST1 322 31.47 

SF1TEST2 368 35.92 
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Table 6.4 Bugs Per Line of Code Results (By Definition Level 2) (continued) 
 

  LOC Fi Total

 
μp2 

APP1 206 18.03 

 
128.26 

CAL_TUNE 318 19.23 

MAIN 379 52.37 

ON_LINE 44 8.56 

POWER_ON 154 30.07 

CP 

COMMONLI 190 22.18 

 
158.46 

COMMPOW 355 44.11 

COMMPROC 234 35.09 

COMMSER 431 57.08 

Total 4825 529.97 
529.97 
(530) 

 
There are two main concerns regarding the results: 
 
1. It is believed that definition 1 is not appropriate. As Gaffney specified, a module is a 

“functional group.” But according to the inspection of the APP system, the modules 
shown in Table 6.5 are not all arranged by functionalities. For example, SF1APP is a 
special function used to decide whether or not to generate a trip signal while SF1PROC 
includes the initialization function and a high-level main program for the first safety 
microprocessor. So from this point of view, the level 2 module definition is more 
appropriate in the case of APP. 

2. There are two issues with the coefficients used in Equation 6.1. First, those coefficients 
were determined about 20 years ago and have not been updated since then. No updating 
information could be obtained. Second, as stated before, the counting rules may be the 
same for both C code and assembly code, while the coefficients in Equation 6.1 for these 
two types of code may not be the same. This topic, however, is out of the scope of this 
research.  

 
Once the total number of defects in the software using Gaffney’s equation have been obtained, 
the  number of remaining defects can be derived  by subtracting the number of defects found 
during the development process (by inspection and testing). That is, .  
 
The number of defects found by inspection and testing is presented in Table 6.5. 
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Table 6.5 Number of Defects Found by Inspection and Testing during the Development Process 
 

 Number of Defects Found 

μp1 SRS Inspection 60 

μp2 SRS Inspection 65 

CP SRS Inspection 55 

μp1 SDD Inspection 65 

μp2 SDD Inspection 110 

CP SDD Inspection 40 

μp1 code Inspection 7 

μp2 code Inspection 11 

CP code Inspection 15 

Testing  7 

TOTAL 435 

 
Thus, the total number of remaining defects is: 
 530 435 95 
 
The next step is to partition the defects based on their criticality. According to [Jones, 1996], 
defects are divided into four categories according to their severity level: 
 

 Severity 1: Critical problem (software does not operate at all) 
 Severity 2: Significant problem (major feature disabled or incorrect) 
 Severity 3: Minor problem (some inconvenience for the users) 
 Severity 4: Cosmetic problem (spelling errors in messages; no effect on operations) 

 
Only defects of Severity 1 and Severity 2, called “critical defects” and “significant defects,” 
respectively, should be considered for estimating software reliability. Defects with Severity 3 
and 4, called “minor defects” and “cosmetic defects,” respectively, do not have an impact on the 
functional performance of the software system. Thus, they have no effect on reliability 
quantification.  
 
Table 6.6 (Table 3.48 in [Jones, 1996]) presents US averages for percentages of delivered defects 
by severity levels. 
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Table 6.6 Averages for Delivered Defects by Severity Level 
(Adapted from Table 3.48 in [Jones, 1996]) 

 

Function points 
 Percentage of Delivered defects by Severity Level 

Severity 1 
(critical) 

Severity 2 
(significant)

Severity 3 
(minor)

Severity 4 
(cosmetic)

1 0 0 0 0 

10 0 0 1 0 

100 0.0256 0.1026 0.3590 0.5128 

1000 0.0108 0.1403 0.3993 0.4496 

10000 0.0150 0.1450 0.5000 0.3400 

100000 0.0200 0.1200 0.5000 0.3600 

Average  0.0197 0.1215 0.4996 0.3592 
 
Using Table 6.6 and logarithmic interpolation, the percentages of delivered defects by severity 
level can be obtained for APP. For example, based on the assessment of the APP function point 
count (discussed in detail in Chapter 14), the percentage of delivered defects of severity 1 
corresponding to FP = 301 (100 < 301 < 1000) is: 
 0.0256 . 301 100 0.0185

               (6.2) 
 
Table 6.7 presents the percentages of delivered defects by severity level for a system equivalent 
in size to FP.. 

 
 

Table 6.7 Delivered Defects by Severity Level for a System Equivalent in Functional Size to FP 
 

 
Severity 1 
(critical) 

Severity 2 
(significant)

Severity 3 
(minor)

Severity 4 
(cosmetic)

Percentage of 
delivered defects 

0.0185 0.1206 0.3783 0.4826 

 
The total percentage of Severity 1 (critical faults) and Severity 2 (significant faults) is: 
 0.0185 0.1206 0.1391                                              (6.3) 
 
Table 6.8 presents the partitioned defects (based on the severity level) for APP. 
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Table 6.8 Partitioned Defects (Based on Severity Level) for APP Using BLOC 
 

Total Number 
of Defects 

Defects 
(Critical) 

Defects 
(Significant) 

Defects 
(Minor) 

Defects 
(Cosmetic) 

Defects 
(Critical + 
Significant) 

95 1.7575 11.457 38.9385 45.847 13.2 

 
 

6.4  RePS Construction from BLOC 
 
The probability of success-per-demand is obtained using Musa’s exponential model [Musa, 
1990] [Smidts, 2004]: 

                                                    (6.4) 
 
where 

 
Reliability estimation for the APP system using the Bugs per Line of 
Code (BLOC) measure. 

       Fault Exposure Ratio, in failure/defect. 

        Number of defects estimated using the BLOC measure. 

                 Average execution-time-per-demand, in seconds/demand. 

               Linear execution time of a system, in seconds. 

 
Since a priori knowledge of the defects’ location and their impact on failure probability is 
unknown, the average K value given in [Musa, 1979] [Musa, 1990] [Smidts, 2004] (4.210 / ) must be used. 
 
The linear execution time, TL, is usually estimated as the ratio of the execution time and the 
software size on a single microprocessor basis [Musa, 1987] [Musa, 1990] [Smidts, 2004]. 
However, in the case of the APP system, there are three parallel subsystems, each having a 
microprocessor executing its own software. Each of these three subsystems has an estimated 
linear execution time. Therefore, there are several ways to estimate the linear execution time for 
the entire APP system such as using the average value of these three subsystems.  
 
For a safety-critical application, like the APP system, the UMD research team suggests making a 
conservative estimation of TL by using the minimum of these three  values. Namely:  

           min 1 , 2 ,   
   min 0.018, 0.009, 0.021  0.009 seconds 
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where 1   
Linear execution time of Microprocessor 1 (μp1) of the APP system. TL 
(μp1) = 0.018 seconds (refer to Chapter 17). 2   
Linear execution time of Microprocessor 2 (μp2) of the APP system. TL 
(μp2) = 0.009 seconds (refer to Chapter 17). 

  
Linear execution time of Communication Microprocessor (CP) of the 
APP system. TL (CP) = 0.021 seconds (refer to Chapter 17). 

 
Similarly, the average execution-time-per-demand, τ, is also estimated on a single 
microprocessor basis. Each of the three subsystems in APP has an estimated average execution-
time-per-demand. To make a conservative estimation, the average execution-time-per-demand 
for the entire APP system is the maximum of the three execution-time-per-demand values. 
Namely: 
 
    max 1 , 2 ,   

   max 0.082, 0.129, 0.016        
       0.129 seconds/demand 
where 1   

Average execution-time-per-demand of Microprocessor 1 (μp1) of the 
APP system. τ(μp1) = 0.082 seconds/demand (refer to Chapter 17). 2   
Average execution-time-per-demand of Microprocessor 2 (μp2) of the 
APP system. τ(μp2) = 0.129 seconds/demand (refer to Chapter 17). 

  
Average execution-time-per-demand of Communication 
Microprocessor (CP) of the APP system. τ(CP) = 0.016 
seconds/demand (refer to Chapter 17). 

 
Thus the reliability for the APP system using the BLOC measure is given by: 
 

    
. . . .  

           0.999920539 

6.5  Lessons Learned 
 
It is well known that the lines of code measurement can be easily conducted because tools are 
available to support such measurements. BLOC measurement based on Equation 6.1 requires a 
clear definition of “module,” which the author of BLOC did not provide. The existence of 
multiple definitions of the module concept [Schach, 1993] [IEEE, 1990] and the lack of 
consensus make its accurate measurement difficult. The research team explored two 
interpretations of “module” and conducted corresponding measurements as shown in Section 6.3. 
Based on the two sets of measurement results, a more meaningful interpretation was selected. 
The RePS based on BLOC is straightforward once the average execution-time-per-demand and 
the linear execution time are quantified.  
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7. CAUSE-EFFECT GRAPHING 
 
 
Cause-effect graphing (CEG) is a formal translation of a natural-language specification into a 
graphical representation of its input conditions and expected outputs. The graph depicts a 
combinatorial logic network. It illustrates the logical relationship between inputs and outputs 
along with the constraints among the inputs and outputs. Therefore, it could aid in identifying 
requirements that are incomplete and ambiguous in the SRS [Myers, 1976] [Myers, 1979] 
[Nuisimulu, 1995]. 
 
According to IEEE [IEEE, 1988], this measure explores the inputs and expected outputs of a 
program and identifies the ambiguities. Once these ambiguities are eliminated, the specifications 
are considered complete and consistent.  
 
CEG can also be used to generate test cases in any type of computing application where the 
specification is clearly stated (that is, no ambiguities) and combinations of input conditions can 
be identified. It is used in developing and designing test cases that have a high probability of 
detecting faults that exist in programs. It is not concerned with the internal structure or behavior 
of the program [Elmendorf, 1973]. 
 
This measure can be applied as soon as the requirements are available. As listed in Table 3.3, the 
applicable life cycle phases for CEG are Requirements, Design, Coding, Testing, and Operation. 
 

7.1  Definition 
 
There are four primitives in this measure defined in [IEEE, 1988]: 
 
1. List of causes: distinct input conditions 
2. List of effects: distinct output conditions or system transformation (effects are caused by 

changes in the state of the system) 
3. : number of ambiguities in a program remaining to be eliminated 
4. : total number of ambiguities identified 
 
Then, the measure is computed as follows: 
 % 100 1      (7.1) 

 
Cause effect graphing measures CE%, the percentage of the number of ambiguities remaining in 
a program over the total number of identified ambiguities through cause and effect graphing. The 
RePS which uses this measure is not based on the value of CE% but, rather, on the defects that 
were found in the SRS using an “inspection approach” based on cause and effect graphing. The 
impact of these defects is assessed using the PIE concept and, more specifically, an EFSM. The 
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defects themselves are characterized by their type and their location in the application. “Defect 
types” can be measured according to a nominal scale and “defect locations” can be measured 
according to an interval scale.  
 
The detailed definitions of cause and effect are shown in the following subsections.  
 

7.1.1  Definition of Cause 
 
In the SRS, any functional event is identified as either an effect or a cause. A cause represents a 
distinct input condition or an equivalence class of input conditions. It is defined as an input 
event, typically triggered by a user.  
 
A cause only has two mutually exclusive statuses: enabled (represented by “1”) or disabled 
(represented by “0”). 
 

7.1.2  Definition of Effect 
 
An effect might be a system output or a system action. There are two types of effects: user-
observable effects and user-unobservable effects. User-observable effects, also called “primary 
effects,” are those effects that can be noticed by users. For example, the statuses of LEDs, either 
on or off, are user-observable effects. The user-unobservable effects will be treated as 
intermediate effects.  
 
An effect only has three mutually exclusive statuses: present (represented by “1”), absent 
(represented by “0”), or non-existent (represented by “NULL”). 
 

7.1.3  Definition of Logical Relationship and External Constraints 
 
While constructing a cause-effect graph, both the cause-effect logical relationship and the 
external constraints can be identified by applying the so-called “pattern-matching method.” 
 
There are four basic patterns of cause-effect logical relationships, which are shown in Table 7.1 
[Myers, 1979]: 
 
A constraint is a limitation (syntactic, environmental, or other) among causes or effects. There 
are five possible patterns of external constraints, which are shown in Table 7.2 [Myers, 1979]. 
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Table 7.1 Cause-Effect Logical Relationships 
 

Logical 
Relationship 

Pattern 

IDENTITY IF cause C1 THEN effect E1 

NOT IF NOT cause C1 THEN effect E1 

AND IF cause C1 AND C2 THEN effect E1 

OR IF cause C1 OR C2 THEN effect E1 

 
Table 7.2 Cause-Effect Constraints 

 

External 
Constraints 

Patterns 

EXCLUSIVE AT MOST ONE OF a, b CAN BE INVOKED 

INCLUSIVE AT LEAST ONE OF a, b MUST BE INVOKED 

ONE-ONLY-ONE ONE AND ONLY ONE OF a, b CAN BE INVOKED 

REQUIRES IF a IS INVOKED THEN b MUST BE INVOKED 

MASKS EFFECT a MASKS OBSERVANCE OF EFFECT b 

 
 

7.2  Measurement Rules 
 
The measurement rules for identifying causes, effects, logical relationships, and constraints are 
described in the following subsections, respectively. 
 

7.2.1  Rule for Identifying Causes 
 
To identify causes, one should read the specification carefully, underlining words or phrases that 
describe causes. Any distinct input condition or equivalence class of input conditions should be 
considered causes. 
 
Only functional events in the specification are considered. Each cause is assigned to a unique 
number. None of the descriptive specifications are considered in identifying causes. 
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7.2.2  Rule for Identifying Effects 
 
Effects can be identified by reading the specification carefully and underlining words or phrases 
that describe effects. Some intermediate effects are important for determining the status of the 
system. So both the primary effects and the intermediate effects are required to be considered. 
 
Only functional events in the specification are considered. All the descriptive specifications are 
not considered in identifying effects. Each effect is assigned to a unique number. 

7.2.3  Rule for Identifying Logical Relationship  
 
The logical relationship between causes and effects can be identified by analyzing the semantic 
content of the specification linking the causes with the effects. Keywords such as “not,” “or,” 
“and” usually act as indicators of logical relationships. Other words denoting logical 
relationships, such as “both” and “neither” also should be addressed. 
 
The logical relationships are primarily found in function specifications, but can also be found in 
some descriptive specifications. To ensure complete identification of all logical relationships 
between causes and effects, both function and descriptive specifications should be analyzed. The 
four basic logical relationships are shown in Table 7.1. 
 

7.2.4  Rule for Identifying External Constraints 
 
The external constraints among causes can be identified by checking for the occurrence of 
related causes specified in the SRS. The external constraints among effects can be identified by 
checking for the occurrence of related effects specified in the SRS. As with the logical 
relationships, the external constraints could be specified in both functional specifications and 
descriptive specifications. In order to identify all external constraints, both functional and 
descriptive specifications need to be analyzed. The five basic external constraints among causes 
and the external constraints among effects are shown in Table 7.2.  
 
The following example shows how to apply the above measurement rules to a SRS: 
 
Example #1:  An application of these measurement rules 
 
The following paragraph is excerpted from an APP requirement specification document for μp1 
system software: 
 
“Upon power-up or a module reset, the first safety microprocessor shall perform the 
initialization algorithm. Below are the functional requirements performed in the sequence given 
unless stated otherwise. Refer to Figure 7.1 for high level flow chart.” 
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Figure 7.1 Initialization Flow Chart 
 
1. “Upon power-up or a module reset, the first safety microprocessor shall perform the 

initialization algorithm” is a functional specification; below are the functional 
requirements performed in the sequence given unless stated otherwise. Refer to Fig. 7.1 
[APP, Y1]. 

2.  “Power-up” and “module reset” are two causes in the functional specification. 
3. “The first safety μp shall perform the initialization algorithm” is the only identifiable 

effect from this specification. It is then necessary to determine if this effect is a prime 
effect or not. Because it is neither user-observable nor a system action, we consider it an 
intermediate effect (the prime effect is the detailed initialization algorithm). With this in 
mind, several prime effects can be identified from the figure. 

4. The only logical relationship here is identifiable by the use of the keyword “or.” 
5. There are no constraints. 
 
Based on the above rules, the CEG measurement results for this example are shown in Table 7.3. 
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Table 7.3 CEG Measurement Results Table for the Example 
 

Causes Relationships Constraints Effects 

C1. Power up 

C1 or C2 N/A 

E1. Define interrupt 
E2. Initialize global variables 
E3. Initialize status table 

C2. Module reset 
 

E4. Reset outputs 
E5. Read ID from PROM 
E6. Send Module ID to DPM 
E7. Wait for response from CP 

 
 

7.2.5  Rules for Constructing an Actual Cause-Effect Graph 
 
An Actual Cause-Effect Graph (ACEG) is an implemented cause-effect graph constructed 
according to the SRS. The following steps show how to construct an ACEG based on an SRS: 
 
1. Identify all requirements of the system and divide them into separate identifiable entities. 
2. Carefully analyze the entities to identify all the causes and effects in the SRS and discern 

all the cause-effect logical relationships and constraints. 
3. Represent each cause and each effect by a node identified by its unique number. For 

example, E1 for effect one or C1 for cause one. 
4. Interconnect the cause and effect nodes by analyzing the semantic content of the 

specification and transforming it into a Boolean graph. Each cause and effect can be in 
one of two states: true or false. Using Boolean logic, set the possible states of the causes 
and determine under what conditions each effect will be present. 

5. Annotate the graph with constraints describing combinations of causes and effects that 
are impossible because of semantic or environmental constraints. 

6. Identify any defects in the SRS and map them to the ACEG.  
 

7.2.6  Rules for Identifying Defects in ACEG 
 
Defects can be any cause that does not result in a corresponding effect, any effect that does not 
originate with a cause, and effects that are inconsistent with the requirements specification or 
impossible to achieve. There are five main types of defects that can be found through 
constructing an ACEG: 
 
1. Missing effect 
2. Extra effect 
3. Missing constraint 
4. Extra constraint 
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5. Wrong Boolean function 
a. Missing cause in a Boolean function 
b. Extra cause in a Boolean function 
c. Wrong Boolean Operator 

 
The detailed rules for identifying each type of defect are shown in the following 
 
1. Missing effect: 
 
While some missing effects may be obvious, in general, finding obscure missing effects requires 
mastery of the system. Thus, there is no straightforward process by which to identify missing 
effects. 
 
2. Extra effect: 
 
Extra effects are unnecessary effects. Therefore, to identify extra effects, an inspector must 
understand the physical meaning of the effect and determine whether or not it is necessary.  
 
3. Missing constraint(s): 
 
To identify missing constraints, the inspector should be capable of understanding the physical 
meaning of all the causes and effects in the ACEG. 
 
The process for identifying missing constraints is: 
 

a. Sequentially arrange all causes. 
b. The REQUIRES constraint must be applied if two cause events occur sequentially. If it 

has not been applied, then it is a missing constraint. 
c. For causes that occur simultaneously, examine if EXCLUSIVE, INCLUSIVE, or ONE-

ONLY-ONE constraints were neglected. 
d. Sequentially arrange all effects. 
e. The MASKS constraint must be applied to effects that can occur simultaneously and if 

there is a risk for their co-existence. If it is missing, then it is a missing constraint. 
 

4. Extra constraint(s): 
 
To identify extra constraints, the inspector should be capable of understanding the physical 
meaning of all causes or effects in a constraint and determining whether the constraint is 
necessary or not. 
 
The process for identifying extra constraints is: 
 

a. Sequentially arrange all causes. 
b. If two cause events do not occur sequentially, the REQUIRES constraint should not be 

applied to them. If applied, it is an extra constraint. 
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c. If two or more events do not occur simultaneously, EXCLUSIVE, INCLUSIVE or ONE-
ONLY-ONE constraints should not be applied to them. If applied, it is an extra 
constraint. 

d. Individually examine the MASKS constraints and determine if each is necessary or not. If 
not, it is an extra constraint. 

 
5. Wrong Boolean function: 
 
To identify a Wrong Boolean function, the inspector should be capable of understanding the 
physical meaning of all causes or effects. In addition, the inspector should have mastered the 
operation mechanism of the system to determine what logical relationships should be applied to 
the causes.  
 
The process for identifying extra constraints is: 
 

1. Consider one Boolean function at a time. 
2. Individually check the causes in the Boolean function and determine whether or not a 

cause is necessary. An unnecessary cause is an extra cause in a Boolean function. 
3. Consider the remaining causes in the ACEG. If any cause should have been involved in 

the Boolean function, it is a missing cause. 
4. Consider other possible causes not included in the ACEG. If any cause should have been 

involved in the Boolean function, it is a missing cause. 
5. Check all Boolean operators in the Boolean function to identify incorrect one(s). 

 

7.2.7  Rules for Constructing a Benchmark Cause-Effect Graph 
 
The Benchmark Cause-Effect Graph (BCEG) is constructed by removing all identified defects 
from an ACEG. Example #2 illustrates how to apply these rules for constructing an ACEG and 
its corresponding BCEG. 
 
Example #2: An application of the ACEG and the BCEG and associated defects found by 
measurement rules 
 
The following paragraph is excerpted from the APP requirement specification document for μp1 
system software: 
 
“After completing all of the diagnostic tests, the Power-Up Self Tests algorithm shall reset the 
Power-Up Active flag and determine the integrity of each of the diagnostic test’s results. If all 
tests passed, then the algorithm shall turn ON front panel LEDs, refresh the status relays and 
turn ON the μp status LED before proceeding to the Main Program.” 
 
Step 1: Apply measurement rules to the specification.  
 
The measurement results table for this example is shown in Table 7.4: 
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Table 7.4 CEG Measurement Results for the Example 
 

Causes Relationships Constraints Effects

C1. RAM (DPM, Data bus line) test passed All tests passed:
 
C1 and C2 and  
C3 and C4 and  
C5 and C6 and  
C7 and C8 

N/A E1. Turn ON 
front panel 
LEDs 

C2. Address bus line test passed 

C3. PROM checksum test passed 

C4. EEPROM checksum test passed E2. Refresh the 
status relays C5. Boards test passed 

C6. Algorithm test passed E3. Turn ON the 
μp status LED C7. Analog input circuits test passed 

C8. Discrete input circuits test passed 
 
Step 2: Draw the ACEG:  the ACEG is shown in Figure 7.2. 
 

  
 
 

Figure 7.2 ACEG for Example #211 
 
Step 3:  Check Defects: 
 
Upon system inspection, an inspector would find that C4 is not the necessary cause for 
proceeding to the main program. Even if the EEPROM test fails in the power-on self test, the 
system can go into the main program. There is a special function in the main program to check 
the status of the EEPROM test. In summary, C4 is an extra cause.  
 
Step 4:  Draw the BCEG:  By removing the defect from the ACEG, Figure 7.3 shows the BCEG 
for this example. 

                                                 
11 A “–” mark indicates “IDENTIFY,” a “^” mark indicates “AND,” a “v” mark indicates “OR,” and a “~” mark indicates 
“NOT.” 
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Figure 7.3 BCEG for Example #212 

7.3  Measurement Results 
 
In this research, CEG measurement results are based only on the APP SRSs—the cause-effect 
structures in the SDD and the code have not been analyzed. However, the CEG method can be 
applied to those stages. If so, the reliability of the software in different stages can be obtained. 
The measurement rules for CEG in those stages have not been generated because that was out of 
the scope of this research. 
 
A list of the defects found in the APP SRSs is shown in Table 7.5. 
 

Table 7.5 List of Defects Found by CEG Based On the APP SRSs 
 

Defect 
No. 

Location 
Defect Description 

 
Cross- 

Reference

1 μp1 
Extra cause (C11) in deciding whether to enter the main 
program. 

Figure 7.4 

2 μp1 
Missing cause (C12) for setting the EEPROM test failure 
flag. 

Figure 7.5 

3 μp2 
Extra cause (C10) in deciding whether to enter the main 
program. 

Figure 7.6 

4 μp2 
Wrong Boolean function in setting the EEPROM test 
failure flag. 

Figure 7.7 

5 μp2 Wrong Boolean function in the RAM diagnostics test. Figure 7.8 

6 μp2 Missing effect (E3) for turning on TRIP LED. Figure 7.9 

7 CP Missing cause (C16) in checking the diagnostics results. Figure 7.10 
 
The following figures show the ACEG and corresponding BCEG related to the above defects. 
On the left are the ACEGs and on the right are the BECGs. 

                                                 
12 A solid line indicates “IDENTIFY,” a ^ mark indicates “AND,” a v mark indicates “OR,” and a ~ mark indicates “NOT.” 
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Figure 7.4 ACEG and BCEG for Defect #113 

 
 

  

Figure 7.5 ACEG and BCEG for Defect #2 
 
 

                                                 
13 A “–” mark indicates “IDENTIFY,” a “^” mark indicates “AND,” a “v” mark indicates “OR,” and a “~” mark indicates 
“NOT.” 
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Figure 7.6 ACEG and BCEG for Defect #314 
 
 
 

 
 

 

 
Figure 7.7 ACEG and BCEG for Defect #4 

 

                                                 
14 A “–” mark indicates “IDENTIFY,” a “^” mark indicates “AND,” a “v” mark indicates “OR,” and a “~” mark indicates 
“NOT.” 
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Figure 7.8 ACEG and BCEG for Defect #515 

 
 

 
Figure 7.9 ACEG and BCEG for Defect #6 

 
 

 
Figure 7.10 ACEG and BCEG for Defect #7 

                                                 
15 A “–” mark indicates “IDENTIFY,” a “^” mark indicates “AND,” a “v” mark indicates “OR,” and a “~” mark indicates 
“NOT.” 
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As previously stated, all the above defects can be found in the SRS. Table 7.6 shows whether the 
defects found in the SRS were fixed (either in the SDD or in the code). 
 

 Table 7.6 Checking Results for Defects Found by CEG 
 

Defect 
No. 

Location Defect Description 
Fixed in 
SDD or 
in code?

1 μp1 Extra cause in deciding whether to enter the main program. Y 

2 μp1 Missing cause for setting the EEPROM test failure flag. Y 

3 μp2 Extra cause in deciding whether to enter the main program. Y 

4 μp2 
Wrong Boolean function in setting the EEPROM test failure 
flag. 

Y 

5 μp2 Wrong Boolean function in the RAM diagnostics test. Y 

6 μp2 Missing effect for turning on TRIP LED. Y 

7 CP Missing cause in checking the diagnostics results. N 
 
 
As specified in Table 7.6, six out of seven defects found were fixed. Only Defect No. 7 remains 
in the code. If the corresponding cause is triggered, the system will experience a catastrophic 
failure.  
 
According to the CEG definition (Equation 7.1): 
 % 100 1 100 1 17 85.71% 

 
The calculated value of % will not be used for reliability estimation. Section 7.4 shows the 
RePS construction from the CEG measure. 
 
Because twelve measures are selected to evaluate the reliability of the system, an alternative to 
assigning an experienced analyst is to perform the measure during the later stages of the 
measurement. Usually, an analyst can gain knowledge of a system by performing other 
measurements such as the requirements traceability measure. 
 
Cause-effect graphing is time-consuming work. For a large-scale application, it is only necessary 
to draw the defect-related portion(s). Doing so will save a great deal of time. The necessary 
documents are: 
 
1. Complete list of causes and effects with their relationships and constraints in a table; 
2. Defect-related ACEG and BCEG; and 
3. Failure-relevant table for defects. 
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7.4  RePS Constructed from Cause-Effect Graphing 

 

7.4.1  Reliability Prediction Based On CEG 
 
Software reliability is estimated by first calculating the failure probability. Failure probability of 
an ACEG is assessed by comparing it with a corresponding BCEG and using a reduced-ordered 
binary-decision diagram (ROBDD) [Bryant, 1986] [Brace, 1990]. Figure 7.11 shows the generic 
fault tree for an ACEG. 
 

 

 
 
 
 
An ACEG fails if one of the ACEG effects differs from its peer effect in the BCEG under a 
given cause-state combination. A complete nomenclature for CEG is given in the following: 
 

 
 
Actually implemented Cause-Effect Graph, constructed according to the SRS. , , ,  

  The cause set of the  

  The observable effect set of the  

  The Boolean function set of the  

  The constraint set of the  

...... 

... ...

......

 

( ) 

, , ,  

   ( ) ( )    ( ) 

(Conditional)

ACEG fails

        

 +

 +

Figure 7.11 The Generic Fault Tree for an ACEG
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Benchmark Cause-Effect Graph, constructed by removing all indentified defects 
from an . , , ,  

  The cause set of the  

  The observable set of the  

  The Boolean function set of the  

  The constraint set of the  

  The j-th distinct observable effect in the ; i.e., , 1,2, … ,  

  The number of distinct effects in the union set  

  The peer observable effect in the  corresponding to  

  A Boolean function in  corresponding to  

  A Boolean function in  corresponding to  

  The set of causes appearing in  

  The set of causes appearing in  

  The union set of  and ; i.e.,  

  The number of distinct causes in  

  An empty set 

  A cause state vector that represents a state combination of all causes in  

 

 

The k-th vector of  

, , , , … , ,  where 

, 1 if  occurs, 1,2, … , , 1,2, … ,0 otherwise        1,2, … , 2  

A three-step procedure is created to calculate the failure probability. 
 
Step 1: Identify failure-relevant events for each effect pair. 
 
If an effect relates to n causes, then compare the results from the ACEG with the results from the 
BCEG for 2  times. It requires significant effort to draw the table and perform the comparison. 
Some of the causes are failure-irrelevant, which means changing their value will not affect the 
comparison results. So identifying the failure-relevant events is critical.  
 
Step 2: Draw a decision table for every effect that is different between the ACEG and the BCEG.  
 
A decision table is helpful for judging the equivalence of two effects with simple Boolean 
functions (nj ≤ 10). A sample decision table based on Boolean functions f1

A = c1c2 + c3, and f1
B = 
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c1 + c2c3, general constraints CON1
A = {(c1 requires c2)}, CON1

B = {(c2 requires c3)} is shown in 
Table 7.7 below:  

 
 

Table 7.7 Sample Decision Table for Judging Equivalence of Two Effects 
 

k 
Cj

k Conflict 
with 

CON1
A

Conflict
with 

CON1
B

f1
A f1

B e1
A e1

B e1
A = e1

B? 
c1 c2 c3 

1 0 0 0 N N 0 0 0 0 Y 

2 0 0 1 N N 1 0 1 0 N 

3 0 1 0 N Y 0 0 0 NULL N 

4 0 1 1 N N 1 1 1 1 Y 

5 1 0 0 Y N 1 1 NULL 1 N 

6 1 0 1 Y N 1 1 NULL 1 N 

7 1 1 0 N Y 1 1 1 NULL N 

8 1 1 1 N N 1 1 1 1 Y 
 
 
Step 3:  Create a ROBDD for calculating the total system-failure probability. 
 
In the field of reliability it is common knowledge that a BDD is a directed acyclic graph. The 
graph has two sink nodes labeled 0 and 1, representing the Boolean functions 0 and 1. Each non-
sink node is labeled with a Boolean variable v and has two out-edges labeled 1 (or “then”) and 0 
(or “else”). Each non-sink node represents the Boolean function corresponding to its edge “1,” if 
v = 1, or the Boolean function corresponding to its edge “0,” if v = 0. 
 
An Ordered BDD (OBDD) is a BDD in which each variable is encountered no more than once in 
any path and always in the same order along each path. A Reduced OBDD (ROBDD) is an 
OBDD in which no nodes have equivalent behavior. 
 
The operational profile is required to do the calculation, and only the operational profile for 
defect-related causes is required. A revised recursive algorithm for calculating the probability of 
a ROBDD is shown in Figure 7.12. 
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 bddProbCal(X) 
/* X = ite (xi, H,L),  
    H = “High” branch of node xi 
    L = “Low” branch of node xi 
    PH = Probability of “High” branch reach terminal node “1” 
    PL = Probability of “Low” branch reach terminal node “1”   */ 
{ 
 /*Consider “True” branch*/ 
 If  H is terminal node “1” 
  PH = 1.0 
 else if  H is terminal node “0” 
  PH = 0.0 
 else 
  /*Go deeper to find the probability of H by calling this function itself*/ 
  PH = bddProbCal(H) 
 
 /*Consider “False” branch*/ 
 If  L is terminal node “1” 
  PL = 1.0 
 else if  “False” branch is terminal node “0” 
  PL = 0.0 
 else 
  /*Go deeper to find the probability of L by calling this function itself*/ 
  PL = bddProbCal(L) 
 
 Probability[X] = Probability[xi]  PH + (1- Probability[xi])  PL 
 Return (Probability[X]) 
}  

 
Figure 7.12 Algorithm for Calculating the Probability of a ROBDD 

 
 

7.4.2  Reliability Prediction Results 
 
Based on Table 7.5, the probability of failure is 0.9963. Therefore, the reliability is 0.0037. Table 
7.8 shows detailed results for each operational mode. 
 

Table 7.8 Reliability Prediction Results for Four Distinct Operational Modes 
 

Mode 
Probability of Failure 

(per year)
Reliability 
(per year) 

Power-on 0.000012 0.999988 

Normal 0.99624 0.00376 

Calibration 0.15376 0.84624 

Tuning 0.15376 0.84624 
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The reliability of the APP system is low because all defects found in the SRS have been 
considered as the actual defects remaining in the APP system. Therefore, through the CEG 
measure based on the SRS, the reliability has been underestimated.  
 
As shown in Table 7.6, six out of seven defects found in the SRS have been corrected (either in 
the SDD or in the code). Using this information, the system reliability can be updated. The 
probability of failure is calculated to be 6.732 × 10-13 per demand. Therefore, the reliability is 
0.999999999999327 per demand. This reliability estimate is closer to the actual reliability than 
the previous estimate based only on SRS information.  
 
It should be noted that the prediction of the probability of failure based on the CEG metric 
changes from 0.9963 to 6.732 × 10-13 per demand while the number of defects only changed 
from seven to one. This is due to the characteristics of the defects. As explained in chapter 5, the 
probability of a defect leading to a system failure depends on the defect execution, infection, and 
propagation probabilities. The defects that are more likely to lead to system failure were fixed 
either in the SDD or in the source code. The only defect remaining in the code actually has a 
fairly low probability to lead to failure.  

 

7.5  Lessons Learned 
 
It should be noted that if the CEG measurement is performed manually, the results depend on the 
ability of the individual performing the measurement. It is strongly recommended to assign an 
analyst who knows the software structure sufficiently well to perform the CEG measure. This is 
mainly because: 
 
1. It is difficult to differentiate the prime effects from the intermediate effects if the analyst 

is unfamiliar with the system. 
2. It is difficult to identify logical relationships between the causes and the constraints 

without adequate knowledge of the system. Consequently, defects found through CEG 
measurements may not be correctly interpreted and the final reliability estimation may 
not be very meaningful.  
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8. CAPABILITY MATURITY MODEL 
 
 
The software Capability Maturity Model (CMM) is a framework that describes key elements of 
an effective software process. It covers practices for planning, engineering, and managing 
software development and maintenance. When followed, these key practices improve the ability 
of organizations to meet goals for cost, schedule, functionality, and product quality [IEEE, 
1988]. 
 
The goals of this measure are to describe the principles and practices underlying software-
process maturity and to help software organizations improve the maturity of their software 
processes [IEEE, 1988]. 
 
The CMM was replaced in 2001 with the Capability Maturity Model Integrated (CMMI) [Royce, 
2002]. While CMM was developed to account for management and software engineering 
activities, CMMI extends the CMM by including systems engineering and integrated product 
development activities. Although CMMI has superseded CMM, the research published in this 
report focuses on the measures ranked in NUREG/GR-0019. Since NUREG/GR-0019 pre-dated 
the introduction of CMMI, the report did not evaluate the latter metric. In addition, evidence 
linking CMMI to fault content remains sparse. Once available, such evidence can be used to 
revise the models presented in this chapter. 
 
The CMM measure can be applied as soon as requirements are available for review. As listed in 
Table 3.3, the applicable life cycle phases for CMM are Requirements, Design, Coding, Testing, 
and Operation. 
 

8.1  Definition 
 
Continuous process improvement is based on small, evolutionary steps rather than on 
revolutionary innovations. The CMM provides a framework for organizing these evolutionary 
steps into five maturity levels that lay successive foundations for continuous improvement.16 

8.1.1  Definition of the Five Maturity Levels 
 
These five maturity levels define an ordinal scale for measuring the maturity of an organization’s 
software process and for evaluating its software process capability [Paulk, 1995].13 
 
 

 

                                                 
16 Carnegie Mellon University, Software Engineering Institute, THE CAPABILITY MATURITY MODEL: 
GUIDELINES FOR IMPROVING THE SOFTWARE PROCESS, pp. 15–19, © 1995 Addison-Wesley Publishing 
Company Inc. Reproduced by permission of Pearson Education, Inc. 
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The five levels can be described as the following: 
 
1. Initial:  The software process is characterized as ad hoc, and occasionally even chaotic. 

Few processes are defined, and success depends on individual effort and “heroic” efforts 
by individuals.17 

 
 At the Initial Level, the organization typically does not provide a stable environment for 

developing and maintaining software. During a crisis, projects typically abandon planned 
procedures and revert to coding and testing. Success depends entirely on having an 
exceptional manager and a seasoned and effective software team. Occasionally, capable 
and forceful software managers can resist the pressures to take shortcuts in the process; 
but when they leave the project, their stabilizing influence leaves with them. Even a 
strong engineering process cannot overcome the instability created by the absence of 
sound management practices.14 

 
 The software process capability of Level 1 organizations is unpredictable because the 

software process is constantly being changed or modified as the work progresses (i.e., the 
process is ad hoc). Schedules, budgets, functionality, and product quality are generally 
unpredictable. Performance depends on the capabilities of individuals and varies with 
their innate skills, knowledge, and motivations. Few stable software processes are evident 
and performance can be predicted only by individual capability. 

 
2. Repeatable: Basic project management processes are established to track cost, schedule, 

and functionality. The necessary discipline exists to repeat earlier successes on projects 
with similar applications.14 

 
At the Repeatable Level, policies for managing a software project and procedures to 
implement those policies are established. Planning and managing new projects are based 
on experience with similar projects. In Level 2 effective management processes for 
software projects are institutionalized, which allow organizations to repeat successful 
practices developed on earlier projects, even if the specific processes implemented by the 
projects may differ. An effective process should be practiced, documented, enforced, 
trained, measured, and capable of improvement. 

 
 Projects in Level 2 organizations have installed basic software management controls. 

Realistic project commitments are based on the results observed in previous projects and 
on the requirements of the current project. 14 The software managers for a project track 
software costs, schedules, and functionality; problems in meeting commitments are 
identified when they arise. Software requirements and the products developed to satisfy 
them are baselined and their integrity is controlled. Software project standards are 
defined and the organization ensures they are faithfully followed. The software project 
works with its subcontractors, if any, to establish a strong customer-supplier 
relationship.14 

                                                 
17 Carnegie Mellon University, Software Engineering Institute, THE CAPABILITY MATURITY MODEL: 
GUIDELINES FOR IMPROVING THE SOFTWARE PROCESS, pp. 15–19, © 1995 Addison-Wesley Publishing 
Company Inc. Reproduced by permission of Pearson Education, Inc. 
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 The software process capability of Level 2 organizations can be summarized as 
disciplined, because the planning and tracking of the software project is stable and earlier 
successes can be repeated. The project’s process is under the effective control of a project 
management system, following realistic plans based on the performance of previous 
projects.18 

 
3. Defined:  The software process for both management and engineering activities is 

documented, standardized, and integrated into a standard software process for the 
organization. All projects use an approved, tailored version of the organization’s standard 
software process for developing and maintaining software. 15 

 
 At the Defined Level, the standard process for developing and maintaining software 

across the organization is documented, including both software engineering and 
management processes. These processes are integrated into a coherent whole. This 
standard process is referred to throughout the CMM as the organization’s standard 
software process. Processes established at Level-3 are used (and changed, as appropriate) 
to help the software managers and technical staff perform more effectively. The 
organization exploits effective software engineering practices when standardizing its 
software processes. There is a group that is responsible for the organization’s software-
process activities, e.g., a software engineering-process group. An organization-wide 
training program is implemented to ensure that the staff and managers have the 
knowledge and skills required to fulfill their assigned roles. 

 
 The software-process capability of Level-3 organizations can be summarized as standard 

and consistent, because both software engineering and management activities are stable 
and repeatable. Within established product lines, cost, schedule, and functionality are 
under control, and software quality is tracked. This process capability is based on a 
common, organization-wide understanding of the activities, roles, and responsibilities in 
a defined software process.15 

 
4. Managed:  Detailed measures of the software process and product quality are collected. 

Both the software process and products are quantitatively understood and controlled.15 
 

At the Managed Level, the organization sets quantitative quality goals for both software 
products and processes. Productivity and quality are measured for important software-
process activities across all projects as part of an organizational measurement program. 
An organization-wide software-process database is used to collect and analyze the data 
available from the projects’ defined software processes. Software processes are 
implemented with well-defined and consistent measurements at Level 4. These 
measurements establish the quantitative foundation for evaluating the projects’ software 
processes and products. 

 
 

                                                 
18 Carnegie Mellon University, Software Engineering Institute, THE CAPABILITY MATURITY MODEL: 
GUIDELINES FOR IMPROVING THE SOFTWARE PROCESS, pp. 15–19, © 1995 Addison-Wesley Publishing 
Company Inc. Reproduced by permission of Pearson Education, Inc. 
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 The software-process capability of Level 4 organizations can be summarized as 
predictable, because the process is measured and operates within measurable limits. This 
level of process capability allows an organization to predict trends in process and product 
quality within the quantitative bounds of these limits. When these limits are exceeded, 
action is taken to correct the situation. Software products are of predictably high quality. 

 
5. Optimizing:  Continuous process improvement results from quantitative feedback and 

from piloting innovative ideas and technologies.19 
 

At the Optimizing Level, the entire organization is focused on continuous process 
improvement. The organization has the means to identify weaknesses and strengthen the 
process proactively, with the goal of preventing the occurrence of defects. Data on the 
effectiveness of the software process is used to perform cost-benefit analyses of new 
technologies and proposed changes to the organization’s software process. Innovations 
that exploit the best software engineering practices are identified and transferred 
throughout the organization. 

 
 Software project teams in Level 5 organizations analyze defects to determine their 

causes. Software processes are evaluated to prevent known types of defects from 
recurring, and lessons learned are disseminated to other projects. 

 
 The software-process capability of Level 5 organizations can be characterized as 

continuously improving, because Level 5 organizations are continuously striving to 
improve the range of their process capability, thereby improving the process performance 
of their projects. Improvement occurs both by incremental advancements in the existing 
process and by innovations using new technologies and methods. 

 
Organizing the CMM into the five levels shown in Figure 8.1 prioritizes improvement actions for 
increasing software process maturity. The labeled arrows in Figure 8.1 indicate the type of 
process capability being institutionalized by the organization at each step of the maturity 
framework [Paulk, 1993].16 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
19 Carnegie Mellon University, Software Engineering Institute, THE CAPABILITY MATURITY MODEL: 
GUIDELINES FOR IMPROVING THE SOFTWARE PROCESS, pp. 15–19, © 1995 Addison-Wesley Publishing 
Company Inc. Reproduced by permission of Pearson Education, Inc. 
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Figure 8.1 The Five Levels of Software Process Maturity20 

 
 

8.1.2  Definition of the Key Process Areas (KPAs) 
 
Each maturity level except for Level 1 (Initial) is divided into Key Process Areas (KPAs). Each 
KPA identifies a cluster of related activities that, when performed collectively, achieve a set of 
goals considered important for establishing process capability at that maturity level [Paulk, 
1993]. The KPAs have been defined to reside at a single maturity level. 
 
Figure 8.2 represents the KPAs by maturity levels. 

                                                 
20 Carnegie Mellon University, Software Engineering Institute, THE CAPABILITY MATURITY MODEL: GUIDELINES FOR 
IMPROVING THE SOFTWARE PROCESS, pp. 15–19, © 1995 Addison-Wesley Publishing Company Inc. Reproduced by 
permission of Pearson Education, Inc. 
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Figure 8.2 The Key Process Areas by Maturity Levels21 
 

8.1.2.1  KPAs for Level 2 
 
The KPAs at Level 2 focus on the software project’s concerns related to establishing basic, 
project-management controls. Descriptions of each of the KPAs for Level 2 are given below: 
 
1. Requirements Management:  The purpose of Requirements Management is to establish 

a common understanding between the customer and the software project of the 
customer’s requirements that will be addressed by the software project. This agreement 
with the customer is the basis for planning (as described in Software Project Planning) 
and managing (as described in Software Project Tracking and Oversight) the software 

                                                 
21 Carnegie Mellon University, Software Engineering Institute, THE CAPABILITY MATURITY MODEL: GUIDELINES FOR 
IMPROVING THE SOFTWARE PROCESS, pp. 15–19, © 1995 Addison-Wesley Publishing Company Inc. Reproduced by 
permission of Pearson Education, Inc. 
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project. Control of the relationship with the customer depends on following an effective 
change control process (as described in Software Configuration Management). 

 
2. Software Project Planning:  The purpose of Software Project Planning is to establish 

reasonable plans for performing the software engineering and for managing the software 
project. These plans are the necessary foundation for managing the software project (as 
described in Software Project Tracking and Oversight). Without realistic plans, effective 
project management cannot be implemented. 

 
3. Software Project Tracking and Oversight:  The purpose of Software Project Tracking 

and Oversight is to establish adequate insight into actual progress, so that management 
can take effective actions if the software project’s performance deviates significantly 
from the software plans.  

 
4. Software Subcontract Management:  The purpose of Software Subcontract 

Management is to select qualified software subcontractors and manage them effectively. 
It combines the concerns of Requirements Management, Software Project Planning, and 
Software Project Tracking and Oversight for basic management control, with the 
necessary coordination of Software Quality Assurance and Software Configuration 
Management, and applies these standards to the subcontractor as appropriate. 

 
5. Software Quality Assurance:  The purpose of Software Quality Assurance is to provide 

management with appropriate visibility into the process being used by the software 
project and of the products being built. Software Quality Assurance is an integral part of 
most software engineering and management processes. 

 
6. Software Configuration Management:  The purpose of Software Configuration 

Management is to establish and maintain the integrity of the products of the software 
project throughout the project’s software life cycle. Software Configuration Management 
is an integral part of most software engineering and management processes. 

 

8.1.2.2  KPAs for Level-3 
 
The KPAs at Level-3 address both project and organizational issues, as the organization 
establishes an infrastructure that institutionalizes effective software engineering and management 
processes across all projects. Each of the KPAs for Level-3 is described below: 
 
1. Organization Process Focus:  The purpose of Organization Process Focus is to establish 

the organizational responsibility for software process activities that improve the 
organization’s overall software-process capability. The primary result of the Organization 
Process Focus activities is a set of software process assets, which are described in 
Organization Process Definition. These assets are used by the software projects, as 
described in Integrated Software Management. 
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2. Organization Process Definition:  The purpose of Organization Process Definition is to 
develop and maintain a usable set of software process assets that improve process 
performance across the projects and provide a basis for cumulative, long-term benefits to 
the organization. These assets provide a stable foundation that can be institutionalized via 
mechanisms such as training, which is described in Training Program.  

 
3. Training Program:  The purpose of the Training Program is to develop the skills and 

knowledge of individuals, so they can perform their roles effectively and efficiently. 
Training is an organizational responsibility, but each software projects should identify 
required skill sets and provide necessary training when the project’s requirements are 
unique. 

 
4. Integrated Software Management:  The purpose of Integrated Software Management is 

to integrate the software engineering and management activities into a coherent, defined 
software process that is tailored from the organization’s standard software process and 
related process assets, which are described in Organization Process Definition. This 
tailoring is based on the business environment and technical needs of the project, as 
described in Software Product Engineering. Integrated Software Management evolves 
from Software Project Planning and Software Project Tracking and Oversight at Level 2. 

 
5. Software Product Engineering:  The purpose of Software Product Engineering is to 

consistently perform a well-defined engineering process that integrates all the software 
engineering activities to produce correct, consistent software products effectively and 
efficiently. Software Product Engineering describes the technical activities of the project, 
e.g., requirements analysis, design, code, and testing.  

 
6. Intergroup Coordination:  The purpose of Intergroup Coordination is to establish a 

means for the software engineering group to participate actively with the other 
engineering groups, so the project is better able to satisfy the customer’s needs effectively 
and efficiently. Intergroup Coordination is the interdisciplinary aspect of Integrated-
Software Management not only should the software process be integrated, but the 
software engineering group’s interactions with other groups must be coordinated and 
controlled. 

 
7. Peer Reviews:  The purpose of Peer Reviews is to remove defects from the software 

work products early and efficiently. An important corollary effect is to develop a better 
understanding of the software work products and of the defects that can be prevented. 
The peer review is an important and effective engineering method that is implemented in 
Software Product Engineering area by reviews and structured walkthroughs. 

 

8.1.2.3  KPAs for Level 4 
 
The KPAs at Level 4 focus on establishing a quantitative understanding of both the software 
process and the software work products being built. The two KPAs at this level, Quantitative 
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Process Management and Software Quality Management, are highly interdependent, as described 
below: 
 
1. Quantitative Process Management:  The purpose of Quantitative-Process Management 

is to quantitatively control the process performance of the software project. Software-
process performance represents the actual results achieved from following a software 
process. The focus is on identifying special causes of variation within a measurably stable 
process and correcting, as appropriate, the circumstances that caused the transient 
variation to occur. Quantitative-Process Management adds a comprehensive 
measurement program to the practices of Organization-Process Definition, Integrated-
Software Management, Intergroup Coordination, and Peer Reviews.  

 
2. Software Quality Management:  The purpose of Software Quality Management is to 

develop a quantitative understanding of the quality of the project’s software products. 
Software Quality Management applies a comprehensive measurement program to the 
software work products described in Software Product Engineering. 

 

8.1.2.4  KPAs for Level 5 
 
The KPAs at Level 5 cover the issues that both the organization and the projects must address to 
implement continuous and measurable software-process improvement. Descriptions of each of 
the KPAs for Level 5 are given below: 
 
1. Defect Prevention:  The purpose of Defect Prevention is to identify the causes of defects 

and prevent them from recurring. The software project analyzes defects, identifies their 
causes, and changes its defined software process, as is described in Integrated-Software 
Management. Process changes of general value are communicated to other software 
projects, as is described in Process Change Management. 

 
2. Technology Change Management:  The purpose of Technology Change Management is 

to identify beneficial new technologies (i.e., tools, methods, and processes) and 
incorporate them into the organization in an orderly manner, as is described in Process 
Change Management. The focus of Technology-Change Management is on introducing 
innovation efficiently in an ever-changing world.  

 
3. Process Change Management:  The purpose of Process Change Management is to 

continually improve the software processes used in the organization with the intent of 
improving software quality, increasing productivity, and decreasing the cycle time for 
product development. Process Change Management takes the incremental improvements 
of Defect Prevention and the innovative improvements of Technology Change 
Management and makes them available to the entire organization.  
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8.2  Measurement Rules 
 

8.2.1  Standard SEI-CMM Assessment 
 
The Software Engineering Institute (SEI) assessment method used with the Capability Maturity 
Model for Software (SW-CMM) is named Capability Maturity Model-Based Appraisal for 
Internal Process Improvement (CBA IPI). This method is used by organizations to provide an 
accurate picture of the strengths and weaknesses of the organization’s current software process, 
using the CMM as a reference model, and to identify KPAs for improvement.  
 
The CBA IPI method is an assessment of an organization’s software process capability by a 
trained group of professionals who work as a team to generate findings and ratings relative to the 
CMM KPAs within the assessment scope. The findings are generated from data collected from 
questionnaires, document review, presentations, and in-depth interviews with middle managers, 
project leaders, and software practitioners [Dunaway, 2001]. 
 
The CBA IPI method satisfies requirements established in the CMM Appraisal Framework 
(CAF), Version 1.0 [Masters, 1995]. Figure 8.3 illustrates the basic CAF activities.  
 
Planning and preparation are the key to success of any appraisal. As illustrated in Figure 8.3, 
planning and preparation involve analyzing the appraisal’s requirements, selecting and preparing 
the appraisal team, selecting and preparing the appraisal participants, and developing and 
documenting the appraisal plan.  
 
Conducting an appraisal focuses on collecting and recording data in the form of notes, 
consolidating data into a manageable set of observations, determining their validity as findings, 
and their coverage of the appraisal scope and using those findings to produce ratings of the 
appraised entity’s software process with respect to the CMM. 
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Figure 8.3 CMM Appraisal Framework Activities 
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The Reporting phase of an appraisal involves reporting appraisal results to sponsors, the 
appraisal method owner, the SEI, and, optionally, the appraised entity; and preserving appraisal 
records. In this research, this phase was not required.  
 
The following are some general rules when conducting an appraisal: 
 
1. The appraisal team must come to consensus on the ratings that it provides to an appraised 

entity. This consensus is one step in assuring that the entire team supports the appraisal 
report. Without consensus, the appraisal team cannot expect the appraised entity to have a 
high level of confidence in the contents of the report. 

2. All ratings must be based on the CMM and only on the CMM. A CMM-based appraisal, 
by definition, is using the CMM as a framework for evaluating an appraised entity’s 
software process. The appraisal team must, therefore, maintain fidelity to the model in its 
rating process. An appraisal method cannot add new KPAs to the model or delete existing 
KPAs. 

3. Ratings must be based on the data the appraisal team collects during the appraisal 
process. By basing ratings on findings that have been validated by the team, and directly 
or indirectly by the appraised entity, the appraisal team can achieve a high level of 
confidence in their accuracy. 

 
Lead Assessors are authorized by SEI to market and perform CBA IPI assessments either for 
third-party organizations or for their own organization’s internal use. A list of SEI authorized 
Lead Assessors can be found at the SEI website [SEI, 2006]. The cost of a formal assessment 
conducted by an authorized lead assessor would be of the order of $50,000. 
 
The key step of the assessment is to make rating judgments and determine the maturity level 
based on the collected data. Four rating values are provided for goals and KPAs: satisfied, 
unsatisfied, not applicable, or not rated. If a KPA is determined to be not applicable in the 
organization’s environment, then all of the goals for that KPA are deemed not applicable. 
Conversely, if a KPA is determined to be applicable in the organizations environment, then all of 
the goals for that KPA are applicable. 
 
In the following subsections, the detailed measurement rules are provided when conducting an 
appraisal. 
 

8.2.1.1  Rules for Judging Satisfaction of Goals 
 
1. Rate the goal “satisfied” if the associated findings indicate that this goal is implemented 

and institutionalized either as defined in the CMM with no significant weaknesses or that 
an adequate alternative exists. 

2. Rate the goal “unsatisfied” if the associated findings indicate that there are significant 
weaknesses in the appraised entity’s implementation and institutionalization of this goal 
as defined in the CMM and no adequate alternative is in place. 

3. Rate the goal “not applicable” if the goal is not applicable in the organization’s 
environment. 
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4. Rate the goal “not rated” if the associated findings do not meet the method’s defined 
criteria for coverage or if the goal falls outside of the scope of the appraisal. 

 

8.2.1.2  Rules for Judging Satisfaction of KPAs 
 
1. Rate the KPA “satisfied” if all of the goals are rated “satisfied.” 
2. Rate the KPA “unsatisfied” if one or more goals are rated as “unsatisfied.” 
3. Rate the KPA “not applicable” if the KPA is not applicable in the organization’s 

environment. 
4. Rate the KPA “not rated” if any of the goals are rated “not rated” or if the KPA falls 

outside of the scope of the appraisal. 
 

8.2.1.3  Rules for Determining Maturity Level 
 
1. Maturity level ratings depend exclusively on KPA ratings. The appraisal team bases 

maturity level ratings solely on the KPA ratings. No additional team judgments are 
required.  

2. A maturity level is satisfied if all KPAs within that level and each lower level are 
satisfied or not applicable. For example, rating of maturity level-3 requires that all KPAs 
within levels 2 and 3 be satisfied or not applicable. 

3. The maturity level rating is that of the highest maturity level satisfied. 
 

8.2.2  UMD-CMM Assessment 
 
As far as the APP is concerned, a standard CMM level assessment had not been performed for 
the organization that developed the APP system. Furthermore, the APP system was 10 years old. 
As a consequence, any results of an assessment would have been post-mortem and as such, not 
qualify for a formal assessment. 
 
To obtain an informal assessment, the SW-CMM Maturity Questionnaire [Zubrow, 1994] was 
provided to the remaining personnel involved in the development of the APP system.  
 
UMD-CMM assessment followed the procedure defined in Section 8.2.1. The only discrepancy 
was in the composition of the team. 
 
In order to conduct appraisals, a team of assessors who had gone through a complete training 
program and a lead assessor who had significant experience in the field of CMM appraisal was 
required. To become a SEI authorized assessor, normally the person should first attend a five-day 
course offered by SEI. After attending the course, participants would be qualified as candidate 
lead appraisers. To become authorized, candidate lead appraisers must be observed by a qualified 
observing lead appraiser and receive a satisfactory recommendation. Lead appraisers may 
provide appraisal services for their own organization or other organizations and deliver appraisal 
training to appraisal teams.  
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One UMD graduate student with experience in software engineering was sent to the five-day 
training course, was qualified as candidate lead appraiser, and performed the assessment.  
 

8.3  Measurement Results 
 
The Maturity Questionnaire was distributed to the APP development team members. Table 8.1 
provides the summary of the answers to questions to this Questionnaire. The results in Table 8.1 
show the ratio of the number of satisfied goals over the total applicable goals. 
 
It should be noted that the summary was based on one respondent’s answers since he was the 
manager of the APP development team. The respondent was explained the design of the 
questionnaire and told what KPAs meant and how the CMM levels are defined. He also had 
some prior knowledge about the CMM in general given his experience in the software field (22 
years).  
 

Table 8.1 Summary of the Answers to the Questions in the Maturity Questionnaire 
 

CMM Level No. KPAs Results 

Repeatable (2) 

1 Requirement Management 6/6 

2 Software Project Planning 7/7 

3 Software Project Tracking and Oversight 7/7 

Repeatable (2) 

4 Software Subcontract Management Not Applicable 

5 Software Quality Assurance 7/7 

6 Software Configuration Management 8/8 

Defined (3) 
 

1 Organization Process Focus 2/7 

2 Organization Process Definition 4/6 

3 Training Program 7/7 

4 Integrated Software management 4/6 

5 Software Product Engineering 6/6 

6 Intergroup Coordination 6/7 

7 Peer Reviews 5/6 
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Table 8.2 shows the results obtained after the application of the measurement rules stated in 
Section 8.2.2.2 to the responses to the questions for each of the KPAs.  
 

Table 8.2 Result of Application of KPA Satisfaction Level Measurement Rules 
 

CMM Level No. KPAs 
KPA Satisfaction 

Level

Repeatable (2) 

1 Requirement Management Satisfied 

2 Software Project Planning Satisfied 

3 Software Project Tracking and Oversight Satisfied 

4 Software Subcontract Management Not Applicable 

5 Software Quality Assurance Satisfied 

6 Software Configuration Management Satisfied 

Defined (3) 

1 Organization Process Focus Unsatisfied 

2 Organization Process Definition Unsatisfied 

3 Training Program Satisfied 

4 Integrated Software management Unsatisfied 

5 Software Product Engineering Satisfied 

6 Intergroup Coordination Unsatisfied 

7 Peer Reviews Unsatisfied 

 
On analyzing the answers to the questions in the maturity questionnaire for the APP the 
following observations were made: 
 
1. From the respondent’s answers, it was clear the APP could not be assessed at CMM 

level-3. CMM level-3 focuses on having a generalized organizational level policy for all 
the activities in the software development process and that a project must tailor its own 
software process from these generalized organizational level policies. In this regard the 
respondent believed that the developer had some organizational level policies for both 
hardware and software systems developed by them. However, according to the rules, 
developer still did not reach CMM level-3. 



 

103 
 

2. The main focus of CMM level four is the collection of detailed measures of the software 
process and product. Both the software process and products are quantitatively 
understood and controlled. The developer did not have this kind of data collected across 
projects. This is why it could not be assessed above level-3. 

 
According to the analysis, it is clear that all the KPAs in CMM level 2 are satisfied and five out 
of seven KPAs in CMM level-3 are not satisfied. Therefore, the APP is CMM level 2. 
 

8.4  RePS Construction from CMM 
 
In order to estimate reliability using CMM as the base measure, it is required to construct a 
model that links CMM to the number of defects in the software. Once there is a model to 
estimate the number of defects in the software using CMM as the base measure, then the 
exponential model can be applied to estimate the reliability of the software. 
 

8.4.1  CMM Maturity Levels vs. Number of Defects  
 
Historical industry data collected by Software Productivity Research Inc. [Jones, 1995] links the 
CMM level to the number of defects per function point. Table 8.3 presents this data. 
 

Table 8.3 CMM Levels and Average Number of Defects Per Function Point 
 

CMM level Average Defects/Function Point 

Defects for SEI CMM level 1 0.75 

Defects for SEI CMM level 2 0.44 

Defects for SEI CMM level 3 0.27 

Defects for SEI CMM level 4 0.14 

Defects for SEI CMM level 5 0.05 

 
The CMM level of the APP is assessed to be CMM level 2. The functional size of the APP is 301 
function points. Table 8.4 presents the estimation of defects for the APP. 
 

Table 8.4 Defect Estimation for the APP Using CMM 
 

CMM 
Level 

Average Defects/Function Point FP Total Number of Defects 

Level 2 0.44 301 132.44 

 
The next step is the partitioning of the defects based on the criticality of the defects. Using 
Table 6.7, the partitioned number of defects (based on the severity level) for the APP using 
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CMM is presented in Table 8.5. The Table 6.7 values are listed in parentheses for each defect 
category. 
 

Table 8.5 Partitioned Number of Defects (Based On Severity Level) for the APP Using CMM 
 

Total Number of 
Defects 

Defects 
(Critical) 
(0.0185) 

Defects 
(Significant) 

(0.1206) 

Defects 
(Minor) 
(0.3783) 

Defects 
(Cosmetic) 

(0.4826) 

Defects 
(Critical + 

Significant) 
(0.1391) 

132.44 2.45 15.97 50.10 63.92 18.42 

 
 

8.4.2  Reliability Estimation 

 
The probability of success-per-demand is obtained using Musa’s exponential model [Musa, 
1990] [Smidts, 2004]: 

     (8.1) 
 
and , , 18.42    (8.2) 
 
where 

 Reliability estimation for the APP system using the CMM measure. 

  Fault Exposure Ratio, in failure/defect. 

  Number of defects estimated using the CMM measure. 

  Average execution-time-per-demand, in seconds/demand. 

  Linear execution time of a system, in seconds. ,   Number of delivered critical defects (severity 1). ,  Number of delivered significant defects (severity 2). 

 
Since a priori knowledge of the defects’ location and their impact on failure probability is not 
known, the average K value given in [Musa, 1987] [Musa, 1990] [Smidts, 2004], which is 4.2 10 /  must be used. 
 
The linear execution time, TL, is usually estimated as the ratio of the execution time and the 
software size on a single microprocessor basis [Musa, 1987] [Musa, 1990] [Smidts, 2004]. In the 
case of the APP system, however, there are three parallel subsystems, each of which has a 
microprocessor executing its own software. Each of these three subsystems has an estimated 
linear execution time. Therefore, there are several ways to estimate the linear execution time for 
the entire APP system, such as using the average value of these three subsystems.  
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For a safety-critical application, like the APP system, the UMD research team suggests to make a 
conservative estimation of TL by using the minimum of these three subsystems’ . Namely, 
 
    min 1 , 2 ,   
         0.018, 0.009, 0.021      (8.3) 
         0.009 seconds 
Where 
 1   Linear execution time of Microprocessor 1 (μp1) of the APP system. TL 

(μp1) = 0.018 seconds (refer to Chapter 17). 2   Linear execution time of Microprocessor 2 (μp2) of the APP system. TL 
(μp2) = 0.009 seconds (refer to Chapter 17). 

  Linear execution time of Communication Microprocessor (CP) of the 
APP system. TL (CP) = 0.021 seconds (refer to Chapter 17). 

  
Similarly, the average execution-time-per-demand, τ, is also estimated on a single 
microprocessor basis. Each of the three subsystems in APP has an estimated average execution-
time-per-demand. To make a conservative estimation, the average execution-time-per-demand 
for the entire APP system is the maximum of the three subsystems’ . Namely: 
     
    max 1 , 2 ,   
       max 0.082, 0.129, 0.016     (8.4) 
       0.129 seconds/demand 
Where 
 1   Average execution-time-per-demand of Microprocessor 1 (μp1) of the 

APP system. τ(μp1) = 0.082 seconds/demand (refer to Chapter 17). 2   Average execution-time-per-demand of Microprocessor 2 (μp2) of the 
APP system. τ(μp2) = 0.129 seconds/demand (refer to Chapter 17). 

  Average execution-time-per-demand of Communication 
Microprocessor (CP) of the APP system. τ(CP) = 0.016 
seconds/demand (refer to Chapter 17). 

 
Thus the reliability for the APP system using the CMM measure is given by: 

  . . . .   (8.5)  
          0.999889118  
 
A more accurate estimation of reliability using CMM for the APP system can be obtained by 
enhancing the estimation of K. A value of K for the safety-critical system, rather than the 
average value 4.2 10  failure/defect, should be used in Equation 8.1.  
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8.5  Lessons Learned 
 
The standard CMM-level assessment was not performed for the company that developed the 
software module. Furthermore, the software module was more than ten years old and most of the 
members of the development team were no longer working with the company. The CMM 
assessment could only be conducted based on the “surviving” team member’s answers to the 
Maturity Questionnaire. As a consequence, any results of an assessment are post-mortem and as 
such do not qualify for a formal assessment. The research team had to take an alternative 
informal approach as described in Section 8.2.2.  
 
For recently developed software, the issues encountered during this research should not apply 
since more and more companies/organizations are encouraged to obtain a CMM (now CMMI) 
certification.
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9. COMPLETENESS 
 
 
The completeness measure, COM, determines the completeness of the SRS.  
 
The COM measure provides a systematic guideline to identify the incompleteness defects in the 
SRS. Also, the values determined for the primitives associated with the COM measure can be 
used to identify problem areas within the software specification. 
 
The COM measure can be applied as soon as the requirements are available. As listed in Table 
3.3, the applicable life cycle phases for the COM measure are Requirements, Design, Coding, 
Testing, and Operation. 
 
 

9.1  Definition 
 
The COM measure is the weighted sum of ten derived measures, D1 through D10 [IEEE, 1988] 
[Murine, 1985]: 

 ∑      (9.1) 
where 
  completeness measure, 
  the weight of the i-th derived measure,  
  the i-th derived measure, 
 
Where for each i = 1, ..., 10, each weight wi has a value between 0 and 1, the sum of the weights 
is equal to 1, and each Di  is a derived measure with a value between 1 and 0.  
 
The weighting factor is dependent on the characteristics of the project. For example, a database 
project would be weighted heavily for the data-reference attribute. For each project, the 
weighting factors (wi) should be determined by survey or expert opinion. 
 
Since the value of the COM is subjectively determined, the RePS that uses the COM measure is 
based on the incompleteness defects identified in the SRS during the measurement but not on the 
value of COM (refer to Section 9.4). 
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Each derived measure is determined as follows: 
 /   fraction of functions satisfactorily defined /    fraction of data references having an origin /    fraction of defined functions used /   fraction of referenced functions defined /    

fraction of decision points whose conditions and condition 
options are  all used /   fraction of condition options having processing /   
fraction of calling routines whose parameters agree with the 
called routines defined parameters /   fraction of condition options that are set /   fraction of set condition options processed /   fraction of data references having a destination 

 
where B1 to B18 are primitives defined as follows:  
 

 number of functions not satisfactorily defined. 

 number of functions. 

 number of data references not having an origin. 

 number of data references. 

 number of defined functions not used. 

 number of defined functions. 

 number of referenced functions not defined. 

 number of referenced functions. 

 number of decision points missing condition(s). 

 number of decision points. 

 number of condition options having no processing. 

 number of condition options. 

 
number of calling routines whose parameters are not agreeing with the called 
routines defined parameters. 

 number of calling routines. 

 number of condition options not set. 

 number of set condition options having no processing. 

 number of set condition options. 

 number of data references having no destination. 
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Assessment of some of the derived measures (Di) may be more reliable at the design and coding 
level since they refer to design and coding characteristics described at a high level in the SRS. 
However, high-level estimates of Di should be available during the requirements phase.  
 
The following definitions were used while counting primitives: 
 
Called Routine: a routine referred by another routine.  
Called Routines Parameter: a prerequisite data used in the called routine in order to perform its 
required functions.  
Calling Routine: a routine making reference to another routine. 
Condition: a leaf-level expression which cannot be broken down into a simpler one.  
Condition Option: one of the possible results determined by the condition. 
Data Reference Origin: the source of the data manipulated by the data reference. 
Data Reference: a data reference is a function which manipulates either internal or external 
data.  
Data Reference Destination: the destination of the data manipulated by the data reference.  
Decision Point: a process element that routes the system to one of several alternative outgoing 
paths, depending on its condition.  
Defined Function: a function that is explicitly described in the SRS. 
Function: a defined objective or characteristic action in the software requirement specification 
(SRS), usually involved in processing input(s) and/or generating output(s). 
Processed Condition Option: a condition option is processed if a function is satisfactorily 
defined to process this condition option.  
Referenced Function: a function that is implied or referred by another function. 
Routine: a set of sequential functions. A routine is usually bulleted as a functional section in the 
SRS. 
Satisfactorily Defined Function: a defined function that is correct, unambiguous, unique, and 
verifiable. 
Set Condition: a condition is set if it is defined before it is used. 
Set Condition Option: a condition option is set if all conditions are set. 
Used Function: a function that is employed in the control flow or referred by other function(s) 
employed in the control flow.  
 

9.2  Measurement Rules 
 
The following measurement rules were tailored for the purpose of identifying defects 
(incomplete functional requirements) in the SRS and estimating software reliability.  

9.2.1  B1: Number of Functions Not Satisfactorily Defined 
 
Within the context of the COM measurement, a satisfactorily defined function is a function 
meeting the criteria specified in [IEEE, 1998]. 
 
Refer to Section 9.2.6 for the definition of a defined function. 
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More specifically, a function is a satisfactorily defined function if it is defined and has all of the 
following attributes:  
 
1. unambiguous: so that the customer, software analysts and other design stakeholders 

would have the same interpretation. 
2. complete: there is sufficient information for the design of the software. Also, input 

functions should define responses to valid and invalid input values.  
3. verifiable: so that a test case can be written for it. 
4. unique: it is not redundant.  
5. consistent: it does not contradict other requirements.  
6. correct: the function should be approved by the customer or in agreement with a higher-

level document, such as a project charter or high-level requirements.  
 
The counting rule for B1 (the number of functions not satisfactorily defined) is to count all of the 
non-satisfactorily defined functions identified by the above rules.  
 
The following are samples of satisfactorily defined and non-satisfactorily defined functions: 
 
“Upon the μp addressing a board, a decoding chip on the board shall send a code back via the 
data bus lines.” ([APP, Y5], Page 42) is a satisfactorily defined function; 
 
“If all diagnostic tests are passed, then this algorithm shall light the MAINT LED for 
approximately one second” ([APP, Y5], Page 45) is a satisfactorily defined function; 
 
“There shall be a delay between updates to give the communication μp time to access the Dual 
Port Ram” ([APP, Y1], Page 39) is a non-satisfactorily defined function since the duration of the 
delay time is not specified. 

9.2.2  B2: Number of Functions 
 
Within the context of the COM measurement, a function is a defined objective or characteristic 
action in the software requirement specification (SRS) that is usually involved in processing 
input(s) and/or generating output(s).  
 
The defined objective or characteristic action is identified by analyzing the functional 
specifications at the word phrase level. 
 
The following rules apply when identifying individual functions:  
 
1. The Functional Requirements Section of the SRS is used to identify functions for this 

measure.  
2. If there is no separate Functional Requirements Section, then use the requirements in the 

SRS that describe the inputs, processing, and outputs of the software. These are usually 
grouped by major functional description, sub-functions, and sub-processes.  
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3. Functions may also be displayed in data-related or object-oriented diagrams. In flow 
diagrams, functions are usually shown as ovals with arrows showing data flow or 
function inputs and outputs.  

4. Each functional requirement is counted as a function. A functional requirement has the 
following characteristics:  
1. A function is the lowest-level characteristic of the software that usually has an 

input, processing, and an output.  
2. It is the most fundamental and testable characteristic and action that takes place in 

processing the inputs and generating the outputs. The inputs or outputs may be 
other functions, or inputs or outputs to the software system 

3. A functional requirement generally takes the form of a “noun-modal verb-action 
verb-object” sentence segment. The modal verb is usually a “shall,” “should,” 
“may,” or “will” statement.  

4. A descriptive statement whose prototypical verb is a descriptive word, such as 
“contain,” “indicate,” “consider,” and “include,” is NOT a function. 

5. Compound sentence segments (joined with and, or, etc.) may describe separate 
functions.  

6. A chart or graphic may define one or more functions.  
7. A function may be implied. Such a function would not meet the requirement for a 

satisfactorily defined function.  
 

Each functional specification is expressed as a fundamental and uncomplicated statement. Each 
function must be uniquely identified (usually numbered). Uniqueness is facilitated by the use of 
a consistent and logical scheme for assigning identification to each functional specification 
statement within the requirements document. 

Non-functional requirements, as described in [IEEE, 1988], do not describe what the software 
will do, but how the software will perform the functions. Most of the non-functional 
requirements are not as important as the functional requirements. Typical non-functional 
requirements include: 

 
 Performance Requirements (throughput, response time, transit delay, latency, etc.) 
 Design Constraints 
 Availability Requirements 
 Security Requirements 
 Maintainability Requirements 
 External Interface Requirements      
 Usability requirements (ease-of-use, learnability, memorability, efficiency, etc.) 
 Configurability requirements 
 Supportability requirements 
 Correctness requirements 
 Reliability requirements 
 Fault tolerance requirements 
 Operational scalability requirements (including support for additional users or 

sites, or higher transaction volumes) 
 Localizability requirements (to make adaptations due to regional differences) 
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 Extensibility requirements (to add unspecified future functionality) 
 Evolvability requirements (to support for new capabilities or ability to exploit 

new technologies) 
 Composability requirements (to compose systems from plug-and-play 

components) 
 Reusability—requirements 
 System Constraints. (e.g., hardware and OS platforms to install the software, or 

legacy applications, or in the form of organizational factors or the process that the 
system will support.) 

 User Objectives, Values and Concerns. 

Normally, non-functional requirements are not considered while counting functions. However, in 
certain cases, non-functional requirements hide what really are functional requirements and may 
describe characteristics that are critical to safety and reliability, such as response time. These 
special cases should be identified by the analyst and included in the function count. Following 
are rules for counting functions implied in the non-functional requirements: 

 A function in the non-functional requirements generally takes the form of a 
“noun-modal verb-action verb-object” sentence segment. The modal verb is 
usually a “shall,” “should,” “may,” or “will” statement.  

 A descriptive statement whose prototypical verb is a descriptive word, such as 
“contain,” “indicate,” “consider,” and “include,” is NOT a function. 

 Compound sentence segments (joined with and, or, etc.) may describe separate 
functions.  

 A chart or graphic may define one or more functions.  

The counting rule for B2 (the number of functions) is to count all of the individual functions 
identified by the above rules.  
 
The following are samples of functional and non-functional requirements: 
 
“After power-up or reset, the CPU begins code execution from location 0000H” ([APP, Y5], 
Page 22) is a functional requirement; 
 
“Upon a module power-up all table contents shall be reset to zero and then copied to specified 
locations in external RAM” ([APP, Y5], Page 25) is a functional requirement which defines two 
functions; 
 
“This algorithm shall send a refresh signal to the watchdog timer” ([APP, Y5], Page 52) is a 
functional requirement; 
 
“Time update variable shall contain eight bytes of data that represent the current data and time” 
([APP, Y5], Page 54) is NOT a functional requirement since it is a descriptive statement; 
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“Memory mapping of the Dual Port Rams memory locations shall be specified in both safety μp 
and the communication Software Design Documents” ([APP, Y5], page 52)  is NOT a functional 
requirement since it is a design requirement. 

9.2.3  B3: Number of Data References Not Having an Origin 
 
Within the context of the COM measurement, a data reference origin is the source of the data 
that is manipulated by the data reference. The origin of a data is either a system input or an 
outcome of other functions.  
 
A data reference has an origin if and only if all data manipulated by this data reference have an 
identified source(s). 
 
The counting rule for B3 (the number of data references not having an origin) is to count all of 
the identified individual data references that do not have an origin.  
 
The following are samples of data references with and without data origin: 
 
“The algorithm shall restore the data back to the two tested memory locations” ([APP, Y5], Page 
33) is a data reference with an origin since the data is provided by another function. “Contents of 
the two data memory locations shall be stored in two CPU registers” ([APP, Y5], Page 33); 
 
The data reference “Contents of the two data memory locations shall be stored in two CPU 
registers” ([APP, Y5], Page 33) has no data origin since no source provides the data “contents of 
the two data memory locations” (there is no statement to specify how to determine the memory 
locations). 
 

9.2.4  B4: Number of Data References 
 
Within the context of the COM measurement, a data reference is a function that manipulates 
either internal or external data. 
 
The counting rule for B4 (the number of data references) is to count all of the individual data 
references identified by the above rules.  
 
The following are samples of data references: 
 
“The next step is to write the complement of the first byte to the first memory location and the 
complement of the second byte to the second location” ([APP, Y5], Page 33) is a data reference 
since it manipulates four data items: “the complement of the first byte,” “the complement of the 
second byte,” “the first memory location,” and “the second location;” 
 
“The algorithm shall restore the data back to the two tested memory locations” ([APP, Y5], Page 
33) is a data reference; 
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“After power-up or reset, the CPU begins code execution from location 0000H” ([APP, Y5], 
Page 22) is NOT a data reference since it does not manipulate any data. 

9.2.5  B5: Number of Defined Functions Not Used 
 
Within the context of the COM measurement, a used function is a function that is either 
employed in the control flow or referenced by other used functions. Contrast this with a non-used 
function that is defined but neither employed in the control flow nor referenced by any other 
used function. 
 
Refer to Section 9.2.2 for the definition of a function. 
 
The counting rule for B5 (the number of defined functions not used) is to count all of the 
identified individual non-used functions.  
 
The following are samples of used and non-used functions: 
 
“This algorithm shall enter a loop which attempts to access the rights to the Semaphores for both 
Dual Port RAMs” ([APP, Y5], Page 45) is a used function since it is employed in the control 
flow; 
 
The implied function “Allocate two separate bytes in external RAM” is a used function since it is 
referred by the used function “This algorithm shall read the hardwired code (one byte) and store 
the value in two separate bytes in external RAM” ([APP, Y5], Page 29); 
 
“Next, the algorithm shall compare the lower five bits of the two safety μp to the hardware code 
stored in RAM and the identification code obtained from the Identity Chip visible on the module 
font panel” ([APP, Y5], Page 45) is a used function since it is referred by the used function “if 
the codes corresponds, then this algorithm shall write 55H to the 1 Function ID Status and 2 
Function ID Status in the APP status table” ([APP, Y5], Page 45–46). 
 
“Steps have to be taken to ensure that the program keeps track of which bank is being used.” 
([APP, Y5], Page 24) is a non-used function since it is neither employed in the control flow nor 
referred by any used function. 

9.2.6  B6: Number of Defined Functions 
 
Within the context of the COM measurement, a defined function is a function that is explicitly 
stated in the SRS. Contrast this with an implied function that is referenced but not defined. 
 
Refer to Section 9.2.2 for the definition of a function. 
 
The counting rule for B6 (the number of defined functions) is to count all defined functions 
identified by the above rules.  
 
The following are samples of defined and implied functions: 
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In statement “This algorithm shall read the hardwired code (one byte) and store the value in two 
separate bytes in external RAM” ([APP, Y5], Page 29) there are two defined functions: “read the 
hardwired code (one byte)” and  “store the value in two separate bytes in external RAM;” 
 
The statement “This algorithm shall read the hardwired code (one byte) and store the value in 
two separate bytes in external RAM” ([APP, Y5], Page 29) implies an undefined function 
“Allocate two separate bytes in external RAM” since this function is not stated, but is required. 

9.2.7  B7: Number of Referenced Functions Not Defined 
 
Refer to Section 9.2.6 for the definition of a defined function and Section 9.2.8 for the definition 
of a referenced function. 
 
The counting rule for B7 (the number of referenced functions not defined) is to count all of the 
individual referenced and non-defined functions.  

9.2.8  B8: Number of Referenced Functions 
 
Within the context of the COM measurement, a referenced function is a function that is 
referenced by any other functions within the same SRS. 
 
Refer to Section 9.2.2 for the definition of a function. 
 
The counting rule for B8 (the number of referenced functions) is to count all of the individual 
referenced functions identified by the above rules.  
 
The following are samples of referenced functions: 
 
In statement “If all diagnostic tests are passed, then this algorithm shall light the MAINT LED 
for approximately one second” ([APP, Y5], Page 45),  “diagnostic tests” are referred functions 
since they are referred by the function “this algorithm shall light the MAINT LED for 
approximately one second;” 
 
In statement “Upon completing the Initialization procedures above, the code execution shall 
proceed to the Power-Up Self Tests.” ([APP, Y5], Page 30) There are two functions which are 
referred: the “Initialization” function and the “Power-Up Self Tests” function. 

9.2.9  B9: Number of Decision Points Missing Any Conditions 
 
Refer to Section 9.2.10 for the definition of a decision point and to Section 9.2.12 for the 
definition of a decision point condition. 
 
The counting rule for B9 (the number of decision points missing any condition) is to count all of 
the identified individual decision points in which a condition is missing. 
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9.2.10 B10: Number of Decision Points 
 
Within the context of the COM measurement, a decision point is a process element that routes 
the system to one of several alternative outgoing paths, depending on its condition(s). In the 
requirement statements, the keywords, such as “ = ”, “ < ,” “ > ”, “compare,” “verify” and 
“check,” usually imply the existence of a decision point. 
 
The counting rule for B10 (the number of decision points) is to count all of the identified 
individual decision points.  
 
The following are samples of decision points: 
 
“This algorithm shall compare the 5-bit codes sent from the safety μp to the code stored in the 
Identity Chip and the code hardwired to the module backplane connector” ([APP, Y5], Page 31) 
is a decision point; 
 
“This algorithm shall read back the data in the data in the failure address line and then the base 
address data and compare the two values to check if the data are complements of each other” 
([APP, Y5], Page 36) is a decision point. 

9.2.11 B11: Number of Condition Options Having No Processing 
 
Within the context of the COM measurement, a condition option is processed if a function is 
defined to take over the control flow given that the condition option is taken. Contrast this with 
an unprocessed condition option that no function is not defined to be in charge of the control 
flow. 
 
Refer to Section 9.2.12 for the definition of a condition option. 
 
The counting rule for B11 (the number of condition options having no processing) is to count all 
of the unprocessed condition options. 
 
The following is an example of processed and unprocessed condition options: 
 
The statements “This algorithm shall read the status flags generated by the On-Line Diagnostics. 
If a test status flag contains the value 55H, this shall...” ([APP, Y5], Page 49) imply four decision 
points, corresponding to the values taken by each of four test status flags: RAM Diagnostic Test 
Status Flag, Data Bus Lines Diagnostic Test Status Flag, Address Bus Lines Diagnostic Test 
Status Flag, and PROM Checksum Diagnostic Test Status Flag. The condition related to each 
decision point is “if the value of the test status flag is 55H.” The options within each condition 
are “55H” and “other values.” Option “55H” is processed since descendant functions are defined 
to handle this option (e.g., “read trip outputs”). However, option “other values” is unprocessed 
since there is no function defined to handle this option. 
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9.2.12 B12: Number of Condition Options 
 
For the COM measure, a condition in a decision point is a leaf-level expression that cannot be 
broken down into a simpler expression. A condition option is one of the possible results 
determined by the condition.  
 
The counting rule for B12 (the number of condition options) is to count the condition options of 
all identified individual conditions.  
 
The following are samples of conditions and their condition options: 
 
In the decision point “This algorithm shall compare the 5-bit codes sent from the safety μp to the 
code stored in the Identity Chip and the code hardwired to the module backplane connector” 
([APP, Y5], Page 31), the condition is “if the two codes match or not;” the condition options are 
“the two codes match” and “the two codes mismatch;” 
 
The statements “This algorithm shall read the status flags generated by the On-Line Diagnostics. 
If a test status flag contains the value 55H, this shall...” ([APP, Y5], Page 49) imply four decision 
points, corresponding to the values taken by each of four test status flags: RAM Diagnostic Test 
Status Flag, Data Bus Lines Diagnostic Test Status Flag, Address Bus Lines Diagnostic Test 
Status Flag, PROM Checksum Diagnostic Test Status Flag. The condition related to each 
decision point is “if the value of the test status flag is 55H.” The options within each condition 
are “55H” and “other values.” 

9.2.13 B13: Number of Calling Routines Whose Parameters Do Not Agree with the 
Called Routines Defined Parameters 

 
Refer to Section 9.2.14 for the definitions of a calling routine, a called routine. 
 
The counting rule for B13 is to count the number of calling routines which can be separately 
identified and whose parameters do not agree with the parameters defined in the routines being 
called. 

9.2.14 B14: Number of Calling Routines 
 
Within the context of the COM measurement, a routine is a set of sequential functions. A routine 
is usually bulleted as a functional section in the SRS. A calling routine is a routine referring to 
other routine(s). A called routine is a routine referred by other routine(s).  
 
The counting rule for B14 (the number of calling routines) is to count the calling routines which 
can be separately identified. 
 
The following are samples of routines, calling routines and called routines: 
 
“Check Diagnostic Test Status” ([APP, Y5], Page 49) is a routine since it consists of quite a few 
defined functions, such as “read the status flags generated by the On-Line Diagnostics,” and 
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“stay in a loop which refreshes the watchdog timer and responds to the master station when 
polled;” However, it is neither a calling routine nor a called routine. 
 
In routine “On-Line Diagnostics” ([APP, Y5], Page 53), a function is defined as “bring the 
system program CPU operation back to the Main Program.” Obviously, the routine “Main 
Program” ([APP, Y5], Page 47) is called. Therefore, “On-Line Diagnostics” is a calling routine, 
and “Main Program” is the called routine. 

9.2.15 B15: Number of Condition Options Not Set 
 
Within the context of the COM measurement, a condition option is set if it is defined (explicitly 
stated) in the SRS. Contrast this with an unset condition option that is not defined. 
 
Refer to Section 9.2.12 for the definition of a condition option. 
 
The counting rule for B15 (the number of condition options not set) is to count the number of 
unset condition options of all identified conditions.  
 
The following is an example of set and unset condition options: 
 
The statements “This algorithm shall read the status flags generated by the On-Line Diagnostics. 
If a test status flag contains the value 55H, this shall...” ([APP, Y5], Page 49) imply four decision 
points, corresponding to the values taken by each of four test status flags: RAM Diagnostic Test 
Status Flag, Data Bus Lines Diagnostic Test Status Flag, Address Bus Lines Diagnostic Test 
Status Flag, and PROM Checksum Diagnostic Test Status Flag. The condition related to each 
decision point is “if the value of the test status flag is 55H.” The options within each condition 
are “55H” and “other values.” Option “55H” is set since it is explicitly stated, and option “other 
values” is unset since it is implied by using common sense. 

9.2.16 B16: Number of Set Condition Options Having No Processing 
 
Refer to Section 9.2.17 for the definition of a set condition option and Section 9.2.11 for .the 
definition of a processed condition option. 
 
The counting rule for B16 (the number of set condition options having no processing) is to count 
the number of unprocessed condition options which are set. 

9.2.17 B17: Number of Set Condition Options 

 
Refer to Section 9.2.15 for the definition of a set condition option. 
 
The counting rule for B17 (the number of set condition options) is to count the number of 
condition options related to all the conditions identified. B17 = B12 - B15. 
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9.2.18 B18: Number of Data References Having No Destination 
 
Within the context of the COM measurement, a data reference destination is a place to which the 
outcome of the data reference is sent. The destination of a data is either a system output or an 
input of other functions.  
 
A data reference has a destination if and only if all output data generated by this data reference 
have destination(s).  
 
The counting rule for B18 (the number of data references having no destination) is to count the 
number of data references having no destination.  
 
The following are samples of data references with and without destination: 
 
The data reference “Contents of the two data memory locations shall be stored in two CPU 
registers” (CP System SRS document, Page 33) has a destination since its outcome is used by 
another function “The algorithm shall restore the data back to the two tested memory locations” 
(CP System SRS document, Page 33); 
 
The data reference “Read data block size” ([APP, Y5], Page 57) has no destination since the 
“data block size” is not used by any other function. 

9.2.19 Measurement Procedure 
 
The purpose of the COM measurement is to identify defects (incomplete functional 
requirements) in the SRS and thereby estimate the software reliability.  
 
An incompleteness defect in a software requirement specification (SRS) is one of the following: 
 

1. An incomplete function: 
 An unsatisfactorily defined function; or 
 A defined function which is not used; or 
 A referenced function which is not defined; or 
 A data reference not having an origin; or 
 A data reference not having a destination. 

 
2. An incomplete decision point: 

 A decision point missing a condition(s); or 
 A condition option not set; or 
 A condition option not processed. 

3.  
3. An incomplete calling routine: 

 A calling routine whose parameters disagree with the called routine’s defined   
parameters. 

 
Incompleteness defects in an SRS can be identified using the procedure shown in Figure 9.1. 
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Figure 9.2 presents the procedure to be followed to identify incomplete functions. 
 
Figure 9.3 presents the procedure to be followed to identify incomplete decision points. The 
procedure to be followed to identify incomplete calling routines is shown in Figure 9.4 
 

 
 

Figure 9.1 Procedure for Identifying Incompleteness Defects in the SRS 
 

Read the SRS (general description sections)

Parse the functional sections of the SRS and 
identify all defined/referenced functions, 

decisions points, and calling routines 

Parse the non-functional sections of the SRS 
and identify all defined/referenced 

functions 

For each function, determine if it is complete or not.
An incomplete function is a defect. 

For each decision point, determine if it is complete or not. 
An incomplete decision point is a defect. 

For each calling routine, determine if its parameters 
disagree with those defined by the called routine or not. 

An incomplete calling routine is a defect. 

Document the results

End

Start 
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Figure 9.2 Procedure for Identifying Incomplete Functions in the SRS 
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Figure 9.3 Procedure for Identifying Incomplete Decision Points in the SRS 
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No

The calling routine is incomplete
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called routine ?
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The calling routine is complete
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Figure 9.4 Procedure for Identifying Incomplete Calling Routines in the SRS 
 

9.3  Measurement Results 
 
 The following documents were used to measure requirement completeness: 
 

 APP Module μp1 System SRS [APP, Y1] 
 APP Module μp1 Flux/Delta Flux/Flow Application SRS [APP, Y2] 
 APP Module μp2 System SRS [APP, Y3] 
 APP Module μp2 Flux/Delta Flux/Flow Application SRS APP Y4] 
 APP Module Communication Processor SRS [APP, Y5] 

 
The primitives are presented in Table 9.1. 
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Table 9.1 Primitives for APP Modules 

 

Primitive 

APP Module

CP 
System 

μp1  
System

μp1 
Application

μp2  
System 

μp2 
Application

B1 14 19 3 5 4 

B2 190 301 61 218 29 

B3 2 8 0 4 0 

B4 138 225 60 184 25 

B5 9 8 0 0 0 

B6 182 292 60 218 25 

B7 7 4 1 0 4 

B8 125 93 40 74 20 

B9 2 1 0 0 0 

B10 28 28 11 52 6 

B11 2 1 1 0 0 

B12 63 57 34 110 20 

B13 0 1 0 0 0 

B14 18 26 1 7 0 

B15 2 1 2 0 0 

B16 0 1 0 0 0 

B17 63 56 32 110 20 

B18 3 5 0 0 0 

 
Table 9.2 lists the weights, derived measures, and COM measures for the APP modules. 
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Table 9.2 Weights, Derived Measures, and COM Measures for the APP Modules 
 

Weight, 
wi

22 
Derived 
Measure 

APP Module  

CP  
System 

μp1 
System 

μp1 
Applicatio

n 

μp2 
System 

μp2 
Applicatio

n 

w1 =  0.2 D1 0.926316 0.93688 0.95082 0.97706 0.862069 

w2 =  0.1 D2 0.985507 0.96444 1 0.97826 1 

w3 =  0.05 D3 0.950549 0.9726 1 1 1 

w4 =  0.1 D4 0.944 0.95699 0.975 1 0.8 

w5 =  0.1 D5 0.928571 0.96875 1 1 1 

w6 =  0.05 D6 0.968254 0.98508 0.970588 1 1 

w7 =  0.2 D7 1 0.96154 1 1 1 

w8 =  0.05 D8 0.968254 0.95522 0.941176 1 1 

w9 =  0.05 D9 1 0.98438 1 1 1 

w10 =  0.1 D10 0.978261 0.97778 1 1 1 

COM 0.96325 0.9613 0.98325 0.99315 0.95241 

 
The value of COM can be used as an indicator of the quality of an SRS. However, it should be 
made clear that the value of COM is partly subjective since the weights and the primitives are 
determined subjectively. 
 
The identified incompleteness defects with severity level 1 and level 2 are summarized in 
Table 9.3. These defects are also categorized according to the operational modes to which they 
belong. 
 
 

                                                 
22 These weights were obtained through expert opinion elicitation. The experts consisted of two software developers and a 
software reliability expert.  
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9.4  RePS Construction Using Completeness Measurement 

 
The APP system has four distinct operational modes: Power-on, Normal, Calibration, 
and Tuning [APP,  01]. The reliability of the APP system was estimated for each 
operational mode using a different Extended Finite State Machine (EFSM) model for 
each operational mode as defined in [Smidts, 2004]. 
 
The EFSM approach proceeds in three steps: 
 
1. Construction of an EFSM model representing the user’s requirements and 

embedding of the user’s operational profile information. 
2. Mapping of the identified defects into the EFSM model. 
3. Execution of the EFSM model to evaluate the impact of the defects in terms of 

failure probability. 
 
Figure 9.5 describes the approach used to estimate reliability. It should be noted that a 
defect belongs to only one operational mode. 
 

 
 

Figure 9.5 Approach used to estimate Reliability 
 

Start

End 

Completeness 
Measure 

RePS for 
Completeness 
Measure 

Identify incompleteness defects in the five SRSs 

Construct four EFSM models that represent the four 
operational modes of the system 

Divide the incompleteness defects into four categories 
according to the operational modes 

Map the categorized incompleteness defects into the relevant 
EFSM models 

Map the OP into the four EFSM models 

In TestMaster, run the EFSM models to estimate the reliability 
of the system for each of the operational modes 

Document the results 
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Reliability estimation per operational mode is shown in Table 9.4 (Column 2 and 
Column 3). 
 
Moreover, since some of the defects identified in the SRSs during the COM 
measurement might be fixed in later development phases, i.e., design phase and 
coding phase, one can use the approach described in Figure 9.5 to estimate software 
reliability based on the defects remaining in the source code, as shown in Table 9.4 
(Column 4 and Column 5). All the values listed in the table were based on the EFSM 
analyses.  
 

Table 9.4 Reliability Estimation for the Four Distinct Operational Modes 
 

Mode 

Based on all Severity Level 
1 and Level 2 defects found 

in SRSs 

Based on Severity Level 1 and Level 2 
defects found in SRSs and remaining 

in the source codes 
Pf R Pf R 

Power-on 1.000 0.000 0.000 1.000 
Normal  2.582e-2 9.742e-1 0.000 1.000 

Calibration 1.370e-2 9.863e-1 3.340e-11 1.00023 
Tuning  1.370e-2 9.863e-1 3.340e-11 1.00024 

 
Metrics used in the early phases of the development life cycle such as the COM 
measure and its derived measures can aid in detecting and correcting requirement 
defects. 
 
The value of the COM measure is scaled between 0 and 1 by the appropriate weights. 
A score near 1 is considered to be better than a score near 0. Those values near zero 
should be highlighted and corresponding areas should be modified accordingly.  
 
Also, the reliability based on Severity Level 1 and Level 2 defects found in SRSs and 
remaining in the source code is stated as 1 for the Power-on and Normal modes. This 
is because defects will not be triggered in Power-on and Normal mode and will only 
be triggered in Calibration and Tuning mode. The reliability based on Severity Level 1 
and Level 2 defects found in SRSs and remaining in the source code is also stated as 
being 1 for the Calibration and Tuning. This is due to the need for a uniform number 
of significant figures in the measurements. The actual value is 0.9999999999666. 
 
 
 
 

                                                 
23 This is the rounded up number. The actual number is 0.9999999999666.  
24 This is the rounded up number. The actual number is 0.9999999999666. 
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9.5  Lessons Learned 
 
As a SRS-based measurement, the measurement process for COM is time-consuming. 
A considerable amount of time was spent in manually “parsing” the natural language 
of the SRS documents. Table 9.5 summarizes the effort expended to perform this 
measurement. The process of manually parsing the SRS is error-prone. The accuracy 
of the COM measure is highly dependent on the inspectors. A two-week period of 
training on the measurement and significant domain knowledge are required. 
 
Some primitives are subjective, e.g., the number of satisfactorily defined functions. 
Repeatability of measurements is not guaranteed. The domain knowledge, physical 
status, and other subjective factors, to some extent, highly affect the inspector’s 
judgment. Therefore, it is more appropriate to apply this measurement for identifying 
defects remaining in the SRS than for quantitatively assessing the quality of the SRS. 
Revisiting the defects found through the COM measurement and mapping them to the 
source code may significantly increase the chance of finding defects remaining in the 
source code. 
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10. COVERAGE FACTOR 
 
 
A central problem in the validation of fault-tolerant systems such as those found in nuclear 
power plant safety systems is the evaluation of the efficiency of fault-tolerant mechanisms.  
 
One parameter used to quantify this efficiency is the coverage factor (CF), which is defined as 
the probability of system recovery given that a fault exists. The sensitivity of dependability 
measures (such as reliability and availability) to small variations in the coverage factor is well 
known [Bouricius, 1969] [Arnold, 1973]. Consequently, it is important to determine coverage as 
accurately as possible [Powell 1993]. 
 
The CF reflects the ability of a system to automatically recover from the occurrence of a fault 
during normal operation. Fault-injection techniques can be used to determine the CF. Based on 
the fault-injection experiment results, the reliability of a fault-tolerant system can be estimated 
using the Markov chain modeling technique. 
 
This chapter includes a definition of the CF, the introduction of Markov chain and fault-injection 
techniques, the application of Markov chain modeling and fault-injection techniques to the APP, 
and the process of calculating the reliability of the APP system.  
 
This measure can only be applied when the source code is available. As listed in Table 3.3, the 
applicable life cycle phases for CF are Coding, Testing, and Operation.  
 

10.1  Definition 
 
CF is the probability that a system can recover from a fault given that a fault occurs 
[NUREG/GR - 0019]. A formal definition of the CF of a fault-tolerance mechanism is given as 
follows [Cukier, 1999]: 

 Pr 1|  (10.1) 
where

  the probability of H(g) = 1 when   

  a variable characterizing the handling of a particular fault/activity pair, 1,   ⁄ ;0,                         
   the global (i.e., complete) input space of a fault-tolerance mechanism, G = F × A; 

   fault space; 



 

140 
 

  activity space, or activation space, in which a single “activity” is a trajectory in 
the system’s state space; 

  a fault/activity pair, or a point in space G. 

 
The CF is a function of the complete input space and is equal to the probability that a particular 
fault/activity pair is correctly handled given that a fault/activity pair is in the complete input 
space of a fault-tolerance mechanism. Actually,  “H = 1” means that the system responds to the 
fault and recovers from the fault, “g  G” indicates that a fault has happened, so the definition is 
the same as that in [NUREG/GR - 0019].  
 
Mathematically, because H is a random variable that can take the values 1 or 0 for each element 
of the fault/activity space G, the CF can be the product of the probability of occurrence of g and 
of the value of H (0 or 1). Equation 10.1 can be expressed as [Cukier, 1999]: 
 ∑           (10.2) 
where 

  The probability of occurrence of g; 

  The value of H for a given point g (g  G), 
 H(g) = 1 (if the system recovers) or 0 (if the system fails to recover). 

Furthermore, the coverage can be viewed as the expected value of H from Equation 10.2 [Cukier, 
1999], which means that Equation 10.2 can be transformed to: 

                       (10.3) 
where   
   expected value of H. 
 
Without knowing the distribution p(g), the best that can be done is to assume all fault/activity 
pairs in G are equally probable, i.e.: 1

 

and to use the Coverage Proportion, 1| |  

 
to describe the effectiveness of a given fault-tolerant mechanism. 
 



 

141 
 

10.2  Measurement Rules 
 
Several techniques, such as testing and field data-collection, have been adopted to evaluate the 
dependability of a system. Fault/error injection has been recognized as the best approach to 
evaluate the behavior and performance of complex systems under faults and to obtain statistics 
on parameters such as coverage and latencies [Benso, 2003]. 
 
Especially for a highly dependable system, fault injection is a preferred method to accelerate the 
process of the quantitative evaluation of dependability since an unreasonable amount of time 
could be required to collect operating history results of statistical relevance. So the value of c is 
usually obtained by fault-injection experiments [Arlat, 1990] [Brombacher, 1999]. 
 
For the fault-injection approach, the most accurate way to determine c is to submit the system to 
all g  G, and to observe all values of H(g).  
 
However, such exhaustive testing is rarely possible. In practice, the CF evaluation is carried out 
by submitting the system to a subset G*, obtained by random sampling in the space G and then 
using statistics to estimate c.  
 
The random sampling in space G is decomposed into two concurrent sampling processes: 
sampling a fault in space F and an activity in space A. Whereas the fault-space sampling process 
is explicit, the activity-sampling process is often achieved implicitly: the target system executes 
its operational workload and selected faults are injected asynchronously at random points in the 
workload execution. The activity-sampling process is distinct in this chapter. 
 
An approximation of the CF is given by [Choi, 2000]: 
                     (10.4) 

 
Generally, four basic steps are required for CF Measurement: 
 
1) Select a fault-injection technique; 
2) Determine the sample input space; 
3) Execute the fault-injection experiments; 
4) Determine the CF applying Equation 10.4. 
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10.2.1  Selection of Fault-Injection Techniques 
 
There are three kinds of fault-injection techniques: 
 
1. Hardware-based (physical fault injection) which themselves can be classified into: 
 
 a. Hardware fault injection with contact: the injector has direct physical contact with target 

system. 
 b. Hardware fault injection without contact: the injector has no direct physical contact with 

the target system (radiation, air pressure, temperature, magnetism, humidity). 
 
Hardware-based fault injection involves exercising a system under analysis with specially 
designed test hardware to allow the injection of faults into the target system and to examine the 
effects. Traditionally, these faults are injected at the integrated circuit (IC) pin level [Benso, 
2003]. 
 
2. Software-based 
 
Software-implemented fault injection (SWIFI): data is altered and/or timing of an application is 
influenced by software while running on real hardware.  
 
Traditionally, software-based fault injection involves the modification of software executing on 
the system under analysis in order to provide the capability to modify the system state according 
to the programmer’s view of the system. This is generally used on code that has communicative 
or cooperative functions so that there is enough interaction to make the fault injection useful 
[Benso, 2003].  
 
3. Simulation-based  
 
Simulation-based fault injection (SBFI): the whole system behavior is modeled and imitated 
using simulation.  
 
Compared with the other two methods, simulation-based fault injection has the following 
advantages [Benso, 2003]:  
 

 Simulation-based fault injection can support all system abstraction levels: axiomatic, 
empirical, and physical. 

 There is no intrusion into the real system. 
 Full control of both fault models and injection mechanisms is secured. 
 Maximum observability and controllability are achieved. 

 
For these reasons, simulation-based fault injection (SBFI) is selected to estimate the coverage 
factor of the APP system. 
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10.2.2  Determination of Sample Input Space 
 
According to the definition in Equation 10.1, an input space is characterized by a fault space and 
an activity space. Therefore, the sampling of the input space for the fault-injection experiments 
consists of determining fault space and activity space, respectively. 

10.2.2.1 Fault Space 
 
One of the difficulties in fault injection is determining the fault-injection space (the set of faults 
that should be injected), since exhaustive testing of all possible faults that a system may 
encounter during its lifetime is impractical.  
 
Generally, the fault space for a microprocessor-based embedded system has four dimensions: 
 
Type: which kind of faults are injected  

 a bit, bits, byte, word, or words 
 permanent or transient 

 
Location: where a fault is injected  

 IU (Integer Unit) 
 FPU (Float Point Unit) 
 Data Unit (Data/Data Address) 
 Register Array 
 Instruction Unit (Code/Code Address) 

 
Time: when a fault is injected. 

 Pre-runtime 
 Runtime (the number of executed instructions before the fault injection) 

 
Duration: how long an injected fault lasts. (The duration is usually expressed in terms of the 
number of instructions executed after the fault was injected.) 
 
Because the variables in the source code are stored in the RAM, fault injection was performed in 
the APP RAM. When hardware faults occur in the RAM, the values of variables will be changed, 
which injects faults into the system and may lead to system failure. Therefore, one can change 
the values of the variables to simulate faults in the RAM.  
 
Many researchers have found that transient faults can be up to 100 times more frequent than 
permanent faults, and they are much more significant in terms of dependability simulation 
[Benso, 2003].  
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According to [Gil, 2002], the most used fault model is bit-flip for transient fault, which is 
produced in the memory circuit, so bit flip was selected as the fault type. In addition, pre-runtime 
fault injection was only suitable for a limited number of fault classes such as permanent faults 
[Hexel, 2003]. Therefore, runtime was taken as fault-injection time.  
 
The fault space of the APP system is listed as follows: 
 
Location: RAM 
Type:  Bit flip, Transient 
Time:  Runtime 
Duration: Within a single execution cycle 
 
10.2.2.2  Activity Space 
 
The effect of an injected fault is dependent on system activity at the moment of its occurrence. 
So a sample space consists of the combination of the set of faults and system “activity.” 
 
The activity space for the APP system is divided into two categories: outside the “Barn shape” 
and inside the “Barn shape,” as described in Chapter 4. 

10.2.3  Applying the Simulation-Based Fault Injection Technique to the APP 
 
There are two safety function processors in the APP System: one is an Intel 80c32 (μp1), and the 
other is a z80180 (μp2). Two simulated environments were set up to execute the fault injection 
experiments using KEIL μversion 2 and IAR, respectively. 
 
1. KEIL μversion 2 (for μp1) 
 
The processor of μp1 is the Intel 80c32, which belongs to the Intel 8051 family. KEIL develops 
C compilers, macro assemblers, real-time kernels, debuggers, simulators, integrated 
environments, and evaluation boards for the 8051, 251, ARM, and XC16x/C16x/ST10 
microcontroller families. The KEIL μVision2 IDE provides control for the Compiler, Assembler, 
Real-Time OS, Project Manager, and Debugger in a single, intelligent environment. 
 
The fault injection experiments for μp1 were carried out following the steps described below: 
 

a. Install the KEIL μversion 2 software into the computer. The software was installed on 
the computer before the experiment began. KEIL μversion 2 was installed according to 
[KEIL, 2001] step-by-step instructions. 

b. Create a project of KEIL μversion 2 for μp1. KEIL μversion 2 is designed for the 8051 
family instead of only for Intel 80c32. Therefore an appropriate project had to be created 
for μp1 by setting up the appropriate configurations. This included selecting the type of 



 

145 
 

processor (Intel 80c32), the Memory model, and other configurations per the [KEIL, 
2001] instructions. 

c. Added μp1 source code to KEIL μversion 2 environment per [KEIL, 2001] instructions. 
d. Executed fault-injection experiments for μp1. Injected the faults one after another by 

modifying the value of the variables in the watch window. Then, after running the 
system for at least one cycle, observed the system outputs. The outputs were the values 
of the indicator variables in the source code, which indicated whether the system sent a 
trip signal or intentionally halted. By comparing these results with the outputs obtained 
without the fault injected, the researchers determined in which state the system 
remained. 

e. Collected the experimental results. 
 
2. IAR Simulated Environment 
 
IAR Systems provide a range of development tools for embedded systems: integrated 
development environments (IDE) with C/C++ compilers and debuggers, starter kits, hardware 
debug probes, and state machine design. The IAR C compiler for the Z80 offers the standard 
features of the C language, plus many extensions designed to take advantage of specific features 
of the Z80. 
 
The fault-injection experiments for μp2 can be performed following these steps: 
 

a. Install IAR on the computer following [IAR, 1997] instructions. 
b. Create a project of IAR for μp2. IAR is designed for a range of different target 

processors. A project has to be created for μp2 to specify the processor under study. The 
steps are shown in [IAR, 1997]. 

c. Compile and link the project. It is necessary to compile and link the source files of μp2 
with IAR before running μp2 in the environment. The steps are shown in [IAR, 1997]. 

d. Execute fault-injection experiments for μp2. Similar to step (4) of μp1. 
e. Collect the results of all the experiments. 

10.2.4  Determination of the CF  
 
Table 10.1 presents six distinct states within which APP may reside. These six states describe the 
system in terms of the functional capabilities of its components at different instances of time; 
that is, the state in which the APP system is in at a particular time reflects whether the system is 
operational or whether it has failed. 
 
If the experiments are separately executed based on each microprocessor, then the reliability of 
APP can be calculated based on the reliability value obtained for the two microprocessors (μp1 
and μp2). 
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 Table 10.1 Definition of States for Each Microprocessor 
 

Name of State Definition 

Normal State 
A fault-free state in which all outputs are correct with respect to the 
input. 

Failure State 1 The Trip signal fails to be activated when it should be activated. 

Failure State 2 The Trip signal is activated when it should not be activated. 

Failure State 3 
Other failures, which are indicated by other system outputs, such as 
LED, Semaphore, and Board ID sent from μp1 and μp2 to CP 
(Communication Microprocessor). 

Recoverable State A faulty state in which all outputs are correct with respect to the input. 

Fail-safe State 
The system is intentionally blocked by the FTM (Fault-tolerant 
mechanism), after trying to recover the error without success. The Trip 
signal is also activated.  

 
It should be noted that it is impossible for the system to miss a trip signal when the analog input 
is inside the “Barn shape” because the system is not in a trip state. So from the definition of 
Failure State 1 in Table 10.1, it can occur only when the analog input is outside the “Barn 
shape.” Similarly, Failure State 2 can occur only when the analog input is inside the “Barn 
shape.” Failure State 3 can occur with analog input inside the “Barn shape” or outside the “Barn 
shape.” 
 
Table 10.2 shows the experimental results for the fault injection experiments. This table lists the 
number of occurrences of the states in which the APP remains for at least one cycle after a fault 
is injected. The number of occurrences of a state will be used to measure the CF (See Section 
10.4). 
 
The CF is the weighted sum of the probabilities of recovering from a fault with analog input 
inside the “Barn shape” and with analog input outside the “Barn shape:” 
 

     (10.5) 

where  

 the number of occurrences of the Normal State for an experiment such that the 
analog input is  inside the “Barn shape” (e.g., as shown in Table 10.2 for μp1, 
N1 = 1195); 

 the number of occurrences of the Fail-safe State for an experiment such that the 
analog input is inside the “Barn shape” (e.g., as shown in Table 10.2 for μp1, 
N2 = 355); 
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 the number of occurrences of the Normal State for an experiment such that the 
analog input is outside the “Barn shape” (e.g., as shown in Table 10.2 for μp1, 
N3 = 1165); 

 the number of occurrences of the Fail-safe State for an experiment such that the 
analog input is outside the “Barn shape” (e.g., as shown in Table 10.2 for μp1, 
N4 = 350); 

 the total number of experiments with analog input inside the “Barn shape” (e.g., as 
shown in Table 10.2 for μp1, Nt1 = 2025); 

 the total number of experiments with analog input outside the “Barn shape” (e.g., 
as shown in Table 10.2 for μp1, Nt2 = 2025); 

 the weight of experiments such that the analog input is inside the “Barn shape,” 0.9999999943, as determined in Chapter 4; 

 the weight of experiments such that the analog input is outside the “Barn shape,” 5.7 10 , as determined in Chapter 4. 

 
Table 10.2 Fault Injection Experimental Results 

 

Safety 
System 

Number of 
experiments 

Normal 
State 

Fail-
safe 

State 

Failure 
State 1 

Failure 
State 2 

Failure 
State 3 

Recover
-able 
State 

μp1 

Analog input 
inside the 

“Barn shape” 

Nt1 N1 N2  N9 N10 N5 

2025 1195 355 0 40 255 180 

Analog input 
outside the 
“Barn shape” 

Nt2 N3 N4  N7  N8 N6 

2025 1165 350 70 0 275 165 

μp2 

Analog input 
inside the  

“Barn shape” 

Nt1 N1 N2  N9 N10 N5 

3830 2210 510 0 95 630 385 

Analog input 
outside the 

“Barn shape” 

Nt2 N3 N4 N7  N8 N6 

3830 2175 480 155 0 610 410 
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10.3  Measurement Results 
 
In order to obtain the experimental results, the following documents were used to measure the 
coverage factor: 
 

 APP Module μp1 System SRS [APP, Y1] 
 APP Module μp1 Flux/Delta Flux/Flow Application SRS [APP, Y2] 
 APP Module μp2 System SRS [APP, Y3] 
 APP Module μp2 Flux/Delta Flux/Flow Application SRS [APP, Y4] 
 APP Module Communication Processor SRS [APP, Y5] 
 APP Module μp1 System source code [APP, Y6] 
 APP Module μp1 Flux/Delta Flux/Flow Application source code [APP, Y7] 
 APP Module μp2 System source code [APP, Y8] 
 APP Module μp2 Flux/Delta Flux/Flow Application source code [APP, Y9] 
 APP Module Communication Processor System source code [APP, Y10] 

 
The fault-injection experiments were performed to discover the effect of faults on the system 
given the existence of FTMs (fault-tolerant mechanisms) using the requirements and source code 
documents. 
 
When a fault is injected, the APP system enters a Recoverable State. In most experiments, the 
system will come back to a Normal State from the Recoverable State or remain in the 
Recoverable State. A few injected faults will lead to Failure State 1, Failure State 2, or Failure 
State 3. 
 
Experiments in which the Failure State was observed are presented in Table 10.3. 
 
From Table 10.3, it can be seen that when the analog input condition is inside the “Barn shape,” 
if a bit-flip fault occurs in the variable SA_TRIP_1_DEENRGZE (for μp1) and Trip_condition 
(for μp2) controlling the trip signal, the system will send a trip signal and enter a Failure State 2. 
 
Referring to Table 10.3, when the analog input condition is outside the “Barn shape” the system 
should send a trip signal if no fault occurs. If a bit-flip fault occurs in the variable 
fAnalog_Input_6 (for μp1) and AIN[4] (for μp2) controlling one of the analog inputs, the system 
could miss a trip signal and enter a Failure State 1. 
 
If a bit-flip fault occurs in the variable chLEDs_Outputs (for μp1), which indicates the status of 
the LED, and have_dpm (for μp2), which indicates whether the semaphore is available, the 
system will enter a Failure State 3. 
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Table 10.3 Example Experiments Leading to the System Failure 
 

Safety 
system 

Input condition  
Variable in which a 
fault was injected

Time at which the fault is 
injected 

μp1 

Analog input 
inside the “Barn 

shape” 

SA_TRIP_1_DEENRG
ZE 

During RAM test of Diagnostic  

SA_TRIP_1_DEENRG
ZE 

During PROM test of Diagnostic 

SA_TRIP_1_DEENRG
ZE 

During Analog input test of 
Diagnostic  

SA_TRIP_1_DEENRG
ZE 

During the execution of Main 
and after status checking 

SA_TRIP_1_DEENRG
ZE 

During calculating analog input 
of Main 

Analog input 
outside the 

“Barn shape” 

fAnalog_Input_6 
During the execution of Main 

and after status checking 

SA_TRIP_1_DEENRG
ZE 

During the execution of Main 
and after status checking 

chLEDs_Outputs 
During the execution of Main 

and after status checking 

μp2 

Analog input 
inside the “Barn 

shape” 

Trip_condition  Before RAM test of Diagnostic  

Trip_condition During RAM test of Diagnostic  

Trip_condition 
During the execution of Main 

and after status checking 

Analog input 
outside the 

“Barn shape” 

AIN[4] 
During the execution of Main 

and after status checking 

have_dpm During update DPM of Main. 
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10.4  RePS Construction Using Coverage Factors of μp1 and μp2 
 
The APP system has three microprocessors: μp1, μp2, and CP (Communication Processor). 
According to [APP,  01], the entire APP system has four distinct operational modes: Power-on, 
Normal, Calibration, and Tuning. Moreover, most fault-tolerant mechanisms (such as RAM Test 
and Address Bus Line Test) are only available during the Normal Operation Mode, in which CP 
is not involved. Therefore, the RePS for APP was constructed only for the Normal Operation 
Mode, and CP is not considered in this chapter. 
 
Three steps are required to estimate the reliability of APP based on the coverage measurements: 
 

 Construct CTMC (Continuous-time Markov Chain) Models for μp1 and μp2 
 Estimate the reliability of μp1 and μp2 based on the CTMC Models, respectively 
 Calculate the reliability of the APP based on the reliability estimates of μp1 and μp2 

 

10.4.1  Construction of Continuous-Time Markov Chain Model for a 
Microprocessor 

 
There are several different models found in the literature that help predict reliability using the 
coverage factor for a fault-tolerant system, such as ESPN (Extended Stochastic Petri Net), and 
DTMC (Discrete Time Markov Chain) [Smidts, 2000]. 
 
The CTMC (Continuous-time Markov Chain) model, defined by a discrete state space and 
continuous time parameter, is a stochastic model suitable for describing the behavior of complex 
fault-tolerant systems. It can represent hardware, software, and their combined interactions in a 
single model to provide various information. Furthermore, it can represent the rate at which the 
state changes occur, rather than simply probabilities as in the DTMC (Discrete Time Markov 
Chain) [Kaufman, 1999]. 
 
The statistical basis for this model is that of a Markov process whose fundamental premises, 
which are referred to as the memory-less property, are: 
 

1. All past state information is irrelevant; that is, state memory is not required. 

2. The length of time during which the current process has been in a given state is 
irrelevant; that is, state age memory is not required. 

 
The CTMC models for μp1 and μp2 are similar to each other because both microprocessors 
implement the same fault-tolerant mechanisms, such as RAM Test, PROM Test, and EEPROM 
Test. The only difference between these two CTMC models lies in the values of the model 
parameters. The CTMC model for either μp1 or μp2 is shown in Figure 10.1. 
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Figure 10.1 CTMC  Model for μp1 or μp2 

 
The state transition parameters that are required by such a Markov chain model are listed in 
Table 10.4. 
 

Table 10.4 APP State Transition Parameters 
 

Name of State 
Transition Parameter 

Definition 

 
The rate at which an error occurs in the system (e.g., bit-flip 
in memory), independently of whether or not it is detected 
by the FTM (unit:  per second) 

 
The rate at which the system deals with the fault injected 
and generates the result which indicates whether the fault 
can be recovered (unit: per second) 

 The coverage factor 

 
The probability that the system is brought back to the  
Normal State when an erroneous state is recovered 

 
The probability that the system remains in the Recoverable 
State when an erroneous state cannot be recovered 

 
The probability that the system enters the Failure State 1 
when an erroneous state leads to the system failure 

 
The probability that the system enters the Failure State 2 
when an erroneous state leads to the system failure 

 

2 1(1 )c  

Normal State

Failure State 3
(Other Failures)

Failure State 1
(Type 1 Failure)

Fail-safe State
Recoverable 

State

Failure State 2
(Type 2 Failure)

1 1c 

1 1(1 )c  


2 3 1(1 )(1 )c    

2 4 1(1 )(1 )c    

2 3 4 1(1 )(1 )(1 )c       
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The steps to calculate the state transition parameters are: 
 

1. Determining the Failure Rate of a microprocessor, , and the rate at which the system 
responds with the fault injected and generates the result that indicates whether or not the 
system can recover from the fault, 1. 

 
The failure rate of a microprocessor, , is usually estimated by summing up the failure rates of 
all primary components: 
 ∑          (10.6) 
where 

  the failure rate of a microprocessor; and 
  the failure rate of the i-th primary component. 
 
The primary components for μp1 and μp2 are: CPU (Central Processing Unit), RAM (Random 
Access Memory), PROM (Programmable Read Only Memory), EEPROM (Electrical Erasable 
PROM), DPM (Dual Port RAM), and ABL (Address Bus Line). The failure rates of these five 
primary components are estimated by [Chu, 2005], as summarized in Table 10.5. 
 

Table 10.5 Component Failure Rates 
 

Failure Rate Description Value, in failure/hour 

 Failure rate of RAM 3.3E-07 

 PROM 2.6E-08 

 EEPROM 2.46E-09 

 DPM 1.7E-08 

 Address Bus Line 5.22E-07 

 CPU register 6.1E-8 

 
The number of CPU registers in these two safety microprocessors are: 20 (μp1) [Dallas, 1995], 
and 22 (μp2) [ZiLOG, 2000]. 
 
Therefore, according to Equation 10.6, the failure rate of microprocessor μp1 is: 
 3.3 0.26 0.0246 0.17 5.22 0.61 20 10 hour⁄2.117 10 hour⁄ 5.883 10 second⁄                                
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The failure rate of microprocessor μp2 is: 
 3.3 0.26 0.0246 0.17 5.22 0.61 22 10 hour⁄2.340 10 hour⁄ 6.500 10 second⁄                                

 
The rate  at which the system deals with the fault injected and generates the result depends on 
the time required to tolerate the fault or experience a failure. In this chapter, an injected fault is 
generally recovered or causes the microprocessor failure in one program cycle time, otherwise it 
is regarded as latent in the Recoverable State. The rate 1 is the average rate for all the faults 
injected into the APP.  
 
The time required to recover from the Recoverable State to the Normal State is one program 
cycle time, 0.129 s, therefore: 10.129 second 7.75 second⁄  

 
 

2. Determining the Transition Parameters , , , and . 

 

The state transition parameters , , , and can be determined using the data in Table 10.2 

and Equations 10.7 through 10.10:  
 

       (10.7) 

 

      (10.8) 

 

       (10.9) 

 

      (10.10) 

 
Where 
 , , , , , , , and are the same as those in Equation 10.5; 

  the number of occurrences of the Recoverable State for an experiment such that 
the  
analog input is inside the “Barn shape” (shown in Table 10.2); 

  the number of occurrences of the Recoverable State for an experiment such that 
the analog input is outside the “Barn shape” (shown in Table 10.2); 
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  the number of occurrences of the Failure State 1 for an experiment such that the 
analog input is outside the “Barn shape” (shown in Table 10.2); 

  the number of occurrences of the Failure State 3 for an experiment such that the 
analog input is outside the “Barn shape” (shown in Table 10.2); 

  the number of occurrences of the Failure State 2 for an experiment such that the 
analog input is inside the “Barn shape” (shown in Table 10.2); 

  the number of occurrences of the Failure State 3 for an experiment such that the 
analog input is inside the “Barn shape” (shown in Table 10.2). 

 
Table 10.6 summarizes the transition parameters for μp1 and μp2 based on Table 10.2 and 
Equation 10.5 through Equation 10.10. 
 

 
Table 10.6 Transition Parameters (Probability) 

 

Safety 
 system 

       

μp1 0.7654 5.883E-10/s 7.75/s 0.7710 0.3789 1.3525E-9  0.1356 

μp2 0.7102 6.5E-10/s 7.75/s 0.8125 0.3468 1.2186E-9 0.1310 

 
The parameter  of μp1 is  the same as that of μp2 due to the fact that the failure rates of the 
hardware components, such as RAM, PROM, DPM, Address Bus Line, and EEPROM, are 
assumed to be the same for the two microprocessors. 

10.4.2  Estimate the Reliabilities of μp1 and μp2 

 
The CTMC (Continuous-time Markov Chain) can be used to estimate the probability of each 
state.  
 
The steps of applying CTMC are: 
 

 Construct the differential equations governing a microprocessor’s behavior 
 
According to [Carsten, 1973], the differential equation governing the relationship in the model 
is: 
 

                                                 (10.11)  

where 
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 a column vector whose elements are the system state probabilities at time t, , , … ,  

 the probability that the system is in a state i at time t,  i = 1, 2, 3, ..., n 

 a finite and countable number of states for a state space 

 the  matrix of the transition rates 

 
The following notations are used for the CTMC model shown in Figure 10.1: 
 

 the probability that the system is in “Normal State” at time t 

 the probability that the system is in “Recoverable State” at time t 

 the probability that the system is in “Fail-safe State” at time t 

 the probability that the system is in “Failure State 1” at time t 

 the probability that the system is in “Failure State 2” at time t 

 the probability that the system is in “Failure State 3” at time t 

 
From Figure 10.1, one obtains Equation 10.12 and Equation 10.13: 
                                                                                                                    

                   (10.12) 

 
and  
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 0 0 0 01 1 0 0 0 00 1 0 0 0 00 1 1 0 0 0 00 1 1 0 0 0 00 1 1 1 0 0 0 0
 (10.13) 

 
 

 Solve the differential equations to obtain the probability in each state 
 
As the number of system components and their failure modes increases, there is an exponential 
increase in system states, making the resulting reliability model more difficult to analyze. The 
large number of system states makes it difficult to solve the resulting model, to interpret state 
probabilities, and to conduct sensitivity analyses. However, this is not the case for the APP since 
the level of abstraction is such that the number of states is limited.  
 
Knowing the initial conditions given by the state vector 0  the set of simultaneous 
differential equations can be solved: 
 0       (10.14) 
 
For a microprocessor, when it starts to work, the system is assumed to be in the Normal State, so 
the initial condition is: 
 0 1, 0 0, 0 0, 0 0, 0 0, 0 0 
 
namely, 0 1,0,0,0,0,0  
 

Based on Table 10.6 and Equation 10.14, using the initial condition one obtains probabilities of 
the six states of μp1 and μp2 with t = 0.129 seconds, as listed in Table 10.7: 
 
From Table 10.7, the probability of the Normal state is larger than that of other states because its 
failure rate is low and the FTMs in the microprocessor can recover most faults. In addition, the 
probability of Failure State 2 is much greater than that of Failure State 1 because most analog 
inputs are inside the “Barn shape” (Chapter 4). 
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Table 10.7 Probabilities of Six States of μp1 and μp2 with t = 0.129 Seconds 
 

       

μp1 9.99999999924109E-1 4.98E-11 5.02E-12 5.6415E-21 5.65E-13 3.61E-12 

μp2 9.99999999916156E-1 5.53E-11 4.2258E-12 7.3204E-21 7.8695E-13 5.2203E-12

 
 

 Calculate the reliability of a safety microprocessor 
 
In this experiment, the Normal State, the Recoverable State, and the Fail-safe State are regarded 
as reliable states because no failure occurs. The reliability of a safety microprocessor is the sum 
of the probabilities of these three states. Therefore:  
 ∑          (10.15) 
where 

  the reliability of a microprocessor 

  the probability that the microprocessor remains in the i-th reliable state, i = 1, 2, 
and 3, corresponding to the Normal State, the Recoverable State, and the Fail-safe 
State, respectively 

 
From Table 10.7, based on Equation 10.15, the reliabilities of the two safety microprocessors at  
t =0.129 seconds are presented in Table 10.8. 
 

Table 10.8 Reliabilities of μp1 and μp2 with t = 0.129 Seconds 
 

Microprocessor Reliability,  

μp1 0.999999999978936 

μp2  0.999999999975681 

 

10.4.3  Reliability Calculation for the APP 
 
For the whole APP system, there are also three types of independent failures: Type 1 Failure, 
Type 2 Failure, and Type 3 Failure (see Table 10.1). Therefore: 
 1 ∑          (10.16) 
where 

  the reliability of the whole APP system 
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  the probability of the i-th type of failure, i = 1, 2, and 3 
 
For Failure State 1, the APP system will miss a trip signal only when both microprocessors miss 
the trip signal, that is, APP will enter Failure State 1 only when both microprocessors enter 
Failure State 1. Therefore, μp1 and μp2 are logically in parallel. Then, the probability of Failure 
State 1 at t = 0.129 seconds for APP is: 
 
    5.64 10 7.32 10 4.13 10  
 
For Failure State 2, the APP system will send a trip signal once either microprocessor generates a 
trip signal, that is, APP will enter Failure State 2 when either safety system enters Failure State 2. 
So μp1 and μp2 are logically in series and the probability of Failure State 2 at t = 0.129 seconds 
for APP is: 
 
   1 1 5.65 10 1 7.87 10 1.3526 10  
 
The APP system will enter Failure State 3 when a microprocessor failure occurs, which is 
indicated by LED, Semaphore, or Board ID sent from μp1 and μp2 to CP. Therefore, μp1 and 
μp2 are logically in series and the probability of Failure State 3 at t = 0.129 seconds for the APP 
is: 
 
   1 1 3.61 10 1 5.22 10 8.83 10  
 
Based on Equation 10.16, the reliability of the whole APP system at t =0.129 seconds is: 
 
  1 4.13 10 1.35 10 8.83 10 0.9999999999898 
 
Fault-Tolerant Mechanisms (FTMs) are one of the major concerns of system design. A powerful 
FTM will increase the reliability and safety of the system, and decrease the probability of system 
failure. The CF is used to quantify the efficiency of the system FTM, which is a central problem 
in the validation of fault-tolerant systems [Powell, 1993]. By this measurement, the reliability of 
the system exceeds 0.999999999 per demand, which coincides with actual experience at the 
plant from which the operating data was obtained. 
 

10.5  Lessons Learned 
 
Fault-injection techniques have long been recognized as necessary to validate the dependability 
of a system. Artificial faults are injected into a system and the resulting behaviors are observed. 
Compared with other measurements, fault-injection techniques are useful in speeding up the 
occurrence and the propagation of faults into the system in order to observe the effects on the 
system performance. Fault injection techniques can be performed on either simulations and 
models or working prototypes and systems in the field. In this manner, the weaknesses of 
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interactions can be discovered. This approach is frequently used to test the resilience of a fault-
tolerant system against known faults, and thereby measure the effectiveness of the fault-tolerant 
measures [Alfredo, 2003]. 
 
One difficulty of fault injection involves the simulation of temporary faults, which are the faults 
most likely to occur in a computer system. The nature of these temporary faults makes 
exhaustive testing exceedingly time-consuming. As a result, coverage evaluation is a problem of 
statistical estimation, where inferences about a population are based on sample observations. 
 
When calculating the probability for each failure type (Type 1, Type 2, and Type 3), common 
cause failures were not considered. Common cause failure is a specific kind of dependent failure 
that arises in redundant components where simultaneous (or concurrent) multiple failures result 
in different channels from a single shared cause [Mauri, 2000] [Vesely, 2001] [Breakers, 2003]. 
Research on quantifying the impact of common-cause failures on fault-tolerant systems is 
beyond the scope of this report and is identified as a follow-on issue in Chapter 19.
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11. CYCLOMATIC COMPLEXITY 
 
 
This measure determines the structural complexity of a coded module. 
 
The resulting measurement can then be used to inform the developer’s decision to redesign the 
module to limit its complexity, thereby promoting understandability of the module and 
minimizing the number of logical testing paths [IEEE 982.2, 1988]. A module’s cyclomatic 
complexity (CC) is also a strong indicator of its testability. 
 
Based on this measure, a set of derived measures for the cyclomatic complexity of the entire 
software product was proposed in this chapter, which may be used to estimate the fault content in 
the delivered source code. 
 
This measure can only be applied when detailed design information is available. As listed in 
Table 3.3, the applicable life cycle phases for CC are Design, Coding, Testing, and Operation.  
 

11.1  Definition 
 
The CC of a module is the number of linearly independent paths through a module. This is an 
indication of how much effort is required to test a module if the test plan is to supply diverse 
inputs so that all combinations of branches are executed.  
 
The CC for the i-th module is defined by McCabe [McCabe, 1976] [McCabe, 1982] as:  2                                (11.1) 
where 

  is the cyclomatic complexity measure of the i-th module, 
  is the number of edges of the i-th module (program flows between 

nodes) 
  is the number of nodes of the i-th module (sequential groups of 

program statements). 
 
A module corresponding to a single function or subroutine in a typical language has a single 
entry and exit point and is able to be used as a design component via a call/return function. In C 
language, a module is a function. This definition is different from that of the BLOC measure, in 
which a module is defined as a .c file together with all user defined .h files it includes (refer to 
Chapter 6). 
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A node is a sequential group of program statements.  
 
An edge is the program flow between nodes.  
 
McCabe’s definition (Equation 11.1) applies to a representation of the model’s control flow 
graph in which there is no edge between the exit node and the entry node [Jones, 1991] and as 
such is a non-strongly connected graph. 
 
As an example, consider a module’s control flow graph shown in Figure 11.1. Each node is 
numbered 0 through 6 and edges are displayed using solid lines connecting the nodes. The 
module’s cyclomatic complexity is 4 (9 edges minus 7 nodes plus 2).  
 

 
 

Figure 11.1 Control Flow Graph 
 
When one uses a strongly connected graph to represent the module’s control flow—where one 
fictitiously adds an edge from the exit node to the entry node—the Cyclomatic Complexity 
measure for the i-th module is [IEEE 982.2, 1988]: 
 1          (11.2)  
 
For the example above, the program-control-flow graph is not strongly connected. However, if 
we add a “virtual edge” to connect node 0 and node 6 (the dashed line in Figure 11.2), the flow 
graph becomes strongly connected. The number of nodes remains seven. The number of edges is 
now 10, thus the CC remains 4 (10 edges minus 7 nodes plus 1). 
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Figure 11.2 Control Flow Graph with a Virtual Edge 
 
It should be noted that CC is a measure used for a single-coded module and not for an entire 
software product. 
 
One way to characterize the cyclomatic complexity25 of a software product is to use the 
following derived measures, which were proposed by the UMD research team based on 
Chapman’s research [Chapman, 2002]: 
 %   Percentage of modules with CC < 4. %   Percentage of modules with 4 ≤ CC < 10. %   Percentage of modules with 10 ≤ CC < 16. %   Percentage of modules with 16 ≤ CC < 20. %   Percentage of modules with 20 ≤ CC < 30. %   Percentage of modules with 30 ≤ CC < 80. %   Percentage of modules with 80 ≤ CC < 100. %   Percentage of modules with 100 ≤ CC < 200. %   Percentage of modules with CC ≥ 200. 

 
The percentage distribution of modules by CC level reflects the CC of a software product. 
 
 
 
 

                                                 
25 Note that this is not the combined cyclomatic complexity of the software product. A combined cyclomatic complexity value is 
not necessary for RePS construction and reliability prediction. 
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11.2  Measurement Rules 
 
The CC measure is based on the structure of a module’s control-flow graph. Control-flow graphs 
describe the logic structure of software modules. Each flow graph consists of nodes and edges. 
Each possible execution path of a software module has a corresponding path from the entry node 
to the exit node of a module’s control-flow graph. 
 
For the remainder of this chapter, it is assumed that the constructed control-flow graphs are all 
non-strongly-connected (i.e., no edge exists between the entry and exit nodes).  
 
Five steps are required to manually measure the CC of a module: 
 
1. Beginning at the top of the source code, each non-comment line of code is numbered. 
2. A circle is drawn to contain each number—each one is a “node.” 
3. All possible sequential nodes are joined with lines (i.e., “edges”) to indicate the possible 

order in which the lines are executed. 
4. The number of edges and the number of nodes in the control-flow graph are counted. 
5. The CC of the i-th module is calculated using Equation 11.1. 
 
It is time-consuming, tedious, and error-prone to manually construct the control-flow graphs and 
count the CC for each module. Fortunately, several easier methods to calculate CC exist in 
practice, ranging from counting decision predicates to using automated tools [Zuse, 1990] 
[Watson, 1996]. McCabe [McCabe, 1982] demonstrated that CCi is also equal to the number of 
binary decision nodes in the control-graph plus one. Four basic rules can be used to calculate CCi 
[McCabe, 1982] [Gill, 1997] [Hensen, 1978]: 
 
1. Increment CCi by one for every IF, CASE, or other alternate execution construct; 
2. Increment CCi by one for every Iterative DO, DO-WHILE, or other repetitive construct; 
3. Add to CCi the number of logical alternatives in a CASE minus two;  
4. Add one to CCi for each logical operator (AND, OR) in a conditional statement. Such 

statements include IF, CASE, DO, DO-WHILE, etc. 
 
There are three variants of using the four rules mentioned above [Gill, 1997]: 
 
a) Variant 1: all four rules are used, as in the original McCabe version. 
b) Variant 2: only rules 1–3 apply, as proposed by [Myers, 1977]. 
c) Variant 3: only rules 1–2 apply, as suggested by Hansen [Hansen, 1978]. 
 
Variant 1 is widely recognized [Watson, 1996] [Gill, 1997] and is therefore adopted in this 
chapter. 
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In this report, RSM 6.8 [MST, 2005], a source code metrics and quality analysis tool for C, C++, 
Java, and C#, was used to measure the CC for all modules. This tool measures CC based on 
McCabe’s four rules. 
 
Once the CC for an individual module is obtained, the percentage distribution of modules by CC 
level should be determined using the following rules: 
 
1. Divide the modules according to their level of cyclomatic complexity: 

  
 Level 1: 0 ≤ CC < 4 

Level 2: 4 ≤ CC < 10 
Level 3: 10 ≤ CC < 16 

 Level 4: 16 ≤ CC < 20 
 Level 5: 20 ≤ CC < 30 

Level 6: 30 ≤ CC < 80 
 Level 7: 80 ≤ CC < 100 
 Level 8: 100 ≤ CC < 200 
 Level 9: CC ≥ 200 
 
2. Count the number of modules for each cyclomatic complexity level; 
3. Calculate the percentage distribution of modules by CC level according to Equation 11.3: 
 ∑                                             (11.3) 

where
   The percentage of modules with CC belonging to the i-th level. i = 1, 2, ..., 9. 
   The number of modules with CC belonging to the j-th level. j = 1, 2, ..., 9. 

 
One of the factors most often associated with successful and unsuccessful software projects 
[Jones, 1996] [Basili, 1984] [Stuzke, 2001] is the CC. In order to obtain a meaningful CC value 
for the entire software product, the concepts of Performance Influencing Factors (PIF) and 
Success Likelihood Index (SLI) are introduced. How good or how bad PIFs are in a given 
situation can be rated by experts and quantified by a SLI. SLI was used as an index that 
quantifies whether a particular environment will increase or decrease the human error probability 
(with respect to a “normal situation”) [Stuzke, 2001]. The SLI ranges from 0 (error is likely) to 1 
(error is not likely). This section discusses the rules for calculating the SLI of the CC. 
 
It has been suggested that modules exceeding a threshold value of CC are difficult to test 
completely [Walsh, 1979] [McCabe, 1982] and incompletely tested software may be delivered 
with errors. According to McCabe [McCabe, 1982] modules with CC > 10 are at risk for 
deficient reliability. Walsh [Walsh, 1979] used CC = 4 as a threshold to estimate the defect 
density of the source code prior to unit testing. 
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Based on more recent research [Chapman, 2002], Equation 11.4 is proposed to quantify the 
impact of the CC factor on software quality: 
 1 ∑ %         (11.4) 
where

  The SLI value of the CC factor 

 
 Failure likelihood fi used for SLI1 calculations, as shown in Table 11.1 

(extracted from [Chapman, 2002]) 
  Derived measures defined in Section 11.1, i = 1, 2, ... 9. 

 
 

Table 11.1 Failure Likelihood fi Used for SLI1 Calculations 
 

 f1 f2 f3 f4 f5 f6 f7 f8 f9 

Value 0.08 0.15 0.25 0.35 0.45 0.55 0.65 0.75 1.0 
 
Note that the above nine classes correspond to the complexity classes. The value of SLI1 may be 
used as a quality indicator of a software product. SLI1 is related to the likelihood that developers 
will err (i.e., introduce faults in the software product and/or fail to remove them) because of the 
CC of the modules. 
 

11.3  Measurement Results 
 
The following documents were used to measure module CC: 
 

 APP Module μp1 System source code [APP, Y1] 
 APP Module μp1 Flux/Delta Flux/Flow Application source code [APP, Y2] 
 APP Module μp2 System source code [APP, Y3] 
 APP Module μp2 Flux/Delta Flux/Flow Application source code [APP, Y4] 
 APP Module Communication Processor System source code [APP, Y5] 

 
The CC measures for all modules of the APP system are presented in Table 11.2. 
 
Table 11.3 presents the counting of  for the APP system using the results in Table 11.2. The 
percentage distribution of modules for the APP system and the calculated SLI of the CC measure 
(SLI1) are shown in Table 11.4 and 11.5, respectively. 
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Table 11.2 Measurement Results for CCi 
 

Software 
Name 

File Name  Module Name 
Cyclomatic 
Complexity

CP System 
Source Code 

CMMONLI.c 

Online Operation procedures 7 

Check cycle monitor procedure 11 

Check trip outputs procedure 17 

Test Mode procedure 2 

COMMPOW.c 

Power Up Self Tests 24 

AM Tests procedure 6 

Address Line Tests procedure 4 

ROM Checksum procedure 2 

Board ID test procedure 3 

Halt procedure after diagnostic test failure 2 

Halt procedure after Module ID test failure 5 

Online diagnostic procedure 16 

Timer 0 Interrupt service routine 5 
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 Table 11.2 Measurement Results for CCi  (continued) 
 

Software 
Name 

File Name Module Name 
Cyclomatic 
Complexity

CP System  
Source Code 

COMMPROC.c 

Main Program 2 

External interrupt 0 and 1 service routine 2 

Timer 1 Interrupt service routine 10 

Dual Port RAM Semaphore Handler function  3 

Disable Interrupt routine 2 

Enable Interrupt routine 2 

Initialization Procedure 3 

Process Serial Communication 23 

1 Transmit Buffer with a byte 4 

Get buffer size  3 

Get receive buffer byte  3 

Process time out counter 2 

COMMSER.c 

Receive Dual Port RAM data 13 

Examine determine data direction transmission  8 

Receive Time of Day update 4 

Transmit dual port RAM data 11 

Transmit APP Status table 4 

Calculate CRC using CRC-CCITT methods 3 

Serial Communication Interrupt   9 

μp1-
Application  
Source Code 

SF1APP.c 

Application Program  36 

Application Program Diagnostic Test 24 

Square Root Function 2 
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 Table 11.2 Measurement Results for CCi  (continued) 
 

Software 
Name 

File Name  Module Name 
Cyclomatic 
Complexity

μp1- System 
Source Code 
μp1- System 
Source Code 

SF1CALTN.c 

Calibrate/Tune function  12 

Calibration function 6 

Tuning function 8 

Input calibration function 10 

Download tuning data from DPR function 4 

Handling input potentiometers function 28 

SF1FUNCT.c 

Majority function 4 

Access semaphore function 9 

Averaging function 3 

Median function 5 

Read analog inputs function 3 

Copy status table to DPR function 2 

Generate discrete output signals function 11 

Generate front panel LEDs output signals 5 

Generate outputs function 3 

Generate status relays output signals 2 

Halt function 2 

Read module input signals function 53 

Reset outputs module 2 

Wait function 10 

Generate analog output signals function  1 
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 Table 11.2 Measurement Results for CCi  (continued) 
 

Software 
Name 

File Name  Module Name 
Cyclomatic 
Complexity

μp1- System 
Source Code 

 

SF1FUNCT.c 

Main function  2 

Initialization function 5 

Main program function 21 

External zero interrupt function 4 

External one interrupt function 4 

Serial interrupt function 4 

Timer 0 interrupt function  1 

Timer 1 interrupt function 2 

Timer 2 interrupt function 3 

Power-Up Self Tests function 2 

SF1TEST1.c 

On-line diagnostics function 18 

External RAM test function  5 

DPR test function 2 

fun_perform memory R/W to external 
RAM/DPR 

8 

Address lines test function  5 

SF1TEST2.c 

PROM checksum test function  5 

EEPROM checksum test function 8 

fun_calculating checksum for PROM and 
EEPROM 

6 
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Table 11.3 ni Counts Per Subsystem 
 
The number of modules 

whose CC belongs to  
i-th level, ni 

CP  
System 

μp1 
System 

μp1 
Application 

μp2  
System 

μp2 
Application 

n1 14 40 1 6 8 
n2 10 22 0 14 11 
n3 4 7 0 4 4 
n4 2 2 0 0 0 
n5 2 2 1 1 2 
n6 0 4 1 1 0 
n7 0 0 0 0 0 
n8 0 0 0 0 0 
n9 0 0 0 0 0 

 
 

Table 11.4 Percentage Distribution of the APP System Modules 
 

Derived 
Measure 

Values of Derived Measure for 

CP 
μp1  

System
μp1 

Application
μp2  

System
μp2 

Application 
p1 43.75% 51.95% 33.33% 23.08% 32% 
p2 31.25% 28.57% 0 53.85% 44.0% 
p3 12.5% 9.09% 0 15.38% 16.0% 
p4 6.25% 2.6% 0 0 0 
p5 6.25% 2.6% 33.33% 3.85% 8% 
p6 0 5.19% 33.33% 3.85% 0 

p7 0 0 0 0 0 

p8 0 0 0 0 0 
p9 0 0 0 0 0 

 
 

Table 11.5 SLI1 for the Different Subsystems 
 

 
CP  

System 
μp1 

System 
μp1 

Application 
μp2  

System 
μp2 

Application 
SLI1 0.8369 0.8435 0.6400 0.8239 0.8324 
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11.4  RePS Construction Using the Cyclomatic Complexity Measure 
 
Reliability prediction based on the CC measure consists of the following two steps: 
 

 Estimate the fault contents in the delivered source code using the Success Likelihood 
Index Method (SLIM) (as described below). 

 Calculate the reliability using Musa’s Exponential Model (as described below). 

 

11.4.1  Estimating the Fault Contents in the Delivered Source Code 
 
Numerous influencing factors can be identified that potentially affect the magnitude of the 
intensity and probability-density functions. One method used in human reliability analysis to 
account for the quantitative aspects of influencing factors is the SLIM, developed in [Embrey, 
1983], refined in [Dougherty, 1988] and critiqued in [Reason, 1990].  
 
The SLIM is founded on three key assumptions: 
 
1. The likelihood of an error occurring in a particular situation depends on the combined 

effects of a relatively small number of PIFs, which are represented by SLI. 
2. Experts can numerically rate how good or bad these PIFs are in a given situation. 
3. The probability of a human error is logarithmically proportional to the SLI. 

 ln                              (11.5) 
 
where   = Human Error Probability and  and  are two constants to be determined using 
experimental data. 
 
Based on the above SLIM method, Equation 11.6 is proposed for estimating the fault content in 
delivered source code with the assumption that the likelihood of an error occurring depends on 
the entire software product.  

 

                             (11.6) 
where 

  the number of faults remaining in the delivered source code 
  a universal constant, estimated by fitting experiment data  
  the amount of activity in developing the delivered source code 
  universal constant, estimated by fitting experiment data 
  the Success Likelihood Index of the entire software product 
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The UMD research team then examined twelve software products to find the values of constants 
k and F. The size of the source code (in terms of LOC) was chosen as a measure to quantify the 
amount of activity in developing the delivered source code. The data gave k = 0.036 and F = 20. 
 
If the set of PIFs used in the SLIM model is restricted to the value of CC for the different factors, 
Equation 11.6 can be modified into Equation 11.726, which links the fault contents to the code 
size and CC. Further work is required to validate the values of k and F in Equation 11.6. 
 0.036 20        (11.7) 
where 

  the size of the delivered source code in terms of LOC (Line of Code). 
 
Table 11.6 summarizes the fault content calculation results for the APP system. 
 

Table 11.6 Summary of Fault Content Calculation Results 
 

 
 

CP  
System

μp1 
System

μp1 
Application

μp2  
System 

μp2 
Application

SIZE, in LOC 1,210 2,034 480 895 206 

 0.8369 0.8435 0.6400 0.8239 0.8324 

Defects in source code 5.8 9.4 7.5 4.6 1.0 

 
The estimated number of faults in the entire APP system is:  
 5.8 9.4 7.5 4.6 1.0 28.3                                    (11.8) 

11.4.2  Calculating the Reliability Using the Fault-Contents Estimation 
 
The probability of success-per-demand is obtained using Musa’s exponential model [Musa, 
1990] [Smidts, 2004]: 

         (11.9) 
where 

  Reliability estimation for the APP system accounting for the effect of CC. 
  Fault Exposure Ratio, in failures/defect. 
  Number of defects estimated using the CC measure. 

  Average execution-time-per-demand, in seconds/demand. 
  Linear execution time of a system, in seconds. 

                                                 
26 Parameters  and  are determined using severity level 1 and 2 defects only. Thus, the number of defects obtained from 
Equation 11.7 is for severity level 1 and 2 defects only. 
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Since a priori knowledge of the defect locations and impact of the defects on failure probability 
is unknown, the average K value given in [Musa, 1990], which is 4.2 10  failure/defect, must 
be used. 
 
For the APP system, NCC  = 28.3, as calculated in Section 11.4.1. 
 
The linear execution time, TL, is usually estimated as the ratio of the execution time and the 
software size on a single microprocessor basis [Musa, 1990] [Smidts, 2004]. In the case of the 
APP system, however, there are three parallel subsystems (μp1, μp2, and CP), each of which has 
a microprocessor executing its own software. Each of these three subsystems has an estimated 
linear execution time. Therefore, there are several ways to estimate the linear execution time for 
the entire APP system, such as using the average value of these three subsystems.  
 
For a safety-critical application, such as the APP system, the UMD research team suggests a 
conservative estimation of TL by using the minimum TL of the three values. Namely:  
 
    min 1 , 2 ,   
         min 0.018, 0.009, 0.021     (11.10) 
         0.009  
where 1  : Linear execution time of Microprocessor 1 (μp1) of the APP system. 

TL (μp1) = 0.018 second, as determined in Chapter 17; 2  : Linear execution time of Microprocessor 2 (μp2) of the APP system. 
TL (μp2) = 0.009 second, as determined in Chapter 17; 

 : Linear execution time of Communication Microprocessor (CP) of the 
APP system. TL (CP) = 0.021 second, as determined in Chapter 17. 

 
Similarly, the average execution-time-per-demand, τ, is also estimated on a single 
microprocessor basis. Each of the three subsystems in the APP has an estimated average 
execution-time-per-demand. To make a conservative estimation, the average execution-time-per-
demand for the entire APP system is the maximum of the three values. Namely: 
 
    max 1 , 2 ,   
       max 0.082,0.129,0.016     (11.11) 
       0.129 /  
Where 
 1   Average execution-time-per-demand of μp1 of the APP system. τ(μp1) 

= 0.082 seconds/demand, as determined in Chapter 17; 2   Average execution-time-per-demand of μp2 of the APP system. τ(μp2) 
= 0.129 seconds/demand, as determined in Chapter 17; 
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  Average execution-time-per-demand of CP\ of the APP system. τ(CP) 
= 0.016 seconds/demand, as determined in Chapter 17. 

 
Thus the reliability for the APP system using the CC measure is given by:  exp 4.2 10 28.3 .  /.  0.9998296  /                         (11.12) 

11.4.3 An Approach to Improve the Prediction Obtained from the CC Measure 
 
The UMD approach described in sections 11.4.1 and 11.4.2 relates CC and the number of defects 
directly using the SLI concept and the SLIM model. However, it is obvious that the number of 
defects in the software is affected by many other factors besides CC. Thus, estimation based only 
on CC is inaccurate. To improve the prediction of the number of defects and the reliability 
prediction, other factors (PIFs) that could affect predicted defect number should be incorporated 
in the SLIM model as additional support measures. These factors include: 
 

 Development Schedule Factor (SCED) 
 Experience Factor 

o Application Experience (APEX) 
o Platform Experience (PLEX) 
o Language and Tool Experience (LTEX) 

 Capability Factor 
o Analyst Capability (ACAP) 
o Programmer Capability (PCAP) 
o Tester Capability (TCAP) 
o Personnel Continuity (PCON) 

 Development Tools Factor (TOOL) 
 Development Site Factor (SITE) 
 Team Cohesion Factor (TEAM) 
 Management Style Factor (STYLE) 
 Process Maturity Factor (PMAT) 
 Requirement Evolution Factor (REVL) 

 
A justification for using such factors to predict the number of defects remaining in the software 
is found in the software engineering literature: 
1. SCED, APEX, PLEX, LTEX, ACAP, PCAP, PCON, TOOL, SITE, TEAM, and PMAT are 

factors defined in COQUALMO. COQUALMO is a quality model extension of the existing 
COCOMO II [Boehm, 2000]. It is based on the software Defect Introduction and Defect 
Removal model described by Boehm [Boehm, 1981]. All the factors identified in 
COQUALMO are related to defects content in the software.  
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2. TCAP, STYLE, and REVL are identified as important influencing factors to software-failure 
density by a team of experienced software developers [Stutzke, 2001].  

3. STYLE and REVL are also factors identified as two out of the 32 factors influencing 
software reliability by Pham [Pham, 2000]. 

 
Definitions, measurement rules, and SLI ratings for each of the above factors are presented in the 
following sections. If data for a PIF is unavailable, the value 0.5 (corresponding to a 
nominal/average situation) for the corresponding SLI should be used. 
 

11.4.3.1  Development Schedule Factor (SCED) 
 
This factor measures the schedule constraint imposed on the project team developing the 
software. The rating scales for SCED are defined in terms of the percentage of schedule stretch-
out or acceleration with respect to a nominal schedule. 
 
The development schedule factor can be estimated using [Boehm, 1982] [Boehm, 2000]: 
 100%         (11.13) 

 3.67 2.94 . .
     (11.14) 

 
      (11.15) 

where 
  Actual time to develop the software, in calendar months. 
  Nominal time to develop the software, in calendar months. 
 The size of developed source code, in KLOC. 
  The size of finally delivered source code, in KLOC. 
 The size of source code discarded during development, in KLOC. 

 
Either  or  is given by: 

    (11.16) 
 
where 
 

  The size of new code developed, in KLOC (Kilo Line of Code). 

  The equivalent size of adapted code, in KLOC. Adapted code is 
preexisting code that is treated as a white-box and is modified for use 
with the product. 
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  The equivalent size of reused code, in KLOC. Reused code is 
preexisting code that is treated as a black-box and plugged into the 
product without modification. 

  The equivalent size of off-the-shelf software, in KLOC. There may be 
some new interface code associated with it, which also needs to be
counted as new code. 

 
The equivalent size of adapted, reused, or COTS code is calculated according to the following 
sizing equations: 
 , ,  , ,  1   (11.17) 

 .    50                            50      (11.18) 

 0.4 0.3 0.3                                     (11.19) 
where 
 

 Assessment and Assimilation Increment 
 Adaptation Adjustment Factor 
 Adaptation Adjustment Modifier 

 Percentage of Code Re-engineered by Automation 
 Percentage of Code Modified 
 Percentage of Design Modified 
 Percentage of Integration Effort Required for Integrating 

Adapted or Reused Software. 
 Percentage of Software Understanding 

 Programmer Unfamiliarity with Software 
 
If the software is developed without using any adapted, reused, or COTS source code (like the 
APP system), the , ,  0. Otherwise, it is necessary to measure AT, 
CM, DM, and IM, and estimate the value of AA, SU, and UNFM to quantify the , ,   and the SLI of the development schedule factor. 
 
Assessment and Assimilation (AA) assesses the degree of effort (“increment”) necessary to 
determine whether a reused software module is appropriate for the application, and to integrate 
its description into the overall product description. Table 11.7 provides the Rating Scales and 
values for the assessment assimilation increment. “AA” and “AA increment” are used 
interchangeably in this report. 
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Table 11.7 Rating Scales for Assessment and Assimilation Increment (AA) 
 

AA Increment Level of AA Effort
0 None 
2 Basic module search and documentation 
4 Some module Test and Evaluation (T&E), documentation 
6 Considerable module T&E, documentation 
8 Extensive module T&E, documentation 

 
The Software Understanding increment (SU) is obtained from Table 11.8. If the software is rated 
very high on structure, applications clarity, and self-descriptiveness, the software understanding 
and interface-checking penalty is 10%. If the software is rated very low on these factors, the 
penalty is 50%. SU is determined by taking the subjective average of the three categories. 
 

 
Table 11.8 Rating Scales for Software Understanding Increment (SU) 

 
 Very Low Low Nominal High Very High

Structure 

Very low 
cohesion, high 

coupling, 
spaghetti 

code. 

Moderately 
low cohesion, 
high coupling.

Reasonably 
well-structured; 

some weak 
areas. 

High cohesion, 
low coupling. 

Strong 
modularity, 
information 

hiding in 
data/control 
structures. 

Application 
clarity 

No match 
between 

program and 
application 
worldviews. 

Some 
correlation 
between 

program and 
application. 

Moderate 
correlation 
between 

program and 
application. 

Good 
correlation 
between 

program and 
application. 

Clear match 
between 

program and 
application 
worldviews. 

Self- 
descriptiveness 

Obscure code; 
documentation 

missing, 
obscure or 
obsolete. 

Some code 
commentary 
and headers; 
some useful 

documentation.

Moderate level 
of code 

commentary, 
headers, 

documentation.

Good code 
commentary 
and headers; 

useful 
documentation
; some weak 

areas. 

Self-descriptive 
code; 

documentation 
up-to-date, well-
organized, with 
design rationale.

SU Increment 50 40 30 20 10 
 
 
UNFM is the indicator for the programmer’s relative unfamiliarity with the software. If the 
programmer works with the software every day, the 0.0 multiplier for UNFM will add no 
software understanding effort increment. If the programmer has never seen the software before, 
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the 1.0 multiplier will add the full software understanding effort increment. The rating for 
UNFM is shown in Table 11.9. 
 

 
Table 11.9 Rating Scales for Programmer Unfamiliarity (UNFM) 

 
UNFM Increment Level of UNFM

0.0 Completely familiar 
0.2 Mostly familiar 
0.4 Somewhat familiar 
0.6 Considerably unfamiliar 
0.8 Mostly unfamiliar 
1.0 Completely unfamiliar 

 
 
Table 11.10 summarizes the guidelines and constraints to estimate the parameters used in the 
sizing equations (Equation 11.15 to Equation 11.17). 
 
 

Table 11.10 Guidelines and Constraints to Estimate Reuse Parameters 
 

 
Reuse Parameters 

DM CM IM AA SU UNFM 
New code N/A N/A N/A N/A N/A N/A 

Adapted code 0–100% 0–100% 
0–100+% 
(can be > 

100%) 
0–8% 0–50% 0–1 

Reused code 0% 0% 0–100% 0–8% N/A N/A 
COTS 0% 0% 0–100% 0–8% N/A N/A 

 
 

AAM uses the factors described above, Software Understanding (SU), Programmer 
Unfamiliarity (UNFM), and Assessment and Assimilation (AA) with the Adaptation Adjustment 
Factor (AAF), which is given by Equation 11.19. 
 
In order to obtain the SLI of the Schedule Pressure factors (denoted by ), the UMD research 
team investigated the Yerkes-Dodson law [Yerkes, 1908]. This “law” states that the quality of 
performance on any task is an inverted U-shaped function of arousal, as shown on Figure 11.3. 
With increasing arousal, performance first improves, up to an optimal level, and then deteriorates 
when arousal is too high. 
 
The range over which performance improves with increasing arousal varies with task 
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complexity, as shown on Figure 11.4 [Huey, 1993]. A simple task needs a higher amount of 
arousal than a more complex task to reach a maximal quality of performance. 
 
 

 
 

Figure 11.3 The Yerkes-Dodson Law with Three Levels of Task Difficulty 
 
 
 
 

 
 Figure 11.4 U-Function Relating Performance to Arousal 

 
 
For a “nominal” task with medium level of difficulty, it is reasonable to postulate a symmetric 
bell-shaped function that relates SLI to SCED. Assume: 
  1⁄ 2  

with conditions: 2| 200% 0.5 2| 200% 1.0 1 
and 

Level of Arousal 

P
er

fo
rm

an
ce

 

Optimum 
Level of 

Complex Task

Simple Task 



 

183 
 

| % 0.5 1√8 ln 2 

 
Therefore, Equation 11.20: 
 exp ln 16 .         (11.20) 

 
This equation gives results consistent with those given by [Gertman, 2005]. A follow on effort is 
required to validate this equation. 
  

11.4.3.2  Experience Factor 

11.4.3.2.1  Application Experience (APEX) 
 
The rating scales for APEX are defined in terms of the project team’s level of experience with 
this type of application [Boehm, 1982] [Boehm, 2000]. See Table 11.11 for APEX ratings. 
 

 
Table 11.11 Rating Scales for APEX 

APEX Descriptors 2 months 6 months 1 year 3 years 6 years 

Rating Levels Very Low Low Nominal High Very high 

Rating Value 1 2 3 4 5 

11.4.3.2.2  Platform Experience (PLEX) 
 
The rating scales for PLEX are defined in terms of the project team’s equivalent level of 
experience with the development platforms, including Graphical User Interface (GUI), database, 
Operating System, hardware platform, networking platform, etc. [Boehm, 1982] [Boehm, 2000]. 
See Table 11.12 for PLEX ratings. 
 

Table 11.12 Rating Scales for PLEX 

PLEX Descriptors 2 months 6 months 1 year 3 years 6 years 

Rating Levels Very Low Low Nominal High Very high 

Rating Value 1 2 3 4 5 

11.4.3.2.3  Language and Tool Experience (LTEX) 
 
LTEX is a measure of the level of programming language and software tool experience of the 
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project team developing the software system or subsystem [Boehm, 1982] [Boehm, 2000]. See 
Table 11.13 for LTEX ratings. 
 

Table 11.13 Rating Scales for LTEX 
 

LTEX Descriptors 2 months 6 months 1 year 3 years ≥ 6 years 

Rating Levels Very Low Low Nominal High Very high 

Rating Value 1 2 3 4 5 
 
Refer to Table 11.14 to estimate the SLI value for the Experience factor (denoted by 3) 
 

 
Table 11.14 Experience SLI Estimation 

 
Sum of Rating Values of 
APEX, PLEX and LTEX 

3, 4 5, 6 7, 8 9, 10 11, 12 13, 14 15 

Rating Levels 
Extra 
Low 

Very 
Low 

Low 
Nomina

l 
High 

Very 
high 

Extra 
High 

SLI Value 0.0 0.17 0.34 0.50 0.67 0.84 1.0 

 

11.4.3.3 Measurement for Capability Factor 

11.4.3.3.1  Analyst Capability (ACAP) 
 
Analysts are personnel who work on requirements, high-level design, and detailed design. The 
rating scales for ACAP are expressed in terms of percentiles with respect to the overall 
population of analysts [Boehm, 1982] [Boehm, 2000]. The major attributes that should be 
considered in this rating are: 
 
1. Analysis and design ability 
2. Efficiency and thoroughness 
3. Ability to communicate and cooperate 
 
Note: 

 These attributes should be approximately equally weighted in the evaluation. 
 The evaluation should not consider the level of experience of the analysts; experience 

effects are covered by other factors. 
 The evaluation should be based on the capability of the analysts as a team rather than as 

individuals. 
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See Table 11.15 for ACAP ratings. 
 

Table 11.15 Rating Scales for ACAP 
 

ACAP Descriptors 
15th 

percentile 
35th 

percentile 
55th 

percentile 
75th 

percentile 
90th 

percentile 

Rating Levels Very Low Low Nominal High Very high 

Rating Value 1 2 3 4 5 

11.4.3.3.2  Programmer Capability (PCAP) 
 
The rating scales for PCAP are expressed in terms of percentiles with respect to the overall 
population of programmers. Unit testing is regarded as one of the tasks performed by the 
programmers. The major factors that should be considered in the rating are [Boehm, 1982] 
[Boehm, 2000]: 
 
1. Programmer ability 
2. Efficiency and thoroughness 
3. Ability to communicate and cooperate 
 
Note: 
 
 These attributes should be approximately equally weighted in the evaluation. 
 The evaluation should not consider the level of experience of the programmers; experience 

effects are covered by other factors. 
 The evaluation should be based on the capability of the programmers as a team rather than as 

individuals. 
 
See Table 11.16 for PCAP ratings. 
 

Table 11.16 Rating Scales for PCAP 
 

PCAP Descriptors 
15th 

percentile 
35th 

percentile 
55th 

percentile 
75th 

percentile 
90th 

percentile 

Rating Levels Very Low Low Nominal High Very high 

Rating Value 1 2 3 4 5 
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11.4.3.3.3  Tester Capability (TCAP) 
 
The rating scales for TCAP are expressed in terms of percentiles with respect to the overall 
population of testers. Unit testing is regarded as one of the tasks performed by the programmers, 
not by the testers. The major factors that should be considered in the rating are [Boehm, 1982] 
[Boehm, 2000]: 
 
1. Tester ability 
2. Efficiency and thoroughness 
3. Ability to communicate and cooperate 
 
Note: 
 
 These attributes should be approximately equally weighted in the evaluation. 
 The evaluation should not consider the level of experience of the testers; experience effects 

are covered by other factors. 
 The evaluation should be based on the capability of the testers as a team rather than as 

individuals. 
 
See Table 11.17 for TCAP ratings. 
 

Table 11.17 Rating Scales for TCAP 
 

TCAP Descriptors 
15th 

percentile 
35th 

percentile 
55th 

percentile 
75th 

percentile 
90th 

percentile 

Rating Levels Very Low Low Nominal High Very high 

Rating Value 1 2 3 4 5 

 

11.4.3.3.4  Personnel Continuity (PCON) 
 
The rating scales for PCON measures the project’s annual personnel turnover [Boehm, 1982] 
[Boehm, 2000]. See Table 11.18 for PCON ratings. 
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Table 11.18 Rating Scales for PCON 
 

PCON Descriptors 
48% 

per year
24% 

per year
12% 

per year
6% 

per year 
3% 

per year

Rating Levels Very Low Low Nominal High Very high 

Rating Value 1 2 3 4 5 
 
Refer to Table 11.19 or Table 11.20 to estimate the SLI value of CAPABILITY Factor (denoted 
by ) for either capability excluded from the rating or capability included in the rating, 
respectively. 
 
 

Table 11.19 Estimating SLI Value of Capability (Tester Capability Excluded) 
 

Sum of SLI Values 
of ACAP, PCAP, 

and PCON 
3, 4 5, 6 7, 8 9, 10 11, 12 13, 14 15 

Rating Levels 
Extra 
Low 

Very 
Low

Low Nominal High 
Very 
high 

Extra 
High

SLI Value 0 0.17 0.24 0.50 0.67 0.84 1 
 

 
 Table 11.20 Estimating SLI Value of Capability (Tester Capability Included) 

 
Sum of SLI values 
of ACAP, PCAP, 
PCON and TCAP 

4, 5 6, 7 8–10 11–13 14–16 17–19 20 

Rating Levels 
Extra 
Low 

Very 
Low

Low Nominal High 
Very 
high 

Extra 
High

SLI Value 0 0.17 0.24 0.50 0.67 0.84 1 
 

11.4.3.4  Measurement For Development Tools Factor 

 
The major factors that should be considered in this rating are [Boehm, 1982] [Boehm, 2000]: 
 
1. Capability of the tools employed within the life cycle of a project. 
2. Maturity of the tools 
3. Integration of the tools 
 
Refer to Table 11.21 for TOOL ratings and SLI estimation (denoted by 5). 
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Table 11.21 Rating Scales for TOOL Factor 

 

11.4.3.5  Measurement for Development Site Factor (SITE) 
 
Determining the rating of the SITE factor involves the assessment and combination of two 
factors: site collocation and communication support. When making the subjective average of 
these two components of SITE, 70% and 30% weights are recommended for site collocation and 
communication support, respectively, as shown in Table 11.22 and Table 11.23  [Boehm, 1982] 
[Boehm, 2000]. 
 

Table 11.22 Rating Scales for Site Collocation 
 

Site 
Collocation 
Descriptors 

Inter- 
national 

Multi-city 
and 

Multi-
company

Multi-city 
or 

Multi-
company

Same city 
or 

metro area

Same 
building or 

complex 

Fully 
cooperative

Rating 
Levels 

Very Low Low Nominal High Very High Extra High 

Rating 
Value 

0 1 2 3 4 5 

 

Tool 
Descriptors 

Minimal tools 
for document 

editing, coding, 
compiling, and 

debugging 

Simple life-
cycle tools, 

little 
integration 

Basic life-
cycle tools, 
moderately 
integrated 

Strong, 
mature life-
cycle tools, 
moderately 
integrated 

Strong, mature, 
proactive life-

cycle tools, well 
integrated with 

processes, 
methods, and 

reuse 

Rating Levels Very Low Low Nominal High Very high 

SLI Value 0 0.25 0.5 0.75 1 
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Table 11.23 Rating Scales for Communication Support 
 

Site Communi-
cation 

Descriptors 

Some 
phone, 
mail 

Individ. 
phone, 
FAX 

Narrow-
band 
e-mail 

Wideband  
e-comm. 

Wideband 
e-comm. occas. 

Video 
conference 

Interactive 
multi-
media 

Rating Levels 
Very 
Low 

Low Nominal High Very High Extra High

Rating Value 0 1 2 3 4 5 

 
Refer to Table 11.24 for SITE ratings and SLI estimation (denoted by ), and Table 11.25 for 
determining the weighted sum by the rating values of collocation and communication. 
 

Table 11.24 SITE Ratings and SLI Estimation 
 

Weighted Sum of 
SLI  values of Site 

Collocation  
and Site Comm. 

0.0–0.9 1.0–1.5 1.6–2.9 3.0–3.8 4.0–4.4 4.7–5.0 

Rating Levels Very Low Low Nominal High Very high 
Extra 
High

SLI Value 0.0 0.25 0.50 0.67 0.84 1.0 

 
 

 
Table 11.25 Determining the Weighted Sum by the Rating of Collocation and Communication 

 
Communication Rating → 

Collocation Rating ↓ 
0 1 2 3 4 5 

0 0 0.3 0.6 0.9 1.2 1.5 

1 0.7 1 1.3 1.6 1.9 2.2 

2 1.4 1.7 2 2.3 2.6 2.9 

3 2.1 2.4 2.7 3 3.3 3.6 

4 2.8 3.1 3.4 3.7 4 4.3 

5 3.5 3.8 4.1 4.4 4.7 5 

 



 

190 
 

11.4.3.6 Measurement for Team Cohesion Factor (TEAM) 
 
TEAM accounts for the sources of project turbulence and extra effort caused by difficulties in 
synchronizing the project’s stakeholders: users, customers, developers, maintainers, and others. 
See Table 11.26 for TEAM ratings and SLI estimation (denoted by ) and Table 11.27 for the 
components comprising TEAM ratings. [Boehm, 1982] [Boehm, 2000] 
 
 

Table 11.26 Rating Scales for TEAM 
 

TEAM 
Descriptors 

Very 
difficult 

interactions 

Some 
difficult 

interactions

Basically 
cooperative 
interactions

Largely  
cooperative

Highly  
cooperative 

Seamless  
interactions

Rating 
Levels 

Very Low Low Nominal High Very High Extra High

SLI Value 0 0.25 0.5 0.67 0.84 1 

 
 

Table 11.27 TEAM Rating Components 
 

Characteristic Very Low Low Nominal High Very High Extra High 
Consistency of 

stakeholder 
objectives and 

cultures 

Little Some Basic Considerable Strong Full 

Ability, willingness 
of stakeholders to 

accommodate other 
stakeholders’ 

objectives 

Little Some Basic Considerable Strong Full 

Experience of 
stakeholders in 

operating as a team 
None Little Some Basic Considerable Extensive 

Stakeholder team 
building to achieve 
shared vision and 

commitments 

None Little Some Basic Considerable Extensive 
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11.4.3.7  Measurement for Management Style Factor (STYLE) 
 
This factor captures the impact of management style on the quality of a project. Refer to Table 
11.28 for STYLE ratings and SLI estimation (denoted by ). 
 
 

Table 11.28 Rating Scales for STYLE 
 

Style 
Descriptors 

Highly 
Intrusive 

Moderately 
Intrusive

Neither Intrusive 
nor Supportive

Moderately 
Supportive 

Highly 
Supportive

Rating Levels Very Low Low Nominal High Extra High 

SLI Value 0 0.25 0.5 0.75 1 
 

 

11.4.3.8  Measurement for Process Maturity Factor (PMAT) 
 
PMAT captures the capability level of an organization based on the software Engineering 
Institute’s Capability Maturity Model (CMM) (Refer to Chapter 8 for CMM measurement). 
Refer to Table 11.29 for PMAT SLI Estimation (denoted by ) [Boehm, 1982] [Boehm, 
2000] . 
 

Table 11.29 Rating Scales and SLI Estimation for PMAT 
 

PMAT 
Descriptors 

CMM level 1 
(lower half) 

CMM level 1
(upper half)

CMM 
level 2

CMM 
level 3

CMM 
level 4 

CMM 
level 5

Rating Levels Very Low Low Nominal High Very High Extra High

SLI Value 0 0.25 0.5 0.67 0.84 1 
 

11.4.3.9  Measurement for Requirements Evolution Factor (REVL) 
 
Different from the definition given by COCOMO II [Boehm, 2000], REVL here is defined in 
terms of the percentage of code change due to the evolution of requirements since the initial SRS 
baseline. Refer to Chapter 15 for details. 
 
See Table 11.30 for REVL ratings and SLI estimation (denoted by 10). 
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Table 11.30 Rating Scales and SLI Estimation for REVL 
 

REVL 
Descriptors 

5% 
code 

change 

20% 
code 

change

35% 
code 

change

50% 
code 

change

65% 
code 

change 

80% 
code change

Rating Levels Very Low Low Nominal High Very High Extra High 

SLI Value 1 0.75 0.5 0.34 0.16 0 

 

11.4.3.10  Measurement results for the support measures 

 
Table 11.31 summarizes the measurement results for all Performance Influencing Factors.  
 

Table 11.31 PIF Measurement Results for the APP System 
 

Influence Factors Primitives 
Values of Primitives for 

CP 
μp1  

System
μp1 

Application
μp2  

System 
μp2 

Application

EXPERIENCE 

APEX 5 5 5 5 5 

PLEX 3 3 3 3 3 

LTEX 3 3 3 3 3 

CAPABILITY 

ACAP 4 4 4 4 4 

PCAP 3 3 3 3 3 

PCON 5 5 5 5 5 

TCAP 3 3 3 3 3 

SCED 

TDEVactual, 
in calendar 

months 
25 25 13 25 19 

SIZEdelivered, 
in KLOC 

1.21 2.034 0.48  0.895 0.206 

SIZEdiscarded, 
in KLOC 

0.150 0.270 0.045 0.180 0.190 

Use of Methods/ 
Notation/TOOL 

TOOL 3 3 3 3 3 

 



 

193 
 

Table 11.31 PIF Measurement Results for the APP System (continued) 
 

Influence Factors Primitives 
Values of Primitives for 

CP 
μp1  

System
μp1 

Application
μp2  

System 
μp2 

Application

SITE 

COLLO- 
CATION 

4 4 4 4 4 

COMMU- 
NICATION 

1 1 1 1 1 

Team Relationships TEAM 3 3 3 4 4 

Management Style STYLE 4 4 4 4 4 

PMAT CMM 2 2 2 2 2 

Requirement 
Volatility 

REVL 10.6% 3.8% 3.0% 9.1% 3.9% 

 
The data for APEX, PLEX, LTEX, ACAP, PCAP, PCON, TCAP, TDEVactual, TOOL, 
COLLOCATION, COMMUNICATION, TEAM, STYLE, and CMM were extracted from 
responses to a questionnaire distributed to the APP system manufacturer. Refer to Chapter 15 for 
details of obtaining the data for REVL. 
 
The data for SIZEdiscarded was obtained by the following procedure. 
 
1. Identify the discarded code segment/module documented in [APP, Y1], [APP, Y2], [APP, 
Y3], [APP, Y4], and [APP, Y5]. 
2. Count the size of the discarded code by using the code size measurement rules defined in 
Chapter 6. 
 
Table 11.32 summarizes the SLIs for the APP system calculated by applying the measurement 
rules of the PIFs to the data in Table 11.31. 

 
Table 11.32 Summary of SLI Calculations 

 

 
CP  

System 
μp1 

System
μp1 

Application
μp2  

System 
μp2 

Application

Cyclomatic 
Complexity 

0.8369 0.8435 0.6400 0.8239 0.8324 

SECD 0.7857 0.8347 0.8395 0.8057 0.7768 

EXPERIENCE 0.67 0.50 0.50 0.7692 0.7314 

CAPABILITY 0.84 0.67 0.67 0.84 0.84 
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Table 11.32 Summary of SLI Calculations (continued) 
 

 CP  
System 

μp1 
System

μp1 
Application

μp2  
System 

μp2 
Application

TOOL 0.50 0.50 0.50 0.50 0.50 

SITE 0.50 0.50 0.50 0.50 0.50 

TEAM 0.67 0.67 0.67 0.84 0.84 

STYLE 0.75 0.75 0.75 0.75 0.75 

PMAT 0.5 0.5 0.5 0.5 0.5 

REVL 0.9067 1.00 1.00 0.9317 1.00 

 
The SLI of the entire software product is given by the weighted sum of all PIF SLIs: 
 ∑            (11.21) 
where 

 weight of the i-th influence factor. Table 11.33 provides the values of weights used
for SLI calculation [Stutzke, 2001].  

 the SLI value of the i-th influence factor. 
 

 
Table 11.33 Values of Weights Used for SLI Calculation 

 
 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 

Value 0.204 0.037 0.148 0.093 0.056 0.167 0.019 0.037 0.074 0.167 

 
 

11.4.3.11  RePS with supportive measures 
 
Equation 11.22 will be used to estimate the fault content. 
 0.036 20         (11.22) 
 
Table 11.34 summarizes the SLI values and the fault content of the delivered source codes with 
and without using the support measures respectively. 
 
The estimated number of faults in the APP using the support measures in addition to CC is:  
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11.8 22.7 6.9 7.8 1.7 50.9                             (11.23) 
 
Thus, the APP reliability prediction (using support measures in addition to CC) is given by: 
 

 exp 4.2 10 50.9 0.129 /0.009 0.9996936 /                        

      (11.24) 
 
The above results show that the estimated number of defects using the support measures (i.e., 
50.9 from Equation 11.23) is larger than the estimated number of defects obtained using only CC 
(i.e., 28.3 defects from Equation 11.8). Consequently, the reliability will be less using the 
support measures (i.e. 0.9996936 defect/demand from Equation 11.24) than using only CC (i.e., 
0.9998296 defect/demand from Equation 11.12). As shown in Table 11.34, the SLI values for 
many of the influencing factors are lower than the SLI values for CC. This means the APPs 
performance on these factors was low and consequently the number of defects estimated using 
all the factors should be higher.  
 
It should be noted that the use of supportive measures in this chapter is for illustration only. The 
purpose of this exercise is to show how supportive measures could be used to improve a 
reliability prediction based on CC. The results analysis in Chapter 19 uses the reduced CC RePS 
(i.e., without supportive measures).  
  
  

Table 11.34 Summary of Fault Content Calculation 
 

 
CP  

System
μp1 

System
μp1 

Application
μp2  

System 
μp2 

Application
 SIZE, in LOC 1210 2034 480 895 206 

Without 
using the 
support 

measures 

 0.8369 0.8435 0.64 0.8239 0.8324 
The number of 
defects in the 
source code. 

5.8 9.4 7.5 4.6 1 

Using the 
support 

measures 

 0.7175 0.6952 0.6539 0.7377 0.7441 

The number of 
defects in the 
source code. 

11.8 22.7 6.9 7.8 1.7 
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11.5  Lessons Learned 
 
The measurement of CC can be supported by automation tools. The RePS based on CC is 
straightforward once the average execution-time-per-demand and the linear execution-time are 
quantified. Thus, CC is a convenient measure for software-reliability prediction. However, there 
are two issues with this measure. First, as is the case for BLOC, the measurement of CC also 
requires the concept of software “module” while there is no clear definition of “module” 
provided in the current literature. Second, the CC RePS uses empirical industry-data to link the 
CC value with the number of defects. Thus, reliability prediction from CC is not as good as the 
predicted reliability obtained from other measures that deal with real defects of the application. 
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12. DEFECT DENSITY 
 
The Defect Density measure indicates whether the inspection process is effective. If the defect 
density is outside the norm after several inspections, it is an indication that the inspection process 
requires further scrutiny. 
 
This measure can only be applied after the requirements, design, and source code inspections are 
completed. As listed in Table 3.3, the applicable life cycle phases for the DD measure are 
Testing and Operation. 
 

12.1  Definition 
 
Defect density is defined in this study as the ratio of defects remaining to the number of lines of 
code in the software. This definition is consistent with the “Code Defect Density”, which is 
defined in [IEEE 982.2, 1988] and [Smidts, 2000]. The defects are discovered by independent 
inspection. The inspection process is discussed below. 
 
To calculate defect density, severity levels for defect designation27 are established first. In this 
particular case, all defects discussed below belong to the level 1 category.28 
 
Defect Density, DD, is given as: 
 

 
1 , , 1  (12.1)

 
where 
   An index reflecting the development stage. A value of 1 represents the requirements 

stage, a value of 2 represents the design stage and a value of 3 represents the coding 
stage.  

   
   The index identifying the specific inspector. This index ranges from 1 to N.  
    
 ,   The number of unique defects detected by the j-th inspector during the i-th 

development stage in the current version of the software.  
   
 ,  The number of defects found in the -th stage and fixed in the k-th stage,  1 3.  

                                                 
27Refer to Chapter 6 for a definition of severity levels. 
28 No severity level 2 defects were found. 
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   The number of defects found by exactly  inspectors and remaining in the code 

stage. The value of m ranges from 2 to N.  
   
   Total number of inspectors.  
   
  The number of source lines of code (LOC) in thousands. The LOC counting rule is 

defined in Chapter 6.  
 
The numerator in Equation 12.1 is the number of defects discovered by the inspection but 
remaining unresolved in the APP. The first term of the numerator is the total number of defects 
found by all inspectors and from all life cycle phases (requirements, design, code, and testing). 
Among these defects, some are fixed in the succeeding life cycles (for instance, a defect is found 
in the requirements phase but later fixed in the testing phase); some are found by multiple 
inspectors simultaneously (for instance, Inspector I found defect A and Inspector II found defect 
A, too). The second term in the numerator represents the former case (defects fixed in a later 
stage), and the third term represents the latter situation, i.e., a duplicate count for one defect. 
 
 

12.2  Measurement 
 
The IEEE standard [IEEE 982.2, 1988] specified that Defect Density can be measured using 
software inspection. It did not specify, however, which software inspection procedure should be 
conducted. In this study, the authors utilized the Fagan [Fagan, 1976] approach to conduct the 
software inspection. Fagan’s method was further developed by Robert Ebenau and described in 
[Strauss, 1993]. 
 
The inspection conducted in this study is not in the development process. As such, the inspection 
stages described in [Strauss, 1993] were tailored in this study. Only the planning, preparation, 
and meeting stage from [Strauss, 1993] were considered. The inspectors (or checkers); the 
documents under inspection; the documents required (also called source document, for example, 
the user requirements, the system requirements or other background knowledge); and the rules or 
checklists were identified in the planning stage. The individual checking activities were 
performed in the preparation stage. The findings were then summarized in the meeting stage. No 
process improvement activities are required in the inspection process. 
 
The checklists used for the requirements, design, and code inspection are presented in [Strauss, 
1993]. The requirements, design, and code inspection are formalized in the following sub-
sections. 
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12.2.1  Requirements Inspection 
 
Products Under Inspection 
 
1. APP module first safety function processor SRS [APP, Y3] 
2. APP Flux/Delta Flow Application SRS SF1 [APP, Y6] 
3.  TAR module μp2 system software SRS [APP, Y9] 
4.  APP μp2 Flux/Delta Flux/Flow application software SRS [APP, Y12] 
5.  APP module communication processor SRS [APP, Y15] 
 
Source Documents 
    
1.  APP instruction manual [APP, Y1] 
2.  APP module - design specification [APP, Y2] 
 
Participants: 
   
1. Two Inspectors 
2. One Moderator 
 
The inspectors inspected the products independently and recorded all ambiguous, incorrect, or 
incomplete statements and locations. The moderator reviewed the logs and corrected mistakes 
made during the inspection process29. The values of ,  were obtained during this stage. 

12.2.2  Design Inspection 
 
Products Under Inspection 
   
1. APP module first safety function processor SDD [APP, Y4] 
2. APP Flux/Delta Flux/Flow Application SDD for μp1 [APP, Y7] 
3.  APP μp2 SDD for system software [APP, Y10] 
4.  APP μp2 Flux/Delta Flux/Flow application software SDD [APP, Y13] 
5.  APP communication processor SDD [APP, Y16] 
 
Source Documents: 
   
1.  APP instruction manual [APP, Y1] 
2.  APP module - design specification [APP, Y2] 
3. APP module first safety function processor SRS [APP, Y3] 
4. APP Flux/Delta Flow Application SRS for SF1 [APP, Y6] 
5.  APP module μp2 system software SRS [APP, Y9] 

                                                 
29By “mistake” refers to cases where a defect found by inspection was determined not to be a defect per se.  
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6.  APP μp2 Flux/Delta Flux/Flow application software SRS [APP, Y12] 
7.  APP module communication processor SRS [APP, Y15] 
8.  The list of defects generated in the requirements inspection cycle. 
 
Participants: 
      
1.  Two Inspectors 
2. One Moderator 
 
The inspectors inspected the products independently and recorded defects (for example, any 
ambiguity, incorrectness, inconsistency, or incompleteness).  
 
The moderator reviewed all defects discovered in the design stage, and corrected the mistakes 
made during the inspection. 
 
The inspectors identified the defects found by the requirements inspection and fixed in the design 
stage ( , ) as well as the defects that originated during the design process ( , ). 

 

12.2.3  Source Code Inspection 
 
Products Under Inspection 
    
1. APP module SF1 system software code [APP, Y5] 
2. APP SF1 Flux/Delta Flux/Flow application code [APP, Y8] 
3. APP μp2 system software source code listing [APP, Y11] 
4. APP μp2 Flux/Delta Flux/Flow application software source code listing [APP, Y14] 
5. APP communication processor source code [APP, Y17] 
 
Source Documents: 
    
1.  APP instruction manual [APP, Y1] 
2.  APP module-design specification [APP, Y2] 
3. APP module first safety function processor SRS [APP, Y3] 
4. APP Flux/Delta Flow Application SRS for SF1 [APP, Y6] 
5.  APP module μp2 system software SRS [APP, Y9] 
6.  APP μp2 Flux/Delta Flux/Flow application software SRS [APP, Y12] 
7.  APP module communication processor SRS [APP, Y15] 
8. APP module first safety function processor SDD [APP, Y4] 
9. APP Flux/Delta Flux/Flow Application SDD for SF1 [APP, Y7] 
10.  APP μp2 SDD for system software [APP, Y10] 
11.  APP μp2 Flux/Delta Flux/Flow application software SDD [APP, Y13] 
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12.  APP communication processor SDD [APP, Y16] 
13.  The list of defects generated in the requirements inspection cycle. 
14.  The list of defects generated in the design inspection cycle. 
 
Participants: 
   
1. Two Inspectors 
2. One Moderator 
 
The inspectors inspected the source code independently and recorded defects with an emphasis 
on the following types of defects: data reference, data declaration, computation, comparison, 
control flow, interface, input/output, and missing code. 
 
The moderator reviewed all defects discovered in the code stage, and corrected mistakes made 
during the inspection. 
 
The inspectors identified the number of defects found by the requirements inspection that were 
fixed in the code ( , ), the number of defects found by the design inspection that were in the 
code ( , ), and the number of defects that originated in the code , . 

12.2.4  Lines of Code Count 
 
The number of source lines of code was counted by one of the inspectors using the counting 
rules defined in Chapter 6. 
 

12.3  Results 
 
The values of the different primitives required to evaluate defect density are shown in Table 12.1 
through Table 12.4. Only Level 1 and 2 defects were considered. 
 

Table 12.1 Values of the Primitives Di, j 

 

Di, j 
Development Stage ( j ) 

Requirements Design Code 

Inspector ( i ) 
1 0 0 0 

2 2 4 0 
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Table 12.2 Values of the Primitives DFl, k 
 

DFl, k 

Development Stage During which 
Defects Were Fixed 

Requirements Design Code 

Development 
Stage During 
which Defects 

were 
Introduced 

Requirements 0 0 0 

Design N/A 0 2 

Code N/A N/A 0 

 
 

Table 12.3 Values of the Primitives DUm 
 

m DUm 

2 0 
 
 
Based on these results, the value of the numerator is obtained in Equation 12.1 (where 2): 
 1 , , 1 4

 (12.2)

 
Table 12.4 lists the number of lines of code.  
 

Table 12.4 Primitive LOC 
 

LOC 4825 

 
Therefore 

 
  LOC .  KLOC  

 
Table 12.5 gives a detailed description of the unresolved defects found during inspection. 
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12.4  RePS Construction and Reliability Estimation 

 
Chapter 5 explained in greater detail how to utilize Extended Finite State Machine (EFSM) 
models to propagate defects against an operational profile. Such EFSM models and the 
operational profile constitute the RePS for Defect Density.  

 

12.4.1  Result 
 
The defect-density-based failure-probability prediction was obtained through execution of the 
EFSM model. Detailed EFSM construction procedures are provided in Appendix A. The 
estimation of APP probability of failure-per-demand based on the defect density RePS is 2.3110 . Hence 1 2.31 10 0.9999999997688. 

 

12.5  Lessons Learned 

 
The measurement of DD is a labor-intensive process. The use of a well-defined checklist can 
facilitate the process. However, a large number of items in the checklist must be verified for a 
single segment of requirement or design specification or source-code module. Some of the items 
are high level and cannot be verified systematically nor answered objectively. For instance, the 
checklist does not provide a clear definition of “complete,” “correct,” and “unambiguous” for an 
item such as: “Are the requirements complete, correct, and unambiguous?” Thus, the larger the 
application, the more difficult a complete measurement of DD becomes. 
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13. FAULT-DAYS NUMBER 
 
The fault-days number (FDN) measure represents the number of days that faults remain in the 
software system from introduction to removal. 
 
It should be noted that this measure is more suitable for assessing a development process than for 
assessing a product. 
 
The effectiveness of the software design and development process depends upon the timely 
removal of faults across the entire life cycle. This measure is an indicator of the quality of the 
software system design and of the development process. A high value may be indicative of 
delayed removal of faults and/or presence of many faults, due to an ineffective development 
process [Smidts, 2000]. 
 
This measure encourages timely inspections and testing and can also assist in the management of 
improving the design and development process [Smidts, 2000]. 
 
Although limited published research is available, this measure can be used in a software 
reliability program to monitor the quality of process and product development. Careful collection 
of primitive data is essential to the successful use of this measure [Smidts, 2000]. 
 
This measure can be applied as soon as the requirements are available. As listed in Table 3.3, the 
applicable life cycle phases for the FDN measure are Requirements, Design, Coding, Testing, 
and Operation. 
 

13.1  Definition 
 
The fault-day metric evaluates the number of days between the time a fault is introduced into a 
system and until the point the fault is detected and removed [Smidts, 2000] [Herrmann, 2000], 
such that: 

      (13.1) 
and ∑       (13.2) 
where 

 Fault-days for the total system 

 Fault-days for the i-th fault 

 Date at which the i-th fault was introduced into the system

 Date at which the i-th fault was removed from the system 

 Total number of faults 
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It is difficult to determine the exact fault content introduced into a system during the life cycle 
phases. One way is to use the industry-average data to estimate the fault content based on the 
size of a system (in terms of function point), as described later. 
 
The “waterfall model,” sometimes called the “classic life cycle,” is a model of the software 
development process in which the constituent activities, typically a concept phase, requirements 
phase, design phase, coding phase, integration and test phase, and installation and checkout 
phase, are performed in that order, possibly with overlap but with little or no iteration [IEEE 
610.12, 1990]. 
 
For a software product whose development process follows a sequential development life cycle 
model (such as the waterfall model), the FDN measure is counted on a phase-by-phase basis. 
 
Despite the criticism of its efficacy in all situations [Hanna, 1995], the waterfall model is suitable 
for use when [Pressman, 2004]: 
 

1. The requirements of a problem are reasonably well understood 
2. Work flows from communication through deployment in a reasonably linear fashion 
3. Well-defined adaptations or enhancements to an existing system must be made 

 
The definitions of the phases in the waterfall model are as follows (according to their typical 
sequence of occurrence in the model): 
 
Requirements Phase: the period of time in the software life cycle during which the 
requirements for a software product are defined and documented [IEEE 610.12, 1990]. 
Requirements Review is part of this phase, in which a process or meeting during which the 
requirements for a system, hardware item, or software item are presented to project personnel, 
managers, users, customers, or other interested parties for comment or approval. Types of 
requirements reviews include system requirements review, and software requirements review 
[IEEE 610.12, 1990]. 
 
Design Phase: the period of time in the software life cycle during which the designs for 
architecture, software components, interfaces, and data are created, documented, and verified to 
satisfy requirements. Types of design phases include detailed design and preliminary design 
[IEEE 610.12, 1990]. The Design Review is a process or meeting during which a system, 
hardware, or software design is presented to project personnel, managers, users, customers, or 
other interested parties for comment or approval. Types of design reviews include critical design 
review, preliminary design review, system design review [IEEE 610.12, 1990]. 
 
Coding Phase: sometimes called the “implementation phase,” the period of time in the software 
life cycle during which a software product is created from design documentation and debugged 
[IEEE 610.12, 1990]. Code Inspection is a process or meeting during which software code is 
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presented to project personnel, managers, users, customers, or other interested parties for 
comment or approval [IEEE 610.12, 1990]. 
 
Test Phase: the period of time in the software life cycle during which the components of a 
software product are evaluated and integrated, and the software product is evaluated to determine 
whether or not requirements have been satisfied [IEEE 610.12, 1990]. 
 
The following abbreviations for typical development phases appear in this chapter. 
 

RQ  Requirements Phase 
RR  Requirements Review 
DE  Design Phase 
DR  Design Review 
CO  Coding (or Implementation) Phase 
CI  Code Inspection 
TE  Testing Phase 

 
 

13.2  Measurement Rules 
 
This section presents eight rules for counting the FDN of a system. In Section 13.3 we use the 
APP system to illustrate the application of these rules. 
 
Rule 13.1: The FDN is counted on a workday basis. 
 
Rule 13.2: The FDN for a system is the sum of the FDN of all faults, including faults removed 
during the development life cycle, and faults remaining in the delivered source code. 
 
Rule 13.3: The FDN of a fault is calculated according to Equation 13.1. 
 
Rule 13.4: If the exact date at which the fault was introduced is unknown, it is assumed to have 
occurred during the middle of the corresponding phase [Smidts, 2000]; i.e.: 
 

     (13.3) 

 
where 
 

  Date at which the fault was introduced into the system 

  Ending date of the phase  in which the fault was introduced 

  Beginning date of the phase  in which the fault was introduced 
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Rule 13.5: If the exact date at which the fault was removed is unknown, it is assumed to have 
occurred during the middle of the corresponding phase [Smidts, 2000]; i.e.:  
 

     (13.4)  

 
where 

 Date at which the fault was removed from the system 

  Ending date of the phase  in which the fault was removed 

 Beginning date of the phase  in which the fault was removed 

 
Three steps are required in order to apply Rule 13.4 or Rule 13.5: 
 
1. Identify the beginning date and the ending date of each life cycle phase. 
 
The beginning date of a phase is the date at which initial activities belonging to that phase are 
conducted. The ending date of a phase is the date of release of the first version of all deliveries 
belonging to that phase. These dates are usually recorded on development documents and/or 
quality assurance documents, such as the SRS and the Verification and Validation (V&V) 
Summary Report. 
 
2. Construct the sequential development life cycle according to the occurrence sequence of 

all phase beginning dates. 
 
3. Divide the documented faults into several categories according to their originating phase. 
 
For example, most faults are usually introduced during RQ, DE, and CO phases. Therefore, the 
faults are divided into Requirements Faults, Design Faults, and Coding Faults.  
 
Requirements faults originate in the requirements phase and can be detected in the requirements 
review, design, design review, code, code review, or testing phase of the software life cycle.  
 
Design faults originate in the design phase and can be detected in the design review, coding, 
code review, or testing phases of the software life cycle.  
 
Code faults originate in the coding phase and can be detected in the code inspection or testing 
phases of the software life-cycle. 
 
The FDN of the requirements faults, design faults, and coding faults is thus counted phase-by-
phase. 
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Rule 13.6: The removal date of a fault remaining in the delivered source code is estimated to be 
the ending date of the last phase of the software-development life-cycle. 
Rule 13.7: The fault content of requirements faults, design faults, and code faults, respectively, 
are estimated using the industry average data. 
 
According to [Stutzke, 2001], the expected fault content function is determined by solving the 
following differential equation: 
 , , , ,    (13.5) 

where 
 ,   expected category “j” fault count at time  

  a category of faults introduced during phase ,  = RQ, DE, or CO,  
corresponding to Requirements Faults, Design Faults, and Coding Faults, 
 respectively 

  a life cycle phase, ϕ = RQ, RR, DE, DR, CO, CI, or TE 

  life cycle time 

 estimate of “j” fault introduction rate in phase  

,   intensity function of per-fault detection in phase , for category “j” faults 

  expected change in fault count due to each repair in phase , for category “j” 
faults 

 
Equation 13.5 is usually only applied to Requirements Faults, Design Faults, and Coding Faults 
(  = RQ, DE, and CO) because most faults are introduced into a software system during the RQ, 
DE, and CO phases. 
 
The component ,  addresses the introduction of faults. The component , ,  addresses the detection and removal of faults. 
 
Three steps are required to set-up Equation 13.5. 
 
1. Estimate of ,  
 
Assuming that the fault-introduction rate within a phase is constant, the estimate of the fault-
introduction rate is given by [Stutzke, 2001]: 
 

, , ,        ,0                                                             (13.6) 
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and 
 

, · ,,       (13.7) 

where ,   unadjusted estimate of the fault-introduction rate of the j-th fault categories 

  a category of faults introduced during phase ,  = RQ, DE, or CO 

,   a constant 

  Success Likelihood Index for the FDN measure which varies between 0 
(error is likely) and 1 (error is not likely) 

  fault potential per function point 

,   fraction of faults of type  that originated in phase  

,   mean effort necessary to develop a function point in phase  

 
In Equation 13.6, , 0 while . The reason is that each category of faults is 
only introduced in a phase. For example, the Requirements Faults ( ) are introduced in the 
requirement phase ( ). Therefore, the introduction rate of the Requirements Faults is zero 
during other phases ( ). We will thus write ,  as well as other parameters 
and variables in Section 13.6 and 13.7 as dependents on  only. 
 
Stutzke [Stutzke, 2001] proposed a method for estimating the  and . For , the following 
transformations should be made. The upper and the lower bounds on  
(corresponding to the extreme values of : 0 and 1) are: 

,  (corresponding to 1) 

and ,  (corresponding to 0) 

 
Therefore, ,,       (13.8) 

 
According to Equation 13.7, to obtain the upper and lower bounds of the  in the 
development phase, the upper and lower bounds of .  and ,  should be obtained first. 
 
Based on Capers Jones’ data [Jones, 2002], the average defect potential per function point per 
phase for a software is shown in the “Average Defect Potential” column in Table 13.1. The upper 
bound (worst software case) and the lower bound (best software case) of the defect potential per 
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function point per phase for a software program are shown in the “Upper Bound of the Defect 
Potential” column and the “Lower Bound of the Defect Potential” column, respectively. 
 

Table 13.1 .  Per Function Point Per Phase 

Defect Origins 
Average 

Defect Potential
Upper Bound of the 

Defect Potential
Lower Bound of the 

Defect Potential

Requirements 1.00 1.50 0.40 

Design 1.25 2.20 0.60 

Coding 1.75 2.50 1.00 

Documents 0.60 1.00 0.40 

Bad fixes 0.40 0.80 0.10 

Total 5.00 8.00 2.50 

 
The value of ,  is determined according to the “Mean” column of Table 13.2 (adapted from 
Table 3.17 in [Jones, 1996]). 
  

Table 13.2  , , Mean Effort Per Function Point for Each Life Cycle Phase , in Staff Hours 

Phase,  Max Mode Min Mean* 

RQ 2.64 0.75 0.38 1.00 

RR 1.76 0.59 0.33 0.74 

DE 9.24 2.07 1.03 3.09 

DR 1.76 0.60 0.33 0.75 

CO 8.8 2.64 0.66 3.34 

CI 1.76 0.88 0.44 0.95 

Independent Validation & 
Verification 

1.76 1.06 0.66 1.11 

Unit Testing 1.89 0.88 0.33 0.96 

Function Testing 5.28 0.88 0.44 1.54 

Integration Testing 1.76 0.75 0.33 0.85 

System Testing 1.32 0.66 0.26 0.70 

Independent Testing 1.32 0.66 0.44 0.73 

Field Testing 1.76 0.59 0.26 0.73 

Acceptance Testing 1.76 0.38 0.22 0.58 

*Note: Mean was calculated using Equation 12 in [Stutzke, 2001]: 
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16 4  

 
Therefore, Table 13.3 provides the boundary information for .  and , . 

 
Table 13.3 Boundary Information for .  and ,  

 

 
Requirements Design Phase Coding Phase 

Max Mean Min Max Mean Min Max Mean Min .  1.5 1.00 0.4 2.2 1.25 0.6 2.5 1.75 1.0 ,  2.64 1 0.38 9.24 3.09 1.03 8.8 3.34 0.66 

 
Normally, there are enough reasons to believe that the defect potential will become smaller if 
more effort is spent on the development process. Thus, the maximum defect potential is 
corresponding to the minimum effort and the minimum defect potential is corresponding to the 
maximum effort. Therefore, the upper bound of the  can be obtained by using the 
maximum defect potential divided by the minimum development effort. Similarly, the lower 
bound of the  is the minimum defect potential over the maximum development 
effort. The results of the boundary of  are shown in Table 13.4. 
 

Table 13.4 Boundary Information for  
 

 
Requirements Design Phase Coding Phase 

Max Mean Min Max Mean Min Max Mean Min 

 3.95 0.5 0.15 2.14 0.49 0.065 3.79 0.49 0.11 

 
Thus, the value of  for each development phase can be obtained from Equation 13.8 and is 
shown in Table 13.5. 

 
Table 13.5 Values of  for Different Fault Categories 

 

 RQ DE CO 

 5.13 5.74 5.87 

 
If there is no data available in the documents for determining the value of , it is 
recommended to use 0.5 for , which corresponds to the average. Thus, Equation 13.6 
becomes: 
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,                          0                                                   (13.9) 

APP’s  is given in Chapter 11 (Cyclomatic Complexity). 
 
2. Estimate of  

The expected change in fault count due to one repair for the life cycle phase  is [Stutzke, 2001]: 
 

      (13.10) 

where  
  Expected change in fault count due to one repair in the life-cycle phase  

  Life-cycle time 

  A life-cycle phase,  = RQ, RR, DE, DR, CO, CI, or TE 

  Number of requested repairs that are fixed in the life-cycle phase  

  Number of repairs requested in the life-cycle phase  

 
An industry average value of 0.7 should be used when the data for estimating  is not 
available (especially for RQ, DE, and CO, in which the debugging activities are rarely 
documented) [Stutzke, 2001]. 
 
3. Estimate of ,  
 
The intensity function of per-fault detection in phase , ,  is estimated as follows: 
 
According to Stutzke [Stutzke, 2001],  can be determined by Equation 13.11: 30 
 · ·

      (13.11) 

where: 
  Intensity function of per-fault detection 

  Fault-detection rate 

  Fault-detection efficiency 

  Effort necessary to develop a function point 

  Time 

   Time at which the considered phase originates 

                                                 
30 We omit the indices ,  for the current discussion. 
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The fault detection efficiency  has the same characteristics as function , . Thus, 
similarly, according to: 1 1 ·  
 
the upper and lower bounds on 1  (corresponding to the extreme values of : 0 and 1) 
are: 
 1 1   (corresponding to 1), 

and 
 1 1   (corresponding to 0). 
 
Based on the data by Capers Jones [Jones, 1986], Table 13.6 presents the fault-detection 
efficiency during the development phases. 
 

Table 13.6 Upper and Lower Bounds of the Fault Detection Efficiency during Development Phases 
 

Removal Step Lowest Efficiency Modal Efficiency Highest Efficiency 

 Desk checking of design 15% 35% 70% 

 Desk checking of code 20% 40% 60% 

 
Therefore, the mean fault-detection-efficiency can be calculated using Equation 12 in [Stutzke, 
2001] and  can be obtained easily. These results are provided in Table 13.7. 
 

Table 13.7 Mean Fault Detection Efficiency and  for Fault Detection Efficiency  
 

Removal Step Mean Efficiency  

 Desk checking of design 37.5% 1.68 

 Desk checking of code 40% 1.41 

 
Therefore, 1 0.625 1.68  for RQ and DE documents; 1 0.6 1.41  
for CO documents. 
 
Estimations of the inspection speed are shown in Table 13.8.  
 
As shown in Table 13.8, the peer-review speed is around four times the formal documents 
inspection rate and three times the code-inspection rate. The average effort and reviewing speed 
for the peer review can be estimated based on Table 13.2 and is shown in Table 13.9 
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Table 13.8 Estimations of the Reviewing Speed 
 

Phase Peer Review Speed Inspection Rate 

Requirement 

20 pages/hour31 

5 pages/hour 

External Design 4 pages/hour 

Internal Design 200 lines/hour 

Code 150 non-comment source lines/hour 

Test Plan 4 pages/hour 

 
 

Table 13.9 Average Peer Review Effort and Reviewing Speed 
 

Phase 
Peer Review Effort  

(staff hour/function point) 
Reviewing Speed 

(function point/staff hour)

RQ 0.74/4 = 0.185 5.41 

DE 0.75/4 = 0.188 5.32 

CO 0.95/3 = 0.32 3.13 

 
Having the above information on  and , the intensity function of per-fault detection in phase  , , is estimated and is shown in Table 13.10. 
 
Rule 13.8: Only critical and significant faults should be considered when calculating the FDN 
for a system.  
 
The fault content of a system estimated according to Rule 13.7 does not distinguish faults by 
their severity levels. 
 
Furthermore, the measurements use empirical data and subjective assessments. The empirical 
data used in this research is based on a significant amount of industry data. The associated 
assessments are based on the best knowledge and information available to the research team after 
communications with the developers. Also, much of the modeling is based on direct 
measurements of the APP system and, as such, is purely objective in nature.  
 

                                                 
31  It is assumed that each page contains 30 lines of requirements/design description in natural language or 30 lines of code. 
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IV&V  Independent Validation & Verification 

UT  Unit Testing 

FT  Function Testing 

IgT  Integration Testing 

ST  System Testing 

IpT  Independent Testing 

FiT  Field Testing 

AT  The number of function points for a system 

  The number of function points for a system 

  The life-cycle time, in staff-hours 

  The beginning date of design phase 

  The beginning date of coding phase 

 
 

13.3  Measurement Results 

 
The following documents were used to measure FDN of the APP system: 
 
 APP Module Software V&V PLAN (SVVP) [APP, Y1] 
 Final Verification and Validation Report for APP Module Software [APP, Y2] 
 APP Module μp1 System SRS [APP, Y3] 
 APP Module μp1 Flux/Delta Flux/Flow Application SRS [APP, Y4] 
 APP Module μp2 System SRS [APP, Y5] 
 APP Module μp2 Flux/Delta Flux/Flow Application SRS [APP, Y6] 
 APP Module Communication Processor SRS [APP, Y7] 
 APP Module μp1 SDD [APP, Y8]  
 APP Flux/Delta Flux/Flow Application SDD for μp1 [APP, Y9]  
 APP μp2 System Software SDD [APP, Y10] 
 APP μp2 Flux/Delta Flux/Flow Application Software SDD [APP, Y11] 
 APP Communication Processor SDD [APP, Y12] 
 APP Module μp1 Flux/Delta Flux/Flow Application source code [APP, Y14] 
 APP Module μp2 System source code [APP, Y15] 
 APP Module μp2 Flux/Delta Flux/Flow Application source code [APP, Y16] 
 APP Module Communication Processor System source code [APP, Y17] 
 Test Summary Report for μp1 [APP, Y18]  
 Test Summary Report for μp2 [APP, Y19] 
 Test Summary Report for Communication Processor [APP, Y20] 
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13.3.1  Phases in the Development Life Cycle 
 
According to the documents cited above, the APP system was developed according to the 
waterfall model. The phases in the development life cycle are ordered as follows: RQ, RR, DE, 
DR, CO, CI, and TE. 
 

13.3.2  Duration of Each Life-Cycle Phase 

 
The APP system has five components: the μp1 System, the μp1 Application, the μp2 System, the 
μp2 Application, and the CP System. The μp1 System and the μp1 Application were developed 
by one team, while the μp2 System, the μp2 Application, and the CP System were developed by 
another team. The debugging phases (RR, DR, CI [Code Review Phase], and TE) were 
conducted by a third independent team. 
 
The beginning dates and ending dates of RR, DR, and CI for the five components were obtained 
from [APP, Y1] and [APP, Y2].  
 
The beginning dates and ending dates of TE for μp1 System, μp2 System, and CP System were 
obtained from [APP, Y18], [APP, Y19], and [APP, Y20]. There is no independent testing for 
μp1 Application and μp2 Application. 
 
The ending dates of RQ, DE, and CO were obtained from [APP, Y2]. However, the beginning 
dates of RQ, DE, and CO were not documented. In Table 13.11, the beginning dates of RQ, DE 
and CO were estimated by the manufacturer of the APP system. These estimates can strongly 
influence the accuracy of the measurement results. Given the beginning date and the ending date, 
the length of a phase is estimated on a 20-workdays-per-month basis according to the 
manufacturer of the APP system. These data also are summarized in Table 13.11. 
 
Based on the collected information from the developer (5 staff-hours/workday), the total effort 
(in staff-hours) of each life-cycle phase of the APP system development effort can be obtained 
and is shown in Table 13.12. 
 
 
 
 
 
 
 
 
 
 
 



 

223 
 

Table 13.11 Measurement of Length of Each Life Cycle-Phase for the APP System 
 

 
Phase,  

RQ RR DE DR CO CI TE 

μp1 
System 

Begin date 05/12/93 08/19/93 09/07/93 01/14/94 03/05/94 06/15/94 06/14/94

End date 06/28/93 09/07/93 01/03/94 03/04/94 04/05/94 06/24/94 09/12/94

 
in workdays 

30 13 69 34 21 7 61 

μp1 
Appli-
cation 

Begin date 11/08/93 01/06/94 11/24/93 03/07/94 04/06/93 07/21/94 06/14/94

End date 11/23/93 02/14/94 12/09/93 03/31/94 06/23/94 07/21/94 09/12/94

 
in workdays 

10 26 11 17 53 1 61 

μp2 
System 

Begin date 09/29/93 11/12/93 10/14/93 02/21/94 04/07/94 07/07/94 08/10/94

End date 10/13/93 01/28/94 12/08/93 04/06/94 05/16/94 08/15/94 11/02/94

 
in workdays 

13 25 38 30 27 27 57 

μp2 
Appli-
cation 

Begin date 10/13/93 01/19/94 10/23/93 03/11/94 05/17/94 08/09/94 08/10/94

End date 10/22/93 02/10/94 12/10/93 03/24/94 07/07/94 08/19/94 11/02/94

 
in workdays 

7 15 33 9 35 7 57 

CP 

Begin date 08/09/93 10/27/93 09/10/93 02/16/94 12/14/94 07/08/94 10/04/94

End date 09/09/93 12/01/93 12/13/93 03/17/94 04/11/94 08/08/94 11/09/94

 
in workdays 

20 23 64 20 73 21 25 

 in workdays 

 

80 102 215 110 209 63 261 
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Table 13.12 Duration Estimation for All Life Cycle Phases of the APP 
 

 
Phase,  

RQ RR DE DR CO CI TE

Total effort (in staff-hours) 400 510 1075 550 1045 315 1305 

 

13.3.3  Software Development Life Cycle 
 
Based on the data in Table 13.12, the entire software development life cycle timeline for the APP 
system can be reconstructed, as shown in Figure 13.1 (unit: staff-hours). 
 

  
Figure 13.1 Software Development Life Cycle for APP 

 
 
Table 13.13 summarizes the beginning date of each life cycle phase for the APP system. This 
data is used in Section 13.3.5 to estimate the intensity function of the per-fault detection for the 
development phases (RQ, DE, and CO). 
 
 

Table 13.13 Beginning Time of Each Life-Cycle Phase for the APP 
 

 
Phase  

RQ RR DE DR CO CI TE

Beginning time of phase , 
, in staff-hours 0 400 910 1985 2535 3580 3895 
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13.3.4  Introduction Rates of Requirements Faults, Design Faults, and Coding 
Faults 

 
The introduction rates of requirements faults,  design faults, and code faults, , , are 
estimated according to Equations 13.6 and 13.7. 
 
The function-point count for the APP system is 301 function points as determined in Section 
14.3.3. Moreover, the APP system falls into the category of “system software” (see Section 
14.4.1). Therefore, the fault-potential-per-function-point for the APP system can be obtained 
from the “Systems” column in Table 13.14 (extracted from Table 3.44 in [Jones, 1996]), using a 
logarithmic interpolation for 301 function points (100 < 301 < 1000). 
 5 log 301 log 1005.48 fault potential function point ⁄           (13.12) 

 
where  is the fault potential per function point for the APP system. 
 

Table 13.14 Fault Potential Per Function Point,  
 

Function 
Points 

End User MIS Outsourced Commercial Systems Military Average 

1 1 1 1 1 1 1 1.00 

10 2.5 2 2 2.5 3 3.25 2.54 

100 3.5 4 3.5 4 5 5.5 4.25 

1,000 N/A 5 4.5 5 6 6.75 4.54 

10,000 N/A 6 5.5 6 7 7.5 5.33 

100,000 N/A 7.25 6.5 7.5 8 8.5 6.29 

 
The value of  is obtained from the “Systems” column of Table 13.15 (extracted from Table 
3.15 in [Jones, 1996]). 
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Table 13.15 , Fraction of Faults Originated in Phase  
 

Phase,  

 

End User MIS* 
Out-

sourced
Commer-

cial
Systems Military Average 

RQ 0.00 0.15 0.20 0.10 0.10 0.20 0.1250 

DE 0.15 0.30 0.25 0.30 0.25 0.20 0.2417 

CO 0.55 0.35 0.35 0.30 0.40 0.35 0.3833 

User 
Document 

0.10 0.10 0.10 0.20 0.15 0.15 0.1333 

Bad Fix 0.20 0.10 0.10 0.10 0.10 0.10 0.1167 

*Note: “MIS” is “Management Information System” 
 
The mean effort per function point, , , is obtained from the “Mean” column of Table 13.2. 
 
Table 13.16 summarizes the data required to calculate ,  for the APP system. 
 

Table 13.16 Data Required to Calculate ,  for APP 
 

 
 

Phase,  

RQ RR DE DR CO CI TE 

DP 5.48 

 0.10 N/A 0.25 N/A 0.40 N/A N/A ,  
in staff hrs 

1 0.74 3.09 0.75 3.34 0.95 3.12 

*Note: Only Function Testing (FT), Integration Testing (IgT), and Independent Testing (IpT) 
were conducted during the testing phase, according to [APP, Y18], [APP, Y19], and [APP, Y20]. 
Therefore, ,  for the testing phase is the sum of values of FT, IgT, and IpT. 
 
Using Equations 13.6 and 13.7, Table 13.5 and Table 13.16 with  equals 0.71 (See Chapter 
11), the introduction rates of requirements faults, design faults, and code faults can be calculated, 
as summarized in Table 13.17. 
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Table 13.17 Introduction Rates of Requirements, Design, and Coding Faults for APP 
 

 
Phase,  

RQ RR DE DR CO CI TE 

Fault 
Introduction  

Rate 

    ,  

faults/staff-hour 

Requirements Faults
( ) 

0.28 0 0 0 0 0 0 

Design Faults 
( ) 

0 0 0.21 0 0 0 0 

Coding Faults 
( ) 

0 0 0 0 0.31 0 0 

 

 

13.3.5  The Expected Change in Fault Count Due to One Repair 
 
The expected change in fault count due to one repair in each phase, , is estimated 
according to Equation 13.10. However, the numbers of repair requests and the numbers of fixed-
repair requests for the APP system are not available. Therefore, the industry average was used 
for all life-cycle phases; namely, 0.7 for  = RQ, RR, DE, DR, CO, CI, and TE. 

 

13.3.6  Estimate of the Intensity Function of Per-Fault Detection 
 
The intensity function of per-fault detection of requirements faults, design faults, and coding 
faults during RQ, RR, DE, DR, CO, or CI phase, ,  (  = RQ, RR, DE, DR, CO, CI), is 
calculated according to Table 13.10. The number of function points for the APP system is 301, 
as determined in Chapter 14. 
 
Only Function Testing (FT), Integration Testing (IgT), and Independent Testing (IpT) were 
conducted during the testing phase according to [APP, Y18], [APP, Y19], and [APP, Y20]. 
Therefore, ,  for the testing phase (TE) is the sum of values of FT, IgT, and IpT (see 
Table 13.18, calculated according to Table 13.10). 
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Table 13.18 Intensity Function of Per-Fault Detection Faults for APP  
 

Phase  

Intensity Function of Per-fault Detection ,  

Requirements Faults 
( ) 

Design Faults 
( ) 

Coding Faults 
( ) 

 2.691⁄  0 0 

 0.00223 0 0 

 0.00053 8.177 910⁄  0 

 0.00223 0.00223 0 

 0.00049 0.00049 5.022 2535⁄  

 0.00172 0.00172 0.00166 

 
 

0.00528 0.00528 0.00510 

 

13.3.7  Expected Content of Requirements Faults, Design Faults, and Coding 
Faults 

 
The expected content of requirements faults, design faults, and coding faults,  , , is 
obtained using the results in Section 13.3.2 through 13.3.6 to solve Equation 13.5. 
 
For example, during the requirement-analysis phase ( , ), , 0.28, 
(determined in Table 13.17), 0.7 (determined in Section 13.3.5), and ,2.691⁄  (determined in Table 13.18). Therefore, Equation 13.5 becomes: 
 , 0.28 . 0.7 ,     0.28 . ,            (13.13) 

 
Since , | 0 (there is no fault introduced into a system when 0), 
Equation 13.15 yields: 
 , 0.097              0 400    (13.14) 

 
 

During RR, , 0, 0.7, and , 0.00223. 
Therefore, Equation 13.5 becomes: 
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, 0 0.00223 0.7 ,     0.00156 ,      (13.15) 

 
Since continuity dictates that , | , | 0.097 400 38.8 
Equation 13.13 yields: 
 , 38.8 exp 0.00156 400            400 910     (13.16) 

 
In the same way, the expected content of requirements faults can be obtained by solving 
Equation 13.5 phase-by-phase, as shown in Equation 3.17: 
 

 
0.097                                                                    0  40038.80 exp 0.00156 400           400  91017.50 exp 0.00037 910          910 198511.70 exp 0.00156 1985      1985 25354.95 exp 0.00034 2535        2535 35803.44 exp 0.0012 3580           3580 38952.36 exp 0.0037 3895           3895 5200

              (13.17) 

 
Similarly, using the results in Section 13.3.2 through 13.3.6 to solve Equation 13.5 yields the 
expected content of design faults: 
 

 
0                                                                              0  4000                                                                         400  9100.0312                                                            910 198533.58 exp 0.00156 1985      1985 253514.21 exp 0.00034 2535      2535 35809.90 exp 0.0012 3580           3580 38956.77 exp 0.0037 3895           3895 5200

              (13.18) 

 
Using the results in Section 13.3.2 through 13.3.6 to solve Equation 13.5 yields the expected 
content of coding faults: 
 

 
0                                                                              0  4000                                                                         400  9100                                                                        910 19850                                                                      1985 25350.069                                                            2535 358071.74 exp 0.0016 3580        3580 389549.71 exp 0.00357 3895         3895 5200

              (13.19) 
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The total expected fault content of the APP system is  
 

 (13.20)

 
 

13.3.8  Count of Fault-Days Number 
 
The FDN for the APP system is determined according to the eight measurement rules (Rule 13.1 
to Rule 13.8) described in Section 13.2. The time unit in this section is converted from staff-
hours to workdays (on a 5-staff-hours/day basis), which is given by the manufacturer of the APP 
system. 
 
Three steps are required to count the FDN of a system: 
 
1. Calculate the FDN for faults removed during the development life cycle 
2. Calculate the FDN for faults remaining in the delivered source code 
3. Calculate the FDN of the system, which is the sum of the results of the previous two steps 

 

13.3.8.1 Calculation of FDN for Faults Removed During the Development Life Cycle 
 
Table 13.19 summarizes the required data for counting the FDN, in which  and  

were determined according to Figure 13.1.  
 
As mentioned in Section 13.2, faults are classified based on the phase during which they are 
introduced into a system. For example, the requirements faults are introduced into a system only 
during RQ. Therefore, the introduction date of type  faults, , according to Rule 13.4, is: 
        (13.21) 

where 
  date at which type  faults are introduced into a system 

  a category of faults introduced,  = RQ, DE, or CO 

  a life cycle phase,  = RQ, RR, DE, DR, CO, CI, or TE 

  ending date of the phase  

  beginning date of the phase  
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Similarly, a fault of type  cannot be removed from a system until it has been introduced into a 
system. Therefore, the date at which type  faults are removed from a system during phase , ,  according to Rule 13.5, is: 
 

,          (13.22) 

where ,   date at which type  faults are removed from a system 

  a category of faults introduced,  = RQ, DE, or CO 

  a life cycle phase,  = RQ, RR, DE, DR, CO, CI, or TE 

  ending date of the phase  

  beginning date of the phase  

,  and ,  were calculated and shown in Table 13.19 according to 

Equation 13.17 ( ), Equation 13.18 ( ), and Equation 13.19 ( ), respectively. 
 
Using Table 13.19, the FDN for each fault category can be calculated phase-by-phase, as 
presented in Table 13.20. 
 
According to Rule 13.8, only critical faults and significant faults should be considered while 
calculating the FDN. Moreover, the fraction of critical faults and significant faults for the APP 
system is 0.1391, as calculated in Equation 6.3. Therefore, the number of type  faults (critical 
and significant) removed from the APP system during phase  is: 
 ∆ ,        

, , 0.1391   (13.23) 

 
where ∆ ,   number of type  faults (critical and significant) removed during phase  

  a category of faults introduced,  = RQ, DE, or CO 

  a life cycle phase,  = RQ, RR, DE, DR, CO, CI, or TE ,   Expected number of type  faults at the beginning of  phase  ,   Expected number of type  faults at the end of  phase  
 
The FDN per fault of type  removed during phase  is: 
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,         ,           (13.24) 

 
where 
 ,    fault-days number per fault of type  removed during phase  

  date at which type  faults are introduced into a system ,   date at which type  faults are removed from a system 

  a category of faults introduced,  = RQ, DE, or CO 

  a life-cycle phase,  = RQ, RR, DE, DR, CO, CI, or TE 
  
 

Table 13.19 Data Required to Calculate FDN for Faults Removed during the Development Life Cycle 
 

 
Phase,  

RQ RR DE DR CO CI TE 

 0 80 182 397 507 716 779 

 80 182 397 507 716 779 1040 

Date at which type j 
faults are introduced into 

APP,  
2  

Requirements Faults 
(j = RQ) 

40 N/A N/A N/A N/A N/A N/A 

Design Faults 
(j = DE) 

N/A N/A 289.5 N/A N/A N/A N/A 

Coding Faults 
(j = CO) 

N/A N/A N/A N/A 611.5 N/A N/A 
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Table 13.19 Data Required to Calculate Fault-days Number for Faults 
Removed during the Development Life Cycle (continued) 

 

 
Phase,   

RQ RR DE DR CO CI TE

 0 80 182 397 507 716 779 

 80 182 397 507 716 779 1040 

Date at which type j 
faults are removed 

from APP 
 ,

 

Requirements Faults 
(j = RQ) 

40 131 289.5 452 611.5 747.5 909.5

Design Faults 
(j = DE) 

N/A N/A 289.5 452 611.5 747.5 909.5

Coding Faults 
(j = CO) 

N/A N/A N/A N/A 611.5 747.5 909.5

Number of faults at the 
beginning of phase , 

,  

Requirements Faults 
(j = RQ) 

0 38.8 17.5 11.7 5.0 3.4 2.4 

Design Faults 
(j = DE) 

0 0 0 33.6 14.2 9.9 6.8 

Coding Faults 
(j = CO) 

0 0 0 0 0 71.7 49.7 

Number of faults at the 
end of phase , 

,  

Requirements Faults 
(j = RQ) 

38.8 17.5 11.7 5.0 3.4 2.4 0.02 

Design Faults 
(j = DE) 

0 0 33.6 14.2 9.9 6.8 0.05 

Coding Faults 
(j = CO) 

0 0 0 0 71.7 49.7 0.47 

 
The fault-days number for a fault of type  removed during phase  is: 
 

,        ,  ∆ ,    (13.25) 

 
where ,   

fault-days number of type  faults (critical and significant) removed during 
phase ; ,    fault-days number per fault of type  removed during phase ; ∆ ,   number of type  faults (critical and significant) removed during phase ; 
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  a category of faults introduced during phase ,  = RQ, DE, or CO; 

  a life cycle phase,  = RQ, RR, DE, DR, CO, CI, or TE. 
 

 
Table 13.20 Calculation of FDN for Faults Removed during the Development Life Cycle 

 

 
 

Phase   

RQ RR DE DR CO CI TE 

Fault-days number 
per fault of type j 

removed during phase 
, ,  

in workdays 

Requirements 
Faults 

(j = RQ) 
0 91 249.5 412 571.5 707.5 869.5 

Design Faults 
(j = DE) 

N/A N/A 0 162.5 322 458 620 

Coding Faults 
(j = CO) 

N/A N/A N/A N/A 0 136 298 

Number of type j 
faults (critical and 

significant) removed 
during phase , ∆ , ,,0.1391  

Requirements 
Faults 

(j = RQ) 
0 3.0 0.8 0.9 0.2 0.2 0.3 

Design Faults 
(j = DE) 

N/A N/A 0 2.7 0.6 0.4 0.9 

Coding Faults 
(j = CO) 

N/A N/A N/A N/A 0 3.1 6.8 

Fault-days number of 
type j faults removed 

during phase ,  ,  

Requirements 
Faults 

(j = RQ) 
0 273.0 199.6 370.8 114.3 141.5 260.9 

Design Faults 
(j = DE) 

N/A N/A 0 438.8 193.2 183.2 558.0 

Coding Faults 
(j = CO) 

N/A N/A N/A N/A 0 421.6 2026.4
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13.3.8.2 Calculation of FDN for Faults Remaining in the Delivered Source Code 
 
The fault-days number for faults remaining in the delivered source code is calculated using Rule 
13.3, 13.4, 13.6, and 13.8, as summarized in Table 13.21. 
 
The date at which type j faults are introduced into the APP,  , is determined in Table 13.19. 
According to Rule 13.6, the removal date for a fault remaining in the delivered source code is the 
ending date of TE (the last phase of the development life cycle), namely, 
 

      (13.26) 
where 
 

  removal date of faults remaining in the delivered source code; 

  
ending date of testing phase, which is the last phase in the 
software development life cycle of the APP system. 

 
The FDN per fault of type j remaining in the delivered source code, according to Rule 13.3, is: 
 ,      (13.27) 

where ,   
fault-days number per fault of type j remaining in the delivered 
source code; 

  removal date of faults remaining in the delivered source code; 

  date at which type j faults are introduced into a system. 
 
The number of type j faults (critical and significant) remaining in the delivered source code was 
estimated using Equation 13.17 ( ), Equation 13.18 ( ), and Equation 13.19 (

), respectively: 
 , | 0.1391     (13.28) 
where ,   

number of type  faults (critical and significant) remaining in the delivered source 
code; 

  expected content of type j faults at life cycle time ; 

  ending date of the testing phase. 
 
Using Equations 13.27 and 13.28, the fault-days number for type  faults remaining in the 
delivered source code can be calculated: 
 , ,  ,      (13.29) 
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Table 13.21 Calculation of Fault-days Number for Faults Remaining in the Delivered Source Code 
 

 
Requirements 

Faults 
( ) 

Design Faults 
( ) 

Coding Faults 
( ) 

Date at which type j faults are 
introduced into APP   in workdays 40 289.5 611.5 

Removal date of faults remaining in the 
delivered source code 

 

 in workdays 

1040 

Fault-days number per fault remaining 
in the delivered source code, 

in workdays ,   

1000 750.5 428.5 

Number of type j faults (critical and 
significant) remaining in the delivered 

source code ,| 0.1391 
0.00264 0.00757 0.06537 

Fault-days number of type j faults 
remaining in the delivered source code ,,  ,  

2.6 5.7 28.0 

 

13.3.8.3  Calculation of FDN for the APP 
 
Using the results in Table 13.20 and 13.21, the fault-days number for the APP system is: 
 ∑ ∑ , , , ∑ ,, ,5217.6 fault · workday                                             (13.30) 
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13.4  RePS Construction Using the Fault-Days Number Measure 
 
Based on the cumulative characteristic of the Fault-days Number measure and by using the 
concepts introduced by Stutzke [Stutzke, 2001], one can show that FDN is related to  by 
the following equation: 
 ∆ ∆ · ∆ 1 ∆ · ∆    (13.31) 
 
where ∆   the Fault-days Number at time ∆  

  the Fault-days Number at time  

  estimate of fault introduction rate 

  intensity function of per-fault detection 

  expected change in fault count due to each repair 

  expected fault count at time  
 
Equation 13.33 can be simplified to Equation 13.32:  
 

      (13.32) 

 
This equation shows the direct relationship between the measured real FDN and the 
corresponding fault count number. Once the real FDN is measured, the number of faults can be 
obtained by this equation. However, the real FDN cannot be obtained experimentally because not 
all the faults can be discovered during the inspection. One can only obtain the apparent FDN, 
FDNA. “Apparent” refers to only removed faults logged during the development process. One 
can relate FDNA to FDN by Equation 13.33 knowing , , , .  
 ; , , , ·      (13.33) 

where
 the apparent Fault-days Number ; , , , a function of , , ,  which relates  to  

 the exact Fault-days Number 
 
Therefore, one can still obtain the fault count based on the measured apparent FDN as shown by 
Equation 13.34. · ; , , ,      (13.34) 
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Thus ideally, six steps are required to estimate software reliability using the Fault-days Number 
measure: 
 
1. Measure the apparent FDN 
2. Map the faults discovered into the EFSM 
3. Execute the EFSM and obtain the failure probability 
4. Calculate the per-fault Fault Exposure Ratio ( ) 
5. Calculate the number of faults ( ) remaining in the source code using FDN measurement 

results by Equation 13.34 
6. Calculate the failure probability using Musa’s exponential model 
 
In the case of the APP system, the above procedures are difficult to apply because: 
 

 The apparent FDN may be unobtainable because no record of removed faults exists. One 
can only obtain the average introduction and removal date of a category of faults during a 
specific development phase. Therefore, the FDN obtained in Section 13.3.8 is not the 
apparent FDN of the APP system, it is an estimated FDN. 

 There may be no record of the description of each fault found during the development 
process. Thus, it may be impossible to map the faults discovered into the EFSM and 
execute the EFSM to obtain the failure probability and the exact per-fault Fault Exposure 
Ratio for the APP system. One substitute method is to use the testing data and its 
corresponding Fault Exposure Ratio. (This will be shown in Chapter 17). 

 
The research team was aware of these difficulties and adopted the following steps to estimate the 
reliability of the APP system using the Fault-days Number measure: 
 
1. Measure the estimated FDN shown in Section 13.3.8 
2. Estimate the number of faults ( ) remaining in the source code using the Fault-days 

Number measure 
3. Estimate the number of delivered critical and significant faults 
4. Calculate the failure probability using Musa’s Exponential Model and the new Fault 

Exposure Ratio 
 

13.4.1  Estimate of Number of Faults Remaining in the Source Code Using FDN  
 
According to Figure 13.1 the APP system was released by the end of TE, when 5200 staff-
hours. Therefore, the delivered fault content is: 
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,                                                                                                                | | |2.36 exp 0.0037 5200 3895                                6.97 exp 0.0037 5200 3895      49.71 exp 0.0037 5200 3895   0.5                                                                                                     
 (13.35) 

 
Where 
 ,   total number of delivered faults in the APP estimated using the Fault-days 

Number (FDN) measure 
  total expected fault content of the APP as a function of life cycle time 

 

13.4.2  Estimate of the Number of Delivered Critical and Significant Faults 

 
Given the total number of delivered defects, , , and the percentages of delivered defects 
by severity level as determined in Table 6.7, the number of delivered defects by severity level 
can be calculated. For example, the number of delivered defects of severity 1 for the APP system 
is 0.543 × 0.0185 = 0.01. 
 
Table 13.22 presents the number of delivered defects by severity level for the APP system. 
 
 

Table 13.22 Number of Delivered Defects by Severity Level for the APP System 
 

 
Severity 1 
(critical) 

Severity 2 
(significant) 

Severity 3 
(minor) 

Severity 4 
(cosmetic) 

Number of 
delivered 
defects 

0.01 0.065 0.205 0.262 

 
 

13.4.3  Reliability Calculation from Delivered Critical and Significant Defects 
 
According to Musa’s exponential model [Musa, 1990] [Smidts, 2004], the reliability of a 
software product is given by: 
 exp      (13.36) 

and 
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, ,      (13.37) 
where 

 
 reliability estimation for the APP system using the Fault-days Number 
(FDN) measure; 

  Fault Exposure Ratio, in failures/fault; 

  Number of defects in APP estimated using the FDN measure; 

,   Number of delivered critical defects (severity 1) estimated using the 
FDN measure; 

,   Number of delivered significant defects (severity 2) estimated using the 
FDN measure; 

  Average execution-time-per-demand, in seconds/demand; 

  Linear execution time, in seconds. 

 
The value of the new fault exposure ratio is 4.5 × 10-12 failure/defect. This is determined later 
through Equation 17.14 and shown in section 19.2.2.3. 
 
As shown in Table 13.22, the APP system , 0.01, and , 0.065. 
Therefore, according to Equation 13.37, 0.01 0.065 0.075 which we round to 1. 
 
The linear execution time, , is usually estimated as the ratio of the execution time and the 
software size on a single microprocessor basis [Musa, 1990] [Smidts, 2004]. In the case of the 
APP system, however, there are three parallel subsystems (μp1, μp2, and CP), each of which has 
a microprocessor executing its own software. Each of these three subsystems has an estimated 
linear execution time. Therefore, there are several ways to estimate the linear execution time for 
the entire APP system, such as using the average value of these three subsystems.  
 
For a safety-critical application like the APP system, the UMD research team suggests to make a 
conservative estimation of  by using the minimum of the three subsystems. Namely,  
 
 
    min 1 , 2 ,      

        min 0.018, 0.009, 0.021               (13.38) 
         0.009 second  
where 1   Linear execution time of Microprocessor 1 (μp1) of the APP system. TL 

(μp1) = 0.018 second (refer to Chapter 17) 2   Linear execution time of Microprocessor 2 (μp2) of the APP system. TL 
(μp2) = 0.009 second (refer to Chapter 17) 
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  Linear execution time of Communication Microprocessor (CP) of the APP 
system. TL (CP) = 0.021 second (refer to Chapter 17) 

 
Similarly, the average execution-time-per-demand, , is also estimated on a single 
microprocessor basis. Each of the three subsystems in APP has an estimated average execution-
time-per-demand. To make a conservative estimation, the average execution-time-per-demand 
for the entire APP system is the maximum of the three subsystems. Namely,  
 
    max 1 , 2 ,   
       max 0.082,0.129,0.016      (13.39) 
       0.129 seconds/demand  
where 
 1   Average execution-time-per-demand of Microprocessor 1 (μp1) of the 

APP system. τ(μp1) = 0.082 seconds/demand (refer to Chapter 17) 2   Average execution-time-per-demand of Microprocessor 2 (μp2) of the 
APP system. τ(μp2) = 0.129 seconds/demand (refer to Chapter 17) 

  Average execution-time-per-demand of Communication 
Microprocessor (CP) of the APP system. τ(CP) = 
0.016 seconds/demand (refer to Chapter 17) 

 
Thus the reliability for the APP system using the Fault Days Number measure is given by: 
 . . .      (13.40)  
         0.99999999999355 
 
A more accurate estimation of reliability using the Fault-days Number measure for the APP 
system can be obtained by the following: 
 
1. Obtaining the accurate dates at which faults are introduced into a system and removed 

from a system; 
2. Obtaining actual dates at which phases of the development life cycle start; 
3. Considering the existence of multiple versions of documentation for each phase; 
4. Considering the overlap between two development life cycle phases; 
5. Considering the iteration of the development life cycle phases; 
6. Obtaining better documentation on debugging activities during RQ, DE, and CO phases; 
7. Estimating the fault introduction rate in each development life cycle phase using the data 

for safety-critical applications, rather than the data for industry average; 
8. Collecting data to estimate the Success Likelihood Index for the Fault-days Number 

measure, , for the safety-critical application. 
9.         Using the concept of  as discussed in Chapter 19. 
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13.5  Lessons Learned 

 
The measurement of FDN requires data on the software-development process. This data was 
unavailable to the research team because it was either undocumented or unclearly documented in 
the software-development documents (SRS, SDD code, and V&V). For example, the exact effort 
for each development phase could not be obtained for each team member because it was not 
recorded during the original development. Even if these data had been recorded, the exact effort 
for each phase would have been difficult to measure since the development did not follow a 
waterfall development model because the developers returned to work on the SRS after the code 
was written.



 

243 
 

13.6  References 
 
[APP, Y1]  “APP Module Software V&V PLAN (SVVP),” Year Y1. 
[APP, Y2]  “Final V&V Report for APP Module Software,” Year Y2. 
[APP, Y3]  “APP Module First Safety Function Processor SRS,” Year Y3. 
[APP, Y4]  “APP Flux/Delta Flux/Flow Application SRS for SF1,” Year Y4. 
[APP, Y5]  “APP Module μp2 System Software SRS,” Year Y5. 
[APP, Y6]  “APP μp2 Flux/Delta Flux/Flow Application Software SRS,” Year Y6. 
[APP, Y7]  “APP Module Communication Processor SRS,” Year Y7. 
[APP, Y8]  “APP Module First Safety Function Processor SDD,” Year Y8. 
[APP, Y9]  “APP Flux/Delta Flux/Flow Application SDD for SF1,” Year Y9. 
[APP, Y10]   “APP μp2 System Software SDD,” Year Y10. 
[APP, Y11]  “APP μp2 Flux/Delta Flux/Flow Application Software SDD,” Year Y11. 
[APP, Y12]  “APP Communication Processor SDD,” Year Y12. 
[APP, Y13]  “APP Module SF1 System Software code,” Year Y13. 
[APP, Y14]  “APP SF1 Flux/Delta Flux/Flow Application code,” Year Y14. 
[APP, Y15]  “APP Module μp2 System Software Source Code Listing,” Year Y15. 
[APP, Y16]  “APP μp2 Flux/Delta Flux/Flow Application Software Source Code 

Listing,” Year Y16. 
[APP, Y17]  “APP Communication Processor Source Code,” Year Y17. 
[APP, Y18]  “Test Summary Report for μp1,” Year Y18. 
[APP, Y19]  “Test Summary Report for μp2,” Year Y19. 
[APP, Y20]  “Test Summary Report for Communication Processor,” Year Y20. 
[Hanna, 1995]  M. Hanna. “Farewell to Waterfalls,” Software Magazine, pp. 38–46, 1995. 
[Herrmann, 2000] D.S. Herrmann. Software Safety and Reliability: Techniques, Approaches, 

and Standards of Key Industrial Sectors. Wiley-IEEE Computer Society 
Print, First Edition, 2000. 

[IEEE 610.12, 1990] “IEEE Standard Glossary of Software Engineering Terminology,” IEEE 
Std. 610.12-1990, 1990. 

[Jones, 1986]  C. Jones. Programming Productivity. McGraw-Hill, Inc., 1986. 
[Jones, 1996]  C. Jones. Applied Software Measurement: Assuring Productivity and 

Quality. New York, NY: McGraw-Hill, 1996. 
[Jones, 2002]  C. Jones. Software Quality in 2002: A Survey of the State of Art. 

Burlington, MA, 2002. 
[Musa, 1990]  J.D. Musa. Software Reliability: Measurement, Prediction, Application. 

New York: McGraw-Hill, 1990. 
[Pressman, 2004] R. Pressman. Software Engineering: A Practitioner’s Approach. New 

York: McGraw Hill, 2004. 
[Shepard, 1979] S.B. Shepard and T. Love. “Modern coding practices and programmer 

performance,” Computer, vol. 12, no. 12. pp. 41–49, 1979. 
[Smidts, 2000]  C. Smidts and M. Li, “Software Engineering Measures for Predicting 

Software Reliability in Safety Critical Digital Systems,” NRC, Office of 
Nuclear Regulatory Research, Washington DC NUREG/GR-0019, 2000. 



 

244 
 

[Smidts, 2004]  C. Smidts and M. Li, “Preliminary Validation of a Methodology for 
Assessing Software Quality,” NUREG/CR-6848, 2004. 

[Stutzke, 2001] M. Stutzke and C. Smidts. “A Stochastic Model of Fault Introduction and 
Removal during Software Development,” IEEE Transactions on 
Reliability Engineering, vol. 50, 2001. 

 
 



 

245 
 

 

14. FUNCTION POINT 
 
 
Function Point (FP) is a measure designed to determine the functional size of software.32 
 
FP measures the entire size of an application including enhancements regardless of the 
technology used for development and/or maintenance. FPs have gained acceptance as a primary 
measure of software size [IEEE 982.2, 1988]. 
 
This measure can be applied as soon as the requirements are available. As listed in Table 3.3, the 
applicable life-cycle phases for FP are Requirements, Design, Coding, Testing, and Operation. 
 
 

14.1  Definition 
 
The Function Point Counting Practices Manual is the definitive description of the Function 
Point Counting Standard, despite the fact that there are many resources addressing FP counting 
(such as [Heller, 1996] and [Garmus, 2001]). Several versions of the manual are available, the 
latest, Release 4.3.1, was published in 2004 [IFPUG, 2004]. 
 
However, unless otherwise specified, information in this chapter is intended to be consistent with 
Release 4.1 [IFPUG, 2000]. This is because this report is a follow-up of previous research 
[Smidts, 2004] in which Release 4.1 was used in FP counting. 
 
According to [IFPUG, 2000], “Function Point” is a unit of measure of functionality of a software 
project or application from a logical (not physical) point of view. A “function point” is defined 
as one end-user business function, such as a query for an input [IFPUG, 2000]. 
 
The primary terms used in FP counting are alphabetically listed as follows [IFPUG, 2000]: 
 
Data Element Type (DET): A unique, user-recognizable, non-repeated field. 
 
External Inputs (EIs): An elementary process in which data crosses the boundary from outside 
to inside. This data may come from a data-input screen or another application. The data may be 
used to maintain one or more internal logical files. The data is either control or business 
information. If the data is control information, it does not have to update an internal logical file.  
 

                                                 
32 Used with permission from the International Function Point Users’ Group (IFPUG) (http://www.ifpug.org/). 
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External Interface Files (EIFs): A user-identifiable group of logically related data that is used 
for reference purposes only. The data resides entirely outside the application and is maintained 
by another application. The external interface file is an internal logical file for another 
application. 
 
External Inquiries (EQs): An elementary process with both input and output components that 
result in data retrieval from one or more ILFs and EIFs. The input process does not update any 
ILFs, and the output side does not contain derived data. 
 
External Outputs (EOs): An elementary process in which derived data passes across the 
boundary from inside to outside. Additionally, an EO may update an ILF. The data creates 
reports or output files sent to other applications. These reports and files are created from one or 
more ILFs and EIFs.  
 
Internal Logical Files (ILFs): A user-identifiable group of logically related data that resides 
entirely within the application’s boundary and is maintained through external inputs. 
 
Record Element Type (RET): A user-recognizable subgroup of data elements within an ILF or 
EIF. 
 
 

14.2  Measurement Rules 
 
The FP count for the APP system was outsourced to Charlie Tichenor, an IFPUG Certified 
Function Point Specialist.33 The advantages of outsourcing the FP counting are [SCT, 1997]: 
   
Expertise - The major FP consultants have experience with many organizations and diverse 
technologies. They can ensure FP analysis is properly utilized in the metrics program and the 
software development process as a whole. 
 
Current Knowledge - Staying up to date with FP counting is a problem for most in-house 
practitioners. If they count a system only once every few months, their knowledge of more 
convoluted rules fades. Often they lack the time and budget to update their knowledge at IFPUG 
conferences or other training events.  
 
Credibility - In many situations, credibility of the in-house counters is an issue. Outside 
consultants often have greater credibility due to their expertise and the currency of their 

                                                 
33In this study, FP counting was outsourced to a specialist whereas the CMM appraisal was conducted by the UMD 
research team. Indeed, a formal FP count is not as expensive as a formal CMM appraisal, i.e., a formal FP count 
remains affordable even within a limited budget. 
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information. Sometimes the mere fact that they are outsiders increases their credibility. An 
outside consultant should be an IFPUG Certified Function Point Specialist. 
 
Consistency - Consistency is a key to successful use of any measure. One requirement for 
consistency is the use of a small group of counters who are in constant communication with one 
another regarding counting practices. Furthermore, this group must have ties to the FP counting 
community as a whole, that is, membership and participation in the IFPUG.  
 
Independence - Bias can be a problem in FP counting. Project personnel may overstate counts 
because they may feel they will be judged on the size of their delivered system. Project 
customers may understate the size to push for quicker and cheaper delivery. There is a need for 
an unaffiliated third-party who is judged only on the accuracy of the count and any associated 
estimates. This is the role of an independent consultant.  
 
Frees Resources - In many development groups, the counting is done by developers who have 
other project responsibilities. Often they are under pressure to continue with their other 
responsibilities. They often do not feel their job security or advancement is related to counting 
FPs. Outsourcing the counts can make both developers and their managers happier.  
 
Versions of the IFPUG’s FP counting manual preceding 1994 did not provide clear counting 
rules for real-time systems. As a consequence, the applicability of FPs to real-time systems was 
judged as questionable by many practitioners and researchers [Abran]. Counting rules 
specifically dedicated to the evaluation of real-time systems were added to versions of the 
manual published after 1994. These updated rules were used for the APP system FP count. 
 
The total process to size FPs can be summarized by the following seven steps [Garmus, 2001]: 
   
1. Determine the type of FP count. 
2. Identify the counting scope and application boundary. 
3. Identify all data functions (ILFs and EIFs) and their complexity. 
4. Identify all transactional functions (EIs, EO, and EQs) and their complexity. 
5. Determine the unadjusted FP count. 
6. Determine the Value Adjustment Factor, which is based on the 14 general system 

characteristics. 
7. Calculate the adjusted FP count. 
 
Sections 14.2.1 to 14.2.5 provide a brief description on how to conduct FP counting (adopted 
from [Garmus, 2001]). For a complete description refer to [IFPUG, 2000]. 
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14.2.1  Determining the Type of FP Count 
 
The three types of FP counts are [Garmus, 2001]: 
 
1. Development Project: Measures the functionality provided to end users with the first 

installation of the application.  

2. Enhancement Project: Measures modifications to existing applications and includes the 
combined functionality provided to users by adding new functions, deleting old functions, 
and changing existing functions. 

3. Application: Measures an installed application.  
 
There are some minor differences between the three types [IFPUG, 2000]. 

 

14.2.2  Identifying the Counting Scope and Application Boundary 
 
The counting scope defines the functionality that will be included in a particular FP count. 
[IFPUG, 2000] 
 
The application boundary indicates the border between the software being measured and the user 
[IFPUG, 2000]. 

 

14.2.3  Identifying Data Functions and Their Complexity 
 
Data functions represent the functionality provided to the user to meet internal and external data 
requirements. Data functions are either Internal Logical Files (ILFs) or External Interface Files 
(EIFs) [IFPUG, 2000]. 
 
In the analysis, these two components are ranked as low, average, or high complexity. The 
ranking is based on the number of Record Element Types (RETs) and the number of Data 
Element Types (DETs) [IFPUG, 2000]. 
 
A weight is assigned to these components by complexity level according to a rating matrix 
[IFPUG, 2000], which is summarized in Table 14.1.  
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Table 14.1 Rating Matrix for Five Components in Function Point Counting  
(Adapted from [IFPUG, 2000]) 

 

Type of component 
Weight of components with complexity of 

Low Average High 

Internal Logical Files (ILFs) × 7 × 10 × 15 

External Interface Files (EIFs) × 5 × 7 × 10 

External Inputs (EIs) × 3 × 4 × 6 

External Outputs (EOs) × 4 × 5 × 7 

External Inquiries (EQs) × 3 × 4 × 6 

 

14.2.4  Identifying Transactional Functions and Their Complexity 
 
Transactional functions represent the functionality provided to the user to process data. 
Transactional functions are either External Inputs (EIs), External Outputs (EOs), or External 
Inquiries (EQs) [IFPUG, 2000]. 
 
In the analysis, these three components are ranked as low, average, or high complexity. The 
ranking is based on the number of files updated or referenced (FTRs) and the number of Data 
Element Types (DETs) [IFPUG, 2000].  
 
A weight is assigned to these components by complexity level according to the rating matrix 
summarized in Table 14.1[IFPUG, 2000].  
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14.2.5  Determining the Unadjusted Function Point Count 
 
The Unadjusted Function Point Count (UFPC) reflects the specific functionality provided to the 
user by the project or application [IFPUG, 2000]. The UFPC is given by [IFPUG, 2000]: 
 
 .     .         .       .       .

 

(14.1)

14.2.6  Determining the Value Adjustment Factor 
 
The Value Adjustment Factor (VAF) is based on 14 general system characteristics (GSCs) that 
comprise the general functionality of the application being counted.  
 
Each characteristic has associated descriptions that help determine the degrees of influence of the 
characteristics. The degrees of influence range from 0 to 5, from no influence to strong influence, 
respectively [IFPUG, 2000].  
 
The IFPUG Counting Practices Manual [IFPUG, 2000] provides detailed evaluation criteria for 
each of the GSCs. The list below provides an overview of each GSC. 
 
1. Data Communications. The data and control information used in the application are sent 

or received over communication facilities. 
2.  Distributed Data Processing. Distributed data or processing functions are a 

characteristic of the application within the application boundary. 
3.  Performance Application. Performance objectives, stated or approved by the user, in 

either response or throughput, influence (or will influence) the design, development, 
installation, and support of the application. 

4.  Heavily Used Configuration. A heavily used operational configuration, requiring 
special design considerations, is a characteristic of the application. 

5.  Transaction Rate. The transaction rate is high and influences the design, development, 
installation, and support. 

6.  Online Data Entry. Online data entry and control information functions are provided in 
the application. 
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7.  End-User Efficiency. The online functions provided emphasize a design for end-user 
efficiency. 

8.  Online Update. The application provides online update for the ILFs. 
9.  Complex Processing. Complex processing is a characteristic of the application. 
10.  Reusability. The application and the code in the application have been specifically 

designed, developed, and supported to be usable in other applications.  
11.  Installation Ease. Conversion and installation ease are characteristics of the application. 

A conversion and installation plan and/or conversion tools were provided and tested 
during the system test phase. 

12.  Operational Ease. Operational ease is a characteristic of the application. Effective start-
up, backup, and recovery procedures were provided and tested during the system test 
phase. 

13.  Multiple Sites. The application has been specifically designed, developed, and supported 
for installation at multiple sites for multiple organizations. 

14.  Facilitate Change. The application has been specifically designed, developed, and 
supported to facilitate change. 

 
Equation 14.2 converts the total degrees of influence assigned above to the Value Adjustment 
Factor [IFPUG, 2000] into the Value Adjustment Factor: 
 
   0.01 0.65 

(14.2)

 

14.2.7  Calculating the Adjusted Function Point Count 
 
The Adjusted Function Point Count (AFPC) is calculated using Equation 14.3 for a development 
project, enhancement project, or application (system baseline) function point count [IFPUG, 
2000]: 
 
  

(14.3)

 
The number of adjusted FPs, or simply “Function Points” (FPs), represents the size of the 
application and can be used to compute several measures discussed in other sections of this 
document. 
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14.3  Measurement Results 
 
The following documents were used to count FPs for the APP system: 
 
1. APP Module μp1 System SRS [APP, Y1] 
2. APP Module μp1 Flux/Delta Flux/Flow Application SRS [APP, Y2] 
3. APP Module μp2 System SRS [APP, Y3] 
4. APP Module μp2 Flux/Delta Flux/Flow Application SRS [APP, Y4] 
5. APP Module Communication Processor SRS [APP, Y5] 

 

14.3.1  The Unadjusted Function Point 
 
Table 14.2 and Table 14.3 list the measurement results of ILFs, EIFs, EIs, EOs, and EQs  for the 
APP system from the IFPUG Certified Function Point Specialist, complying with the IFPUG 
Function Point Counting Practices Manual Release 4.1.1 [IFPUG, 2000]. 
 
The data shown in Table 14.2 and Table 14.3 can be used to count the unadjusted FPs of the five 
components, including ILFs, EIFs, EIs, EOs, and EQs  (refer to Section 14.2.3 and Section 
14.2.4), and thereby determine the unadjusted FPs of the entire system (refer to Section 14.2.5).  
 

Table 14.2 Measurement Results of Data Functions for the APP System 
 

ILF or EIF Descriptions 
ILF EIF 

DET RET # LVL* DET RET # LVL*

μp1 22 1 1 L     

μp2 22 1 1 L     

Set Points (Flux/Flow Imbalance Algorithm) 16 1 1 L     

Commands < 50 1 1 L     

μp Cycle Timer       1 L 

Communications Processor Cycle Timer       1 L 

Input Range Table   1 L     

Flux/Flow/Imbalance Algorithm < 50  1 L     

Trip Data Storage   1 L     

*Note: LVL stands for level of complexity. 
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Table 14.3 Measurement Results of Transaction Functions for the APP System34 
 

Section Descriptions  
EIs EOs EQs 

# LVL* # LVL* # LVL* 

Discrete 
Inputs 

DIN1 1 L         
DIN2 1 L         
DIN3 1 L         
DIN4 1 L         
DIN5 1 L         
DIN6 1 L         
DIN7 1 L         
DIN8 1 L         
DIN9 1 L         
DIN10 1 L         
DIN11 1 L         
DIN12 1 L         

*Note: LVL stands for level of complexity.

                                                 
34There should be mostly empty cells in this form as only one kind of function is entered per row. 
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Table 14.3 Measurement Results of Transaction Functions for the APP System35 (continued) 
 

Section Descriptions 
EIs EOs EQs 

# LVL* # LVL* # LVL* 

μp 
Diagnostics 

Screen Display         1 A 
Main Program Running     1 L     
Processor POST     1 L     
Main Program Timeout     1 L     
Dual Port RAM Test     1 L     
RAM Test     1 L     
Address Line test     1 L     
PROM Checksum test     1 L     
EEPROM Checksum test     1 L     
Application Program test     1 L     
Proc. Bd in Correct Slot     1 L     
Installed Boards     1 L     
Multiplexer/ADC test     1 L     
Analog output Test     1 L     
Discrete Input Test     1 L     
TUNE mode     1 A     
CAL mode     1 A     

Analog 
Inputs 

AIN 1 1 L         
AIN 2 1 L         
AIN 3 1 L         
AIN 4 1 L         
AIN 5 1 L         
AIN 6 1 L         
AIN 7 1 L         
Trip Reset Button 1 L         
Key-Lock switch 1 L         

*Note: LVL stands for level of complexity. 

                                                 
35There should be mostly empty cells in this form as only one kind of function is entered per row. 
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Table 14.3 Measurement Results of Transaction Functions for the APP System36 (continued) 
 

Section Descriptions 
EIs EOs EQs 

# LVL* # LVL* # LVL* 

Discrete 
Outputs 

Trip 1     1 A     
Trip 2-Trip 4 (Not Used)             
Status 1     1 L     
Status 2 (Not Used)             
Aux1     1 L     
Aux2     1 L     
Aux3-6 (Not Used)             

Analog 
Outputs 

AOUT1     1 L     
AOUT2     1 L     
AOUT3     1 L     
AOUT4     1 L     

LED’s 

Processors are operating 
LED 

    1 L     

Trip LED     1 L     
MAINT LED     1 L     

Comm. 
Processor 

Diagnostics 

RAM Test     1 L     
Address Line test     1 L     
PROM Checksum test     1 L     
Processor Bd In Correct 
Slot 

    1 L     

Test Bd in Correct Slot     1 L     
Module date     1 L     
Module time     1 L     
TEST mode     1 L     
Online RAM Test     1 L     
Online Address Line test     1 L     
Online PROM Checksum 
test 

    1 L     

*Note: LVL stands for level of complexity. 

                                                 
36There should be mostly empty cells in this form as only one kind of function is entered per row. 
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Table 14.3 Measurement Results of Transaction Functions for the APP System37 (continued) 
 

Section Descriptions 
EIs EOs EQs 

# LVL* # LVL* # LVL* 

APP 
Processing 

Initialization 1 A         
Power-on self test 
(counted) 

            

Main Program (counted)             
Update Dual port RAM 1 L         
Calibrate and tune 
(counted) 

            

Read Discrete inputs and 
analog outputs(counted) 

            

Application (counted)             
Generate discrete and 
analog outputs(counted) 

            

Output refresh (On/Off)     1 L     

Application 
Flux/Flow/Imbalance 
algorithm (counted) 

            

Comm. 
Processor 

Slot ID 1 L         
ID Chip 1 L         
Initialization 1 A         
Power-on self test 1 L         

*Note: LVL stands for level of complexity. 
 
Table 14.4 summarizes the numbers of ILFs, EIFs, EIs, EOs, and EQs for three complexity 
levels (Low, Average, and High) based on the data in Table 14.2 and Table 14.3. 
 
 
 
 
 
 
 
 
 
 
 
 

 

                                                 
37There should be mostly empty cells in this form as only one kind of function is typed in per row. 
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Table 14.4 The Counts of Components with Different Complexity Level 
 

Type of component 
Number of components with complexity of 

Low Average High 

Internal Logical Files (ILFs) 7 0 0 

External Interface Files (EIFs) 2 0 0 

External Inputs (EIs) 25 2 0 

External Outputs (EOs) 32 6 0 

External Inquiries (EQs) 1 1 0 

 
 
Table 14.5 summarizes the unadjusted FPs of ILFs, EIFs, EIs, EOs, and EQs  based on the data 
(the numbers of the five components) in Table 14.4 and the data (the weights of the five 
components for three different complexity levels) in Table 14.1. 
 
The total unadjusted FPs for the APP system is 307. 
 
 

Table 14.5 The Counts of the Unadjusted Function Points 
 

Type of component 

Unadjusted function points of  
components with complexity of Sum of unadjusted 

FPs 
Low Average High 

Internal Logical Files 7 × 7 = 49  0 × 10 = 0 0 × 15 = 0 49 

External Interface Files 2 × 5 = 10 0 × 7 = 0 0 × 10 = 0 10 

External Inputs 25 × 3 = 75 2 × 4 = 8 0 × 6 = 0 83 

External Outputs 32 × 4 = 128 6 × 5 = 30 0 × 7 = 0 158 

External Inquiries 1 × 3 = 3 1 × 4 = 4 0 × 6 = 0 7 

Total Unadjusted FP Count for the APP system 307  
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14.3.2  The Value Adjustment Factor 
 
Table 14.6 presents the measurement results of the General System Characteristics for the APP 
system. The results were obtained from the IFPUG Certified Function Point specialist, who 
complied with the IFPUG Function Point Counting Practices Manual Release 4.1.1 [IFPUG, 
2000]. 
 

Table 14.6 Measurement Results of General System Characteristics for the APP System 
 

General System Characteristics 
Degree of 
Influence

Data Communications 4 

Distributed Processing 4 

Performance 4 

Heavily Used Configuration 1 

Transaction Rates 0 

Online Data Entry 5 

End-User Efficiency 2 

Online Update 4 

Complex Processing 1 

Reusability 1 

Installation Ease 0 

Operational Ease 5 

Multiple CPU Sites 0 

Facilitate Change 2 

Total Degree of Influence 33 

 
According to Equation 14.2, the Value Adjustment Factor (VAF) is: 
 
 33 0.01 0.65 0.98 (14.4)
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14.3.3  The Adjusted Function Point 
 
According to Equation 14.3, the value of the adjusted FPs for the APP system is: 
 
 307 0.98 300.8 (14.5)
 
which is rounded up to 301. 
 

14.4  RePS Construction from Function Point  
 
Two steps are required to estimate software reliability using the FP measure: 
 
1. Estimate the number of delivered defects based on the FP measurement (refer to Section 

14.4.1) 
2. Calculate the reliability using Musa’s Exponential Model (refer to Section 14.4.2) 

14.4.1  Estimating the Number of Delivered Defects 
 
There is no proposed model in the literature linking FP to the estimated total number of delivered 
defects. However, there is data for the state-of-the-practice of the U.S. averages for delivered 
defects summarized in [Jones, 1996]. This data links the FP to the number of defects per FPs for 
different categories of applications. The definitions of different types of software systems are 
given as follows [Jones, 1996]: 
 
End-user software: applications written by individuals who are neither professional 
programmers nor software engineers. 
 
Management information system (MIS): applications produced by enterprises in support of 
their business and administrative operations, e.g., payroll systems, accounting systems, front- 
and back-office banking systems, insurance claims handling systems, airline reservation systems, 
and so on. 
 
Outsourced and contract software: outsourced software is software produced under a blanket 
contract by which a software-development organization agrees to produce all, or specific 
categories, of software for the client organization. Contract software is a specific software 
project that is built under contract for a client organization. 
 
Commercial software: applications that are produced for large-scale marketing to hundreds or 
even millions of clients. Examples of commercial software are Microsoft Word, Microsoft Excel, 
etc. 
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System software: software that controls physical devices. They include the operating systems 
that control computer hardware, network switching systems, automobile fuel-injection systems, 
and other control systems. 
 
Military software: software produced for a uniformed military service.  
 
Furthermore, only defects of Severity 1 and Severity 2—called critical defects and significant 
defects—should be considered when estimating software reliability. 

14.4.1.1  Estimating the Total Number of Delivered Defects 
 
Table 14.7 (Table 3.46 in [Jones, 1996]) provides the average numbers for delivered defects per 
FP for different types of software systems.  
 

Table 14.7 Averages for Delivered Defects Per Function Point 
 (Extracted From Table 3.46 in [Jones, 1996]) 

 
FPs End user MIS Outsource Commercial Systems Military Average

1 0.05 0 0 0 0 0 0.01

10 0.25 0.1 0.02 0.05 0.02 0.03 0.07

100 1.05 0.4 0.18 0.2 0.1 0.22 0.39

1000 N/A 0.85 0.59 0.4 0.36 0.47 0.56

10000 N/A 1.5 0.83 0.6 0.49 0.68 0.84

100000 N/A 2.54 1.3 0.9 0.8 0.94 1.33

Average 0.23 0.90 0.49 0.36 0.30 0.39 0.53

 
The APP system software falls into the category of “system software” according to the previous 
definitions. 
 
The FP count for the APP system is 301 (100 < 301 < 1000), as calculated in Section 14.3.3.  
 
Therefore, according to Table 14.7, the delivered defect density (the number of total delivered 
defects per FP) for the APP system is calculated using logarithmic interpolation: 
 
 0.1 0.36 0.1log 1000 log 100log 301 log 100 0.2244 

(14.6)
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where 
 
   =  the delivered defect density for the APP system in defects/FP.  
 
 The number of total delivered defects for the APP system is given by: 
 
 , 0.2244 301 67.54 (14.7)
 
where ,   the number of total delivered defects for the APP system. 

 
the delivered defect density for the APP system. 0.2244 defects/FP. 

 
the FP count for the APP system. 301 (refer to Section 
14.3.3). 

14.4.1.2  Estimating the Number of Delivered Critical and Significant Defects 
 
Table 14.8 (Table 3.48 in [Jones, 1996]) presents U.S. averages for percentages of delivered 
defects by severity levels. 
 
Using Table 14.8 and logarithmic interpolation, the percentages of delivered defects by severity 
level can be obtained. For example, the percentage of delivered defects of severity 1 
corresponding to FP = 301 (100 < 301 < 1000) is: 
 
 
 0.0256 0.0256 0.0108log 1000 log 100log 301 log 100 0.0185 

(14.8)
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Table 14.8 Averages for Delivered Defects by Severity Level 
(Adapted From Table 3.48 in [Jones, 1996]) 

 

FPs 
Percentage of Delivered Defects by Severity Level 

Severity 1 Severity 2 Severity 3 Severity 4

1 0 0 0 0 

10 0 0 1 0 

100 0.0256 0.1026 0.359 0.5128 

1000 0.0108 0.1403 0.3993 0.4496 

10000 0.015 0.145 0.5 0.34 

100000 0.02 0.12 0.5 0.36 

Average 0.0179 0.1270 0.5517 0.4156 
 
Given the total number of delivered defects, ,  (refer to Section 14.4.1.1), and the 
percentages of delivered defects by severity level (refer to Table 6.7), the number of delivered 
defects by severity level can be calculated. For example, the number of delivered defects of 
severity 1 for the APP system is: 67.54 × 0.0185 = 1.249. 
 
Table 14.10 presents the numbers of delivered defects by severity level for the APP system. 
 
 

Table 14.9 Number of Delivered Defects by Severity Level for the APP System 
 

 
Severity 1 
(critical)

Severity 2  
(significant)

Severity 3 
(minor)

Severity 4  
(cosmetic) 

Number of 
delivered defects 

1.249 8.1 25.6 32.6 

 
For the APP system, the number of delivered defects of severity 1 is 1.249 and the number of 
delivered defects of severity 2 is 8.1. 
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14.4.2  Reliability Calculation from Delivered Critical and Significant Defects 
 
The probability of success-per-demand is obtained using Musa’s exponential model [Musa, 
1990] [Smidts, 2004]: 
 

 (14.9)

and 
 
 , , (14.10)
 
where 

  Reliability estimation for the APP system using the FP measure. 

  Fault Exposure Ratio, in failure/defect. 

  Number of defects estimated using the FP measure. 

  Average execution-time-per-demand, in seconds/demand. 

  Linear execution time of a system, in seconds. ,   Number of delivered critical defects (severity 1). ,   Number of delivered significant defects (severity 2). 

 
Since a priori knowledge of the defect locations and their impact on failure probability is 
unknown, the average  value given in [Musa, 1987] [Musa, 1990] must be used: 4.2 × 10-7 
failure/defect. 
 
For the APP system, , 1.3, and , 8.1, as calculated in Section 
14.4.1.2. Therefore, according to Equation 14.10, 1.3 1.8 9.4. 
 
The linear execution time, , is usually estimated as the ratio of the execution time and the 
software size on a single microprocessor basis [Musa, 1987] [Musa, 1990] [Smidts, 2004]. In the 
case of the APP system, however, there are three parallel subsystems (μp1, μp2, and CP), each of 
which has a microprocessor executing its own software. Each of these three subsystems has an 
estimated linear-execution time. Therefore, there are several ways to estimate the linear-
execution time for the entire APP system, such as using the average value of these three 
subsystems.  
 
For a safety-critical application like the APP system, the UMD research team suggests a 
conservative estimation of  by using the minimum of these three subsystems’ values. Namely,  
 
 



 

264 
 

 min 1 , 2 ,     min 0.018,0.009,0.021     0.009 second (14.11)

 
where 1   Linear execution time of Microprocessor 1 (μp1) of the APP system. TL 

(μp1) = 0.018 second (refer to Chapter 17). 2   Linear execution time of Microprocessor 2 (μp2) of the APP system. TL 
(μp2) = 0.009 second (refer to Chapter 17). 

  Linear execution time of Communication Microprocessor (CP) of the 
APP system. TL (CP) = 0.021 second (refer to Chapter 17). 

 
Similarly, the average execution-time-per-demand, , is also estimated on a single-
microprocessor basis. Each of the three subsystems in APP has an estimated average execution-
time-per-demand. To make a conservative estimation, the average execution-time-per-demand 
for the entire APP system is the maximum of the three subsystems’ values. Namely,  
 
 max 1 , 2 ,   max 0.082,0.129,0.016   0.129 seconds/demand (14.12)

    
where 
 1   Average execution-time-per-demand of Microprocessor 1 (μp1) of the APP 

system. τ(μp1) = 0.082 seconds/demand (refer to Chapter 17). 2   Average execution-time-per-demand of Microprocessor 2 (μp2) of the APP 
system. τ(μp2) = 0.129 seconds/demand (refer to Chapter 17). 

  Average execution-time-per-demand of Communication Microprocessor 
(CP) of the APP system. τ(CP) = 0.016 seconds/demand (refer to Chapter 
17). 

 
Thus, the reliability for the APP system using the FP measure is given by: 
 0.999943414                                  (14.13) 

 
14.5  Lessons Learned 

 
The measurement of FP can be systematically conducted based on the rules published by IFPUG. 
As for BLOC, CMM, and CC, empirical industry data was used to build correlations between the 
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value of FP and the number of defects residing in the software. Thus, reliability-prediction 
results based on FP are not as good as the ones obtained from other measures which deal with the 
real defects of the application.  
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15. REQUIREMENTS SPECIFICATION CHANGE REQUEST 
 
Requirements evolution is considered one of the most critical issues in developing computer-
based systems. The sources of changes may come from dynamic environments such as a 
changing work environment, changes in government regulations, organizational complexity, and 
conflict among stakeholders in deciding on a core set of requirements [Barry, 2002]. 
 
The requirements specification change request measure, denoted by RSCR, indicates the stability 
and/or growth of the functional requirements. Moreover, it provides an additional view of the 
effectiveness of the functional specification process used and has the potential of adding 
credibility to the product [Smidts, 2000]. 
 
It has been observed that a significant cause of project failure and poor quality in software 
systems is frequent changes to requirements. RSCR is an indication of the quality of the resulting 
software system. Evidence suggests that the system quality decreases as the size of requirements 
specification change requests increases [Smidts, 2000]. 
 
However, RSCR can not reflect the contents of requirements specification change requests. 
Based on the results from applying the requirements specification change requests measurement 
to the APP system, the UMD research team does not recommend using RSCR to estimate the 
reliability of a software product. 
 
Instead, the UMD research team suggests using a derived measure, the Requirements Evolution 
Factor (REVL), which links requirements specification change requests to the changed source 
code. REVL can be used to estimate the reliability of a software product, as described in Section 
15.4. REVL has not been validated thoroughly to date. 
 
RSCR and REVL are related in the sense that both measures reflect the effect of changes to 
requirements that occur during the software development life cycle after requirements have been 
frozen. However, REVL may yield a better estimation of impact than RSCR because, in REVL, 
the size of code impacted is incorporated into the measure. 
 
RSCR can be applied as soon as the requirements are available. As listed in Table 3.3, the 
applicable life cycle phases for this measure are Requirements, Design, Code, Testing and 
Operation. 
 
REVL, on the other hand, is not available until the delivery of the source code. 
 
 



 

268 
 

15.1  Definition 
 
The requirements specification change request measure (RSCR) is defined as the number of 
change requests that are made to the requirements specification. The requested changes are 
counted from the first release of the requirements specification document to the time when the 
product begins its operational life. Thus, RSCR is defined as [Smidts, 2000]: 
 ∑         (15.1) 
 
where the summation is taken over all requirements change requests initiated during the software 
development life cycle (after the first release of the requirements specification document). It 
should be noted that the definitions of RSCR published in the software-engineering literature fail 
to clearly state what type of requirements (functional or non-functional requirements) should be 
included in the RSCR count. 
 
Most of the non-functional requirements are not as important as the functional requirements. 
They do not describe what the software will do, but how the software will perform its functions. 
Normally, non-functional requirements are not included in the evaluation of reliability based on 
requirements change requests. However, in certain cases, non-functional requirements hide what 
really are functional requirements or may describe characteristics that are critical such as 
response time. These special cases should be identified by the analyst and included in the 
measurement. In this research, some of the non-functional requirements for the APP system such 
as the timing requirements are also crucial. Thus, such implied functional requirements in the 
non-functional requirements section also are considered.  
 
RSCR only quantifies the “number” of requirements specification change requests, and can be 
used as an indicator of the stability and/or growth of the functional requirements. However, 
RSCR cannot reflect the contents of requirements specification change requests. Therefore, it is 
inappropriate to use RSCR to estimate the reliability of a software system. 
 
To link requirements specification change requests to the reliability of a software system, the 
UMD research team recommends a derived measure called REVL, which is defined as: 
 

 100% (15.2)

 
where 

  measure of requirements Evolution and Volatility Factor 

     
size of changed source code corresponding to requirements 
specification change requests, in Kilo Line of Code (KLOC) 

  size of the delivered source code, in KLOC 
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The concept of Requirements Evolution and Volatility Factor was originally proposed in 
[Boehm, 1982] and further developed in [Boehm, 2000] for the purpose of estimating the 
development effort of a software project at the early stages of the development life cycle. UMD 
quantified REVL based on [Boehm, 2000] and [Stutzke, 2001], as shown in Equation 15.2. 
 
The size of changed source code corresponding to requirements specification change requests is 
given by 
 

 
    

 
(15.3)

 
where 
      size of added source code corresponding to requirements 

specification change requests, in KLOC      size of deleted source code corresponding to requirements 
specification change requests, in KLOC     size of modified source code corresponding to requirements 
specification change requests, in KLOC 

 
 

15.2  Measurement Rules 
 
Five steps are required to measure the impact of Requirements Evolution and Volatility Factor 
on the reliability of a software system: 
    
1. Identify requirements specification change requests during the software development life 

cycle 
2. Identify the changed source code corresponding to requirements specification change 

requests 
3. Measure the size of the changed source code corresponding to requirements specification 

change requests 
4. Calculate REVL 
 
A comparison between the first and last version of the source code will not result in a correct 
measurement of REVL because some of the code changes do not correspond to requirements 
specification change requests but instead to code fixes related to coding or design errors. 
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15.2.1  Identifying Requirements Specification Change Requests 
 
A requirements specification change request has the following essential attributes: 
 

 It is an authorized change of the SRS 
 It is a change of the functional requirements of the software 
 It is a documented change of requirements, usually in the final version of the SRS 
 It is proposed between the release of the first version of the SRS and the time the 

software product is delivered to the customer 
 
For example, “Changed MVOLT to mvolt” ([APP, Y1], Page 2) is not considered as a 
requirements specification change request because it is not a change of the functional 
requirements of the software. 
 
“Changed Analog Inputs = 14 to Analog Inputs = 28” ([APP, Y1], Page 11) is regarded as a 
requirements specification change request. 
 
The counting rule for RSCR is to count the number of identified software functional 
requirements change requests. 
 
RSCR is counted for the purpose of comparison between RSCR and REVL, as described in 
Section 15.3. It is not used when constructing the RePS based on REVL, as described in Section 
15.4. 

15.2.2  Identifying the Changed Source Code Corresponding to RSCR 
 
The changed source code corresponding to requirements specification change requests is 
identified by mapping all requirements specification change requests identified in the previous 
step to the delivered source code. Mapping a requirements specification change request to source 
code means linking the changed functional requirement(s) to the affected line(s) of the source 
code. 
 
The mapping relationships between the source code and a requirements specification change 
request may be one-to-one, one-to-many, or many-to-one. 

15.2.3  Measuring the Size of the Changed Source Code Corresponding to RSCR 
 
The changes of source code due to requirements specification change requests are divided into 
three categories: added, deleted, and modified. 
 
It should be noted that not all changed source code but only the changes corresponding to 
requirements specification change requests should be considered while counting the following 
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three quantities: SIZE added due to RSCR, SIZE deleted due to RSCR, and SIZE modified due to RSCR (see Section 
15.1). 
 
The rules to measure the size of the changed source code are the same as those used to measure 
the size of the source code for the BLOC measure (See Section 6.2). 
 
The size of the changed source code corresponding to requirements specification change requests 
is calculated according to Equation 15.3. 

15.2.4  Calculating REVL 
 
REVL is calculated by applying Equation 15.2 to the results obtained in Section 15.2.3. 

15.3  Measurement Results 
 
The following documents were used to measure RSCR and REVL: 
   
 APP Module μp1 System SRS [APP, Y1] 
 APP Module μp1 Flux/Delta Flux/Flow Application SRS [APP, Y2] 
 APP Module μp2 System SRS [APP, Y3] 
 APP Module μp2 Flux/Delta Flux/Flow Application SRS [APP, Y4] 
 APP Module Communication Processor SRS [APP, Y5] 
 APP Module μp1 System source code [APP, Y6] 
 APP Module μp1 Flux/Delta Flux/Flow Application source code [APP, Y7] 
 APP Module μp2 System source code [APP, Y8] 
 APP Module μp2 Flux/Delta Flux/Flow Application source code [APP, Y9] 
 APP Module Communication Processor System source code [APP, Y10] 
 
The APP system has five components: the μp1 System, the μp1 Application, the μp2 System, the 
μp2 Application, and the CP System. The measurement results for the APP system are presented 
in Table 15.1 (see Section 15.2 for the measurement rules). 
  
From Table 15.1, one may notice that the size of the changed source code corresponding to 
requirements specification change requests is not proportional to RSCR. For example, RSCR for 
the μp2 System is 7 and the size of the correspondingly changed source code is 72 LOC, whereas 
RSCR for the μp1 System is 26 and the size of the correspondingly changed source code is 27 
LOC.  
 
REVL and RSCR are not linearly related because: 
 
 Requirements specification change requests may have different levels of granularity. 

Consequently, some requirements specification change requests lead to changing more 
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lines of source code than others. This is also why RSCR is not good at capturing the 
impact of requirements specification change requests on the software product. 

 A requirements specification change request may affect multiple functions in the source 
code (“one-to-many”). This occurs if the code contains multiple implementations of the 
same function. 

 Multiple requirements specification change requests may correspond to the same line(s) 
of changed source code (“many-to-one”). 

 
Despite the benefits exhibited by REVL, the following limitations of REVL also should be noted 
and understood: 
 
 REVL does not capture requirements specification change requests proposed in the 

requirements analysis phase because these changes are invisible from the point of view of 
the source code. 

 REVL does not capture requirements specification change requests proposed in the 
design phase because these changes, too, are invisible from the point of view of the 
source code. 

 
Table 15.1 Measurement Results for RSCR and REVL for the APP System 

 

 
CP 

System 
μp1  

System 
μp1 

Application
μp2  

System 
μp2 

Application
  RSCR 4 26 14 7 5 
SIZE delivered ,  
in KLOC 

1.21 2.034 0.48  0.895 0.206 

SIZE added due to RSCR ,  
in KLOC 

0 0.003 0.003 0.006 0 

SIZE deleted due to RSCR , 
in KLOC 

0.129 0.007 0 0.003 0 

SIZE modified due to RSCR ,  
in KLOC 

0 0.027 0.011 0.072 0.008 

SIZE changed due to RSCR   =  
SIZE added due to RSCR + SIZE deleted due 

to RSCR + SIZE modified due to RSCR  
(in KLOC) 

0.129 0.037 0.014 0.081 0.008 

                                              100% 10.7% 1.8% 2.9% 9.1% 3.9% 

 
Further development of REVL is required for quantifying the impact of requirements 
specification change requests at the early stages of the development life cycle. 
 



 

273 
 

To resolve this issue, the UMD research team suggests linking requirements specification change 
requests to the affected function points and quantifying the impact of this change on defect 
density through empirical analysis or expert opinion elicitation. 
 
 

15.4  RePS Construction Based On REVL 
 
Currently there are three approaches found in the literature that attempt to estimate the fault 
content of a software system based on requirements volatility. These only focus on linking 
requirements volatility to the changed source code, partly because it is too difficult to quantify 
the impact of requirements specification change requests at the design phase, as discussed in 
Section 15.3. 
 
The first approach is to link requirements volatility to the defect density of the source code, 
assuming that the software has been modified in response to changed functional requirements 
and that the modification process is imperfect [Malayia, 1998]. 
 
The second approach is to use Code Churn to estimate the impact of code changes corresponding 
to requirements specification change requests [Munson, 2003].  
 
The third approach is to use the Success Likelihood Index Methodology (SLIM) to integrate the 
human analysis of the Performance Influencing Factors [Stutzke, 2001], as described in Section 
11.4.1. 
 
Due to the difficulty in obtaining data required to estimate the model parameters of Malayia’s 
and Munson’s approaches [Malayia, 1998] [Munson, 2003], the third approach was adopted. 
 
Four steps are required to estimate the reliability of a software product using SLIM [Stutzke, 
2001]: 
   
1. Measure REVL, as described previously, and other Performance Influencing Factors, as 

described in Section 11.2.1 to 11.2.9. 
2. Estimate SLI for requirements Evolution and Volatility Factor. 
3. Estimate the fault content in the delivered source code using SLIM, as described below. 
4. Calculate reliability using Musa’s Exponential Model, as described below. 

15.4.1 Estimating the Value of SLI for Requirements Evolution and Volatility 
Factor 

 
Requirements Evolution and Volatility Factor was regarded as one of the Performance 
Influencing Factors (PIFs) leading to the success or failure of a project [Jones, 1995]. 
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The effect of PIFs on software development can be quantified by a Success Likelihood Index 
(SLI), which ranges from 0 (error is likely) to 1 (error is not likely) [Stutzke, 2001]. 
 

 for the Requirements Evolution and Volatility Factor, denoted by ,  is estimated using 
the value of REVL, as shown in Table 15.2. If necessary, piecewise linear interpolation is used. 
 
The  scale for REVL (in Table 15.2) is based on COCOMO II [Boehm, 2000]. The 
assumption made for the  ratings is that the relationship between REVL and SLI is an S-
shaped curve, as shown in Figure 15.1. 
 
Further investigation is required to validate the relationship between  and REVL. 
 
The values of  for the five components of the APP system are summarized in Table 15.3. 
For example, REVL for the μp1 Application is 1.8%, as determined in Table 15.1, which is less 
than 5%. According to Table 15.2, the value of the  is 1 when 5%. Therefore, the 
value of  for the μp1 Application is 1. 
 
 

  
Figure 15.1 Relationship between SLI10 and REVL 
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Table 15.2 Rating Scale and SLI Estimation for REVL 
 

REVL 
Descriptors 

 5% 20% 35% 50% 65% 80% 

Rating Levels Very Low Low Nominal High Very High Extra High

Value of  1 0.75 0.5 0.34 0.16 0 

 

15.4.2  Estimating the Fault Content in the Delivered Source Code 
 
The fault content of the source code is given by (see Section 11.4.1 for details): 
 0.036 20       (15.4) 
where 

  number of faults remaining in the delivered source code 
  size of the delivered source code in terms of LOC 

  Success Likelihood Index of a software product 
 
According to Equation 15.4, the fault content varies with SLI: the fault content is maximum 
when SLI = 0 and minimum when SLI = 1, as shown in Equation 15.5 and 15.6: 

 0.72 ,  0                                         (15.5) 0.0018 ,  1                                       (15.6) 
 
To validate the expert-opinion-based ranking [Smidts, 2004], where the target measure must be 
isolated from other measures, the SLI of a software product is represented by that of REVL; i.e.: 
 

       (15.7) 
 
However, the UMD research team recommends using other measures in addition to REVL while 
using SLIM to estimate the source code fault content because this method usually yields more 
accurate results. The SLI of a software product is given by the weighted sum of all PIF SLIs: 
 ∑       (15.8) 
 
Table 15.3 summarizes both SLI values and the fault content of the delivered source code with 
and without using the supportive measures, respectively. In Table 15.3, the values of SLIs for the 
five components of the APP system are found in Table 11.30 (Row 5). 
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Table 15.3 Summary of Fault-Content Calculation 
 

 
CP  

System
μp1 

System
μp1 

Application
μp2  

System 
μp2 

Application

LOC 1210 2034 480 895 206 

Without 
using 

supportive 
measures 

 0.9067 1 1 0.9317 1 

Number of defects 
in source code 

3.8 3.7 0.9 2.4 0.4 

Using 
supportive 
measures 

 0.7175 0.6952 0.6539 0.7377 0.7441 

Number of defects 
in source code 

11.8 22.7 6.9 7.8 1.7 

 
The estimated number of faults in the entire APP system based on the requirements specification 
change request measurement is: 
  3.8 3.7 0.9 2.4 0.4                                                       11.2          (15.9) 

or 11.8 22.7 6.9 7.8 1.7                                 50.9           (15.10) 

 

15.4.3  Calculating Reliability Using the Defect Content Estimation 
 
The probability of success-per-demand is obtained using Musa’s exponential model [Musa, 
1990] [Smidts, 2004] 
 

 exp  (15.11)

 
where 

 Reliability estimation for the APP system based on REVL 

  Fault Exposure Ratio, in failure/defect 
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  Number of defects estimated based on REVL 

  Average execution-time-per-demand, in seconds/demand 

  Linear execution time of a system, in seconds 

 
Since a priori knowledge of defect locations and their impact on failure probability is not known, 
the average  value given in [Musa, 1990] must be used: 4.2 10 failure/defect. 
 
For the APP system, 11.2 (without using the supportive measures), and 50.9 
(using the supportive measures), as calculated in Section 15.4.2. 
 
The linear execution time, TL, is usually estimated as the ratio of the execution time and the 
software size on a single microprocessor basis [Musa, 1990] [Smidts, 2004]. In the case of the 
APP system, however, there are three parallel subsystems (μp1, μp2, and CP), each of which has 
a microprocessor executing its own software. Each of these three subsystems has an estimated 
linear-execution time. Therefore, there are several ways to estimate the linear-execution time for 
the entire APP system, such as using the average value of these three subsystems.  
 
For a safety-critical application, such as the APP system, the UMD research team suggests 
making a conservative estimation of TL by using the minimum of these three subsystems’ values. 
Namely,  
 
    min 1 , 2 ,   
         min 0.018, 0.009, 0.021     (15.12) 
         0.009  
where 
 1   Linear execution time of Microprocessor 1 (μp1) of the APP system. TL 

(μp1) = 0.018 second, as determined in Chapter 17; 2   Linear execution time of Microprocessor 2 (μp2) of the APP system. TL 
(μp2) = 0.009 second, as determined in Chapter 17; 

  Linear execution time of Communication Microprocessor (CP) of the APP 
system. TL (CP) = 0.021 second, as determined in Chapter 17. 

 
Similarly, the average execution-time-per-demand, τ, is estimated on a single microprocessor 
basis. Each of the three subsystems in APP has an estimated average execution-time-per-
demand. To make a conservative estimation, the average execution-time-per-demand for the 
entire APP system is the maximum of the three subsystems’ values. Namely,  
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    max 1 , 2 ,   
       max 0.082,0.129,0.016     (15.13) 
       0.129 second/demand 
where 1   Average execution-time-per-demand of Microprocessor 1 (μp1) of the APP 

system. τ(μp1) = 0.082 second/demand, as determined in Chapter 17; 2   Average execution-time-per-demand of Microprocessor 2 (μp2) of the APP 
system. τ(μp2) = 0.129 second/demand, as determined in Chapter 17; 

  Average execution-time-per-demand of Communication Microprocessor (CP) of 
the APP system. τ(CP) = 0.016 second/demand, as determined in Chapter 17. 

 
 
Thus the reliability of the APP system based on REVL is given by: 
 

 exp 4.2 10 11.2 0.1290.009 0.999933 (15.14)

 
without using supportive measures, or 
 

 exp 4.2 10 50.9 0.1290.009 0.999694 (15.15)

 
with using supportive measures. 
 
 

15.5  Lessons Learned 
 
Empirical industry data was used to build the relation between REVL/RSCR and the number of 
defects residing in the software. Thus, reliability-prediction results based on REVL/RSCR are 
not as good as those obtained from other measures which deal with actual defects in the 
application.  
 
A more accurate estimation of reliability based on REVL for the APP system can be obtained by: 
 

1. Obtaining better documentation on requirements change requests; 
2. Collecting data to estimate the SLI of the REVL factor for safety-critical applications; 
3. Combining REVL with RSCR for quantifying the impact of requirements specification 

change requests; 
4. Measuring REVL at the sub-system level. 
5. Enhancing the estimation of . A value of  for the safety-critical system, rather than the 

average value failure/defect, should be used in Equation 15.14 and 15.15; 
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16. REQUIREMENTS TRACEABILITY 
 
 
Traceability is defined as the degree to which a relationship can be established between two or 
more products of the development process, especially products having a predecessor-successor 
or master-subordinate relationship to one another [IEEE, 1990]. 
 
According to IEEE [IEEE, 1988], the requirements traceability (RT) measure aids in identifying 
requirements that are either missing from, or in addition to, the original requirements. 
 
This measure can be applied as soon as the design is available. As listed in Table 3.3, the 
applicable life cycle phases for RT are Design, Coding, Testing, and Operation. 
 

16.1  Definition 
 
RT is defined as: 
 100%      (16.1) 

where 
 the value of the measure requirements traceability, 

 1 the number of requirements met by the architecture, and 
 2 the number of original requirements. 
 
Ideally, tracing should be done from the user’s requirements specification to the SRS and then to 
the SDD, if a SDD is produced. Furthermore, if the source code is available, tracing can be done 
from the SDD to the Code or from the user’s requirements specification to the Code directly. In 
this research, because the original user’s requirements specification was not available, tracing 
could only be performed from the SRS to the other products. Normally, from a software-
reliability point-of-view, it is better to trace from the SRS to the Code directly. This is because 
SDD is only an intermediate product and it is the code that affects the reliability of the software 
system. However, derived requirements may exist in the SDD. These requirements also should 
be identified and counted as the original requirements. Thus, the definition of requirement 
traceability is modified as follows: 
 100%      (16.2) 

where 
  the value of the measure requirements traceability, 
 1 the number of requirements implemented in the source code, and 
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2 the number of original requirements specified in the SRS and derived 
requirements specified in the SDD. 

 
It should be noted that, here, the calculated RT acts only as an indicator of the RT measure. The 
RePS using this measure is not based on the value of RT but based on the actual defects found 
between code and SRS (refer to Section 16.4). 
 

16.2  Measurement Rules 
 
The definition of RT specifically recommends backward traceability to all previous documents 
and forward traceability to all spawned documents [Gotel, 1994] [Wilson, 1997] [Ramesh, 
1995]. A three-step measurement approach, however, was customized for the purpose of 
assessing the reliability of the software. The three steps in this approach are: 
 

Step 1. Identify the set of Original Requirements in the SRS and in the SDD. (Refer to 
Section 16.2.1) 

Step 2. Forward Tracing (Refer to Section 16.2.2) 
Step 3. Backward Tracing (Refer to Section 16.2.3) 

 
According to the definition, this three-step approach was applied to the APP by tracing only 
forward and backward between the original requirements identified in the SRS and the derived 
requirements identified in the SDD, and the requirements implemented in the delivered source 
codes. 

16.2.1  Original Requirements Identification 
 
Generally, there are two kinds of requirements in an SRS: 
 
1. Functional Requirements 
2. Non-functional Requirements 
 
These terms are defined in [IEEE, 1998]: 
 
Functional Requirement - A system/software requirement that specifies a function that a 
system/software system or system/software component must be capable of performing. These are 
software requirements that define behavior of the system, that is, the fundamental process or 
transformation that software and hardware components of the system perform on inputs to 
produce outputs. 
 
Non-functional Requirement - In software system engineering, a software requirement that 
describes not what the software will do, but how the software will do it. For example, software-
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performance requirements, software external interface requirements, software-design constraints, 
and software-quality attributes are non-functional requirements.  
  
Functional requirements (FRs) capture the intended behavior of the system in terms of services, 
tasks or functions the system is required to perform. On the other hand, Non-functional 
Requirements (NRs) are requirements that impose restrictions on the product being developed 
(product requirements), on the development process (process requirements), or they specify 
external constraints that the product/process must meet (external requirements). These 
constraints usually narrow the choices for constructing a solution to the problem. 
 
As stated earlier in this report, most of the non-functional requirements are not as important as 
the functional requirements. They do not describe what the software will do, but how the 
software will perform its functions. Normally, non-functional requirements are not included in 
the evaluation of reliability based on RT. However, this statement must be considered with 
caution. In certain cases, non-functional requirements hide functional requirements, or may 
describe characteristics that are critical, such as response time. These special cases should be 
identified by the analyst and included in the measurement of RT. In this research, some of the 
non-functional requirements for the APP system such as the timing requirements are crucial.  
 
In the following subsections, the rules for distinguishing FRs from NRs are given. The counting 
rules for identifying each type of requirement in a SRS also are provided. 

16.2.1.1  Distinguishing FRs from NRs 
 
The following rules apply when distinguishing FRs from NRs: 
 
1. “Functional” refers to the set of functions a system is to offer. “Non-functional” refers to 

the manner in which such functions are performed.  
2. Functional requirements are the most fundamental and testable characteristics and actions 

that take place in processing function inputs and generating function outputs. 
3. Functional requirements might be characterized in data-related or object-oriented 

diagrams. In flow diagrams, functional requirements usually are shown as ovals with 
arrows showing data flow or function inputs and outputs.  

4. Functional requirements describe what it is that a customer needs to be able to do with 
the software. They may be documented in the form of rigorously specified Process 
Models or Use Cases, or they may simply be lists of required features and functions. 
Whatever the form used, functional requirements should always identify the minimum 
functionality necessary for the software to be successful.  

5. Functional requirements typically are phrased with subject/predicate constructions, or 
noun/verb constructions. For example, “The system prints invoices” is a functional 
requirement. 

6. Non-functional requirements may be found in adverbs or modifying clauses, such as 
“The system prints invoices quickly” or “The system prints invoices with confidentiality.” 
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7. NFRs are focused on how the software must perform something instead of focused on 
what the software must do. 

8. NFRs express constraints or conditions that need to be satisfied by functional 
requirements and/or design solutions. 

9. Different from functional requirements that can fail or succeed, NFRs rarely can be 
completely met—they are satisfied within acceptable limits. 

 
The following requirements should NOT be considered functional requirements: 
 

a. Performance Requirements (throughput, response time, transit delay, latency, 
etc.)38 

b. Design Constraints 
c. Availability Requirements 
d. Security Requirements 
e. Maintainability Requirements 
f. External Interface Requirements 
g. Usability Requirements (ease-of-use, learnability, memorability, efficiency, etc.) 
h. Configurability Requirements 
i. Supportability Requirements 
j. Correctness Requirements 
k. Reliability Requirements 
l. Fault tolerance Requirements 
m. Operational Scalability Requirements (including support for additional users or 

sites, or higher transaction volumes) 
n. Localizability Requirements (to make adaptations due to regional differences) 
o. Extensibility Requirements (to add unspecified future functionality) 
p. Evolvability Requirements (to support new capabilities or the ability to exploit 

new technologies) 
q. Composability Requirements (to compose systems from plug-and-play 

components) 
r. Reusability Requirements 
s. System Constraints (e.g., hardware and OS platforms to install the software, or 

legacy applications, or in the form of organizational factors or the process that the 
system will support.) 

t. User Objectives, Values, and Concerns. 
 
The most common method of distinguishing functional requirements from non-functional 
requirements is to ask the appropriate decision maker(s) a series of qualifying questions for each 
category: “What,” “Who,” “Where,” “When,” and “How.”  In addition, the “How” category can 
be broken down into four subcategories, specifically, “How Many,” “How Often,” “How Fast,” 

                                                 
38 In the case of APP, some performance requirements need to be traced. See Section 16.2.1.3 for details. 



 

285 
 

and “How Easy”, as shown in Table 16.1 [Xu, 2005] [Hayes, 2004] [Sousa, 2004] [Matthia, 
1998]. 
 

Table 16.1 Distinguishing Functional Requirements from Non-Functional Requirements 
 

Problem Categories Requirement type 

What? Functional Requirements 

Who? Security Requirements 

Where? Topographical Requirements 

When? Timing Requirements  

How Often? Frequency Requirements  

How Fast? Performance Requirements  

How Many? Scalability Requirements 

How Easy? Usability Requirements  

16.2.1.2  Functional Requirements (Functions) Identification 
 
The following counting rules apply when identifying functions in a SRS: 
 
1. The Functional Requirements Section of the SRS is used to identify functional 

requirements for this measure.  
2. If there is no separate Functional Requirements Section, then use the requirements in the 

SRS that describe the inputs, processing, and outputs of the software. These usually are 
grouped by major functional description, sub-functions, and sub-processes. A sub-
function or sub-process is defined as a logical grouping of activities that generate a 
definable product or service. 

3. The Software Design Document (SDD) is used to identify derived functional 
requirements. Normally, most of the functions defined here correspond to the functional 
requirements described in the SRS. If there exist functions that were not defined in the 
SRS, these functions should be considered derived requirements. 

4. Each functional requirements specification is re-expressed as a fundamental and 
uncomplicated statement.  

5. Each statement of functional requirements must be uniquely identified to achieve 
traceability. Uniqueness is facilitated by the use of a consistent and logical scheme for 
assigning identification to each specification statement within the requirements 
document. 

6. Each uniquely identified (usually numbered) functional requirement is counted as an 
Original Requirement. 
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Figure 16.1 presents the procedures for identifying functions in a SRS. 
 
 
 

Identify functional specification sections 
in the SRS

Select a sentence

Is it a functional statement?

Begin

Has this function been 
identified previously?

Assign a unique identifier for this function

Yes

No

No

End

Have all sentences been analyzed?

Yes

Yes

No

(This statement defines a function)

Count the number of functions
identified in the SRS

 
 

Figure 16.1 Procedure to Identify Functions in a SRS 
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16.2.1.3  Non-functional Requirements Identification 
 
Since the APP system is a real-time system, it should continuously react with its environment 
and must satisfy timing constraints to properly respond to all the external events. Therefore, in 
this research, some of the non-functional requirements for the APP system also should be traced. 
The non-functional requirements that need to be traced are listed below: 
 
1. Timing requirements 
2. Frequency requirements 
3. Performance requirements 
 
The following counting rules apply when identifying non-functional requirements in a SRS: 
 
1. Most of the timing and frequency requirements are specified in the Performance 

Requirements Section in the SRS. Some of these requirements also may be found in the 
External Interface Requirements Section in the SRS.  

2. All of the performance requirements can be identified in the Performance Requirements 
Section in the SRS. 

3. Each non-functional requirements specification is re-expressed as a fundamental and 
uncomplicated statement.  

4. Each non-functional requirement statement must be uniquely identified to achieve 
traceability. Uniqueness is facilitated by the use of a consistent and logical scheme for 
assigning identification to each specification statement within the requirements 
document. 

5. Each uniquely identified (usually numbered) non-functional requirement is counted as an 
Original Requirement. 

 
Figure 16.2 describes the general procedures for identifying counted non-functional requirements 
in a SRS. 

16.2.2  Forward Tracing 
 
Forward tracing in the RT measurement is used to determine the counterparts of the original 
requirements of the SRS/SDD in the source code. In this step, the original requirements 
identified in Step 1 are mapped into the delivered source code, one after another, primarily for 
the purpose of identifying unimplemented SRS/SDD original requirements and uncovered source 
code. Figure 16.3 presents the procedure of forward tracing (from the SRS/SDD to the source 
code). 
 
An unimplemented SRS/SDD original requirement is a requirement that is identified in the SRS 
but has no counterpart found in the delivered source code. Contrast this with an implemented 
SRS/SDD original requirement that is identified in the SRS/SDD and has counterpart(s) found in 
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the delivered source code. Each unimplemented SRS/SDD original requirement is a defect in the 
delivered source code. 
 

Identify Performance Requirements, External 
Interface Requirements sections in the SRS

Select a sentence

Is it a timing, frequency and performance 
requirement statement?

Begin

Has this nonfunctional requirement 
been identified previously?

Assign a unique identifier for this requirement

Yes

No

No

End

Have all sentences been analyzed?

Yes

Yes

No

(This statement describes a nonfunctional 
requirement)

Count the number of nonfunctional 
requirements identified in the SRS

 
 

Figure 16.2 Procedure to Identify Non-functional Requirements in a SRS 
 
The uncovered source code is the source code that does not correspond to any original 
requirements identified in the SRS/SDD. This can be contrasted with covered source code, 
which has a counterpart identified in the SRS/SDD.  
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It should be noted that understanding the lines of code corresponding to the original requirements 
is not easy, especially for a large system. However, existing commercial tools such as the 
Rational software developed by IBM are very helpful in this process. 

16.2.3  Backward Tracing 
 
The primary concerns of backward tracing are to identify the extra requirements and to count the 
number of requirements implemented in the delivered source code (R1). 
 
 

Select an original requirement identified in 
Step 1 (see section 16.2.1)

Is any code found 
corresponding to the requirement?

Begin

Yes

End

Is any original requirement left?

Mark the corresponding lines of code
as "covered" (by the SRS)

No

Read the source code and try to understand the 
control flow of the software

Try to find out the lines of code 
corresponding to the original requirement

Mark the requirement 
as "implemented" (by the 

source code)

No

Mark the requirement
as "unimplemented" (by the 

source code)

Yes

 
 

Figure 16.3 Procedure for Forward Tracing 
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An extra requirement is a requirement that is not identified in the SRS/SDD but is implemented 
in the delivered source code. Each extra requirement is a defect in the delivered source code 
because it may introduce risk into the system. 
 
In this step, the uncovered lines of source code identified in Step 2 are analyzed and then the 
corresponding extra requirements are represented using the same level of granularity as used to 
identify requirements in the SRS/SDD. Figure 16.4 describes the procedure for backward tracing 
(from the source code to the SRS/SDD). 
 

 

Represent the requirement corresponding to 
the "uncovered" lines of source code

(These are Extra Requirements)

Begin

End

Analyze the "uncovered" lines of source code 
identified in Step 2 (section 16.2.2)

Count the number of requirements 
implemented in the source code (R1)

(Implemented Requirements  = Implemented 
SRS Requirements  + Extra Requirements  )

Count the number of Missing SRS 
Requirements

Count the number of Implemented SRS 
Requirements identified in Step 2 (section 

16.2.2)

 
 

Figure 16.4 Procedure for Backward Tracing 

 

16.3  Measurement Results 
 
The following documents were used to measure the requirements traceability between the APP 
SRSs and the codes:  
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 APP Module μp1 System SRS [APP, Y1] 
 APP Module μp1 Flux/Delta Flux/Flow Application SRS [APP, Y2] 
 APP Module μp2 System SRS [APP, Y3] 
 APP Module μp2 Flux/Delta Flux/Flow Application SRS [APP, Y4] 
 APP Module Communication Processor SRS [APP, Y5] 
 APP module first safety function processor SDD 
 APP Flux/Delta Flux/Flow Application SDD for SF1 
 APP μp2 SDD for system software  
 APP μp2 Flux/Delta Flux/Flow application software SDD 
 APP communication processor SDD 
 APP Module μp1 System Software Code [APP, Y6] 
 APP μp1 Flux/Delta Flux/Flow Application Software Source Code [APP, Y7] 
 APP Module μp2 System Software Source Code [APP, Y8] 
 APP μp2 Flux/Delta Flux/Flow Application Software Source Code [APP, Y9] 
 APP Communication. Processor Source Code [APP, Y10] 

 
Quantities R1 and R2 are counted at the primitive level. The tables below (Table 16.2 through 
Table 16.6) present the measurements. 
 

Table 16.2 Summary of the Requirements Traceability Measurement for μp1 System Software 
 

No. Section No. Section Name R1 R2 RT 

1 SRS 3.1 Initialization 48 48 100% 

2 SRS 3.2 Power-up self test 175 176 99.432% 

3 SRS 3.3 Main Program 135 135 100% 

4 SRS 3.3.3.A Calibration 40 42 95.238% 

5 SRS 3.3.3.B Tune 16 16 100% 

6 SRS 3.4 On-line diagnostics 144 144 100% 

7 SDD Decomposition Description 2 2 100% 
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Table 16.3 Summary of the Requirements Traceability Measurement for μp1 Application Software 
 

No. Section No. Section Name R1 R2 RT

1 SRS 3.0 Specific Requirements 67 67 100% 

2 SRS 3.1 Other Requirements 3 3 100% 

 
Table 16.4 Summary of the Requirements Traceability Measurement for μp2 System Software 

 

No. Section No. Section Name R1 R2 RT

1 SRS 3.1.1 Initialization 10 9 111.111% 

2 SRS 3.1.2 Power-up self test 32 33 96.970% 

3 SRS 3.1.3 Main Program 56 56 100% 

4 SRS 3.1.4 Calibration 25 25 100% 

5 SRS 3.1.5 Tune 12 12 100% 

6 SRS 3.1.6 On-line diagnostics 46 46 100% 

7 SRS 3.2 
External Interface 

Requirements 
3 3 100% 

8 SRS 3.3 Performance Requirements 4 4 100% 

9 SDD Decomposition Description 4 4 100% 

 
 

Table 16.5 Summary of the Requirements Traceability Measurement for μp2 Application Software 
 

No. Section No. Section Name R1 R2 RT

1 3.1 Functional Requirements 25 25 100% 

2 3.2 External Interface 
Requirements 

3 3 100% 

 
The challenge in forward tracing and backward tracing arises from understanding the activities 
of the source code. Mastering the control flow of the source code and thus grasping the big 
picture is usually the first step to understanding the source code. Comments in the source code, 
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along with other documents such as the Design document, Testing Plan, and V&V reports will 
be helpful for performing the tracing. 
 
During the measurement it was observed that the requirements for μp1 were written to a higher 
level of detail as compared to the requirements for μp2. 
 
The ratio of R1 and R2 is somewhat subjective because the granularity level of the original 
requirements used for counting R1 and R2 is subjective. As stated in the definition section, the 
RePS using this measure is not based on the value of RT but is based instead on the actual 
defects found between SRS and code. A defect was identified when either a requirement was not 
implemented in the code or if extra code was implemented for a requirement that did not exist.  
 

Table 16.6 Summary of the Requirements Traceability Measurement for CP 
 

No. Section No. Section Name R1 R2 RT

1 3.1 Initialization 18 18 100% 

2 3.2 Power-up self test 96 97 98.969% 

3 3.3 Main Program 45 45 100% 

4 3.4 On-line diagnostics 69 69 100% 

5 3.5 Time of the day 4 4 100% 

6 3.6 Serial Communications 64 64 100% 

 
Table 16.7 Description of the Defects Found in APP by the Requirements Traceability Measure 

 

No. Location Requirement Description Defect Type 
Severity 

Level

1 
μp1 Section 

3.2 

Increment the EEPROM test 
counter if the Tuning in Progress 

flag setup. 

Requirement not 
implemented in the code 

3 

2 
μp1 Section 

3.2 

This algorithm shall detect 
coupling faults between two 

address lines. 

Requirement not 
implemented in the code 

1 
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Table 16.7 Description of the Defects Found in APP by the Requirements 
Traceability Measure (continued) 

 

No. Location Requirement Description Defect Type 
Severity 

Level

3 
μp1 Section 

3.3.3.A 
Copy the contents of the table to 

the Dual Port RAM. 
Requirement not 

implemented in the code 
1 

4 
μp1 Section 

3.3.3.A 
Give up the Semaphore 

Requirement not 
implemented in the code 

1 

5 
μp2 Section 

3.1.1 
N/A 

Code not mentioned in 
SRS 

3 

6 
μp2 Section 

3.1.2.3 

This algorithm shall detect 
coupling faults between two 

address lines. 

Requirement not 
implemented in the code 

1 

7 
CP  Section 

3.2.3 

This algorithm shall detect 
coupling faults between two 

address lines. 

Requirement not 
implemented in the code 

1 

 
 

16.4  RePS Construction from Requirements Traceability 
  
The APP system has four distinct operational modes: Power-on, Normal, Calibration, and 
Tuning [APP,  01]. The reliability of the APP system was estimated on a one-by-one operational 
mode basis using the Extended Finite State Machine (EFSM) model approach [Smidts, 2004].  
 
This approach proceeds in three steps: 
    
1. Construct an EFSM model representing the user’s requirements and embedding the user’s 

operational profile information. 
2. Map the identified defects to the EFSM model. 
3. Execute the EFSM model to evaluate the impact of the defects in terms of the failure 

probability. 
 
Figure 16.5 presents the entire approach to estimate reliability. It should be noted that it is 
possible for a defect to be involved in more than one operational mode. 
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Figure 16.5 Approach of Reliability Estimation Based on the EFSM Model 
 
 
The estimation of APP probability of failure-per-demand based on the RT RePS is 3.28 × 10-10. 
Hence: 
 1 3.28 10 0.9999999996720 
 
The reliability estimation for each of the four operational modes using the defects found through 
the requirement traceability measurement is shown in Table 16.8. 
 
  
 
 
 
 
 

Start

End 

Completeness 
Measure 

RePS for 
Completeness 
Measure 

Identify defects in the SRS and SDD

Construct four EFSM models that represent the SRS and 
derived requirements identified in the SDD

Map the identified defects into the EFSM models 

Map the operational profile (OP) into the EFSM model 

In TestMaster, run the EFSM models to estimate the 

Document the results 



 

296 
 

 

Table 16.8 Reliability Estimation for Four Distinct Operational Modes 
 

Mode Probability of Failure 

Power-on 2.06 × 10-10 

Normal 3.28 × 10-10 

Calibration 6.72 × 10-13 

Tuning 0 

 
 

 

16.5  Lessons Learned 
 
The measurement of RT is a labor-intensive process but it can be assisted by building a formal 
approach as illustrated in Figure 16.1 to Figure 16.4. Unlike the DD measurement, which 
requires the verification of a large number of items, the measurement of RT only requires 
verifying the presence or absence of an item in the requirements documents and the code. Thus, 
the RT measurement process is not as error-prone some other measures. 
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17. TEST COVERAGE 
 
The concept of test coverage (TC) is applicable to both hardware and software. In the case of 
hardware, coverage is measured in terms of the number of possible faults covered. In contrast, 
the number of software faults is unknown. TC in the case of software systems is measured in 
terms of structural or data-flow units that have been exercised. 
 
According to [IEEE, 1988], TC is a measure of the completeness of the testing process from both 
a developer and a user perspective. The measure relates directly to the development, integration, 
and operational test stages of product development: unit, system, and acceptance tests. The 
measure can be applied by developers in unit tests to obtain a measure of the thoroughness of 
structural tests. 
 
This measure can be applied once testing is completed. As listed in Table 3.3, the applicable life 
cycle phases for TC are Testing and Operation. 

17.1  Definition 
 
As described in [IEEE, 1988], the primitives for TC are divided in two classes: program and 
requirement. For the program class, there are two types of primitives: functional and data. The 
program functional primitives are either modules, segments, statements, branches (nodes), or 
paths. Program data primitives are equivalence classes of data. Requirement primitives are either 
test cases or functional capabilities. 
 
TC is the percentage of requirement primitives implemented multiplied by the percentage of 
primitives executed during a set of tests. A simple interpretation of TC can be expressed by 
Equation 17.1: 
 %       100   (17.1) 

 
In this study, the definition of TC has been modified for the following two reasons: 
 
1. The percentage of requirement primitives implemented in the source code has been 

obtained from the RT measurement results, as discussed in chapter 16.  
2. Since the program primitives are implemented in the format of code, the percentage of 

primitives executed during a set of tests is actually the coverage of code tested by test 
data. The software engineering literature defines multiple code coverage measures such 
as block (also called statement) coverage, branch coverage, and data flow coverage 
[Malaiya, 1993]. In this research, statement coverage was selected because it is the most 
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popular test coverage metric and has been embedded in many integrated development 
environments, such as Keil μVision2 and IAR EWZ80 used in this research. 

 
Therefore, TC can be modified to be the requirements traceability multiplied by the fraction of 
the total number of statements that have been executed by the test data [Malaiya, 1996]. The 
concept can be shown in the following equation: 
 100                                                 (17.2) 

where 
         The value of the test coverage 
         The number of requirements implemented 
         The total number of required requirements including the number of original 

requirements specified in the SRS, derived requirements specified in the SDD 
and requirements implemented in code but not specified in either SRS or 
SDD 

  The number of lines of code that are being executed by the test data listed in  

    the test plan 
     The total number of lines of code 
 
The measurement of statement coverage and the corresponding reliability prediction are 
discussed in the following sections. 
 

17.2  Measurement Rules 

 
A four-step measurement approach is introduced in this chapter to determine the test coverage 
(C1). The four steps in the measurement approach are: 
   
Step 1. Make the APP source code executable (Refer to Section 17.2.1) 
Step 2. Determine the total number of executable lines of code (Refer to Section 17.2.2) 
Step 3. Determine the number of tested lines of code (Refer to Section 17.2.3) 
Step 4. Determine the percentage of requirement primitives implemented (Refer to Section 
17.2.4) 

17.2.1  Make the APP Source Code Executable 
 
The software on the safety microprocessor 1 (μp1) and communication microprocessor (CP) 
were developed using the Archimedes C-51 compiler, version 4.23; the software on safety 
microprocessor 2 (μp2) was developed using the Softools compiler, version 1.60f. Due to the 
obsolescence of these tools, the software was ported to the Keil PK51 Professional Developer’s 
Kit (μVision2 V2.40a) and IAR EWZ80, version 4.06a-2, respectively. The major modifications 
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are the replacement of some obsolete keywords with their equivalents in the new compilers. 
Consequently, the porting did not change the results. 
 
Table 17.1 lists the compilers used in this research and the number of errors and warnings 
observed before modification of the original APP source code. 
 

Table 17.1 Original Source Code Information with Compilers Used in This Research 
 

Microprocessor Compiler Number of Errors/Warnings

μp1 Keil μVision2 V2.40a 122/1 

μp2 IAR EWZ80 V4.06a-2 1345/33 

CP Keil μVision2 V2.40a 36/1 

 
The errors and warnings mainly are to the result of the following differences between the 
compilers used in this study and those used by the APP developers: 
 
1.  Different keyword used; 
2.  Different definition of special function registers used; 
3.  Different interrupt definitions used; 
4.  Different data type used; 
 
Several modification examples are shown in Table 17.2. 
 

Table 17.2 APP Source Code Modification Examples 
 

Reason Type Original Source Code Modified Source Code 

1 
Different assembly 
keyword  

Module VCopy Name VCopy 

2 Different bit definition  bit EA = 0xAF; sbit EA = 0xAF; 

3 
Different interrupt 
definition 

Interrupt [0x03] void 
EX0_int (void); 

#define EX0_int =0; 

4 Different data type 
Data unsigned int 
unmemory_Loc 

unsigned int data 
unmemory_Loc 

5 
Other Miscellaneous 
errors in APP 

GO GO: 
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As shown in Table 17.2, in the Archimedes C-51 compiler “Module” is the keyword used to 
define an assembly function while in Keil μVision2 “Name” is the correct keyword performing 
the same function. The Archimedes C-51 compiler uses “bit” to define a bit in a special function 
register and Keil μVision2 uses “sbit.”  The ways in which the interrupt function is defined are 
different in these two compilers. How to define a data type is another problem in these 
compilers, as the fourth example shows. Other miscellaneous syntax errors, such as a missing 
colon (refer to the fifth example), needed to be corrected.  
 

17.2.2  Determine the Total Lines of Code 
 
As specified in Section 17.1, test coverage indicates the number of executable statements 
encountered.  
 
The total number of executable lines of code (eLOC) are provided by the compilers. The results 
are shown in Table 17.3. 
 

Table 17.3 Total Number of Executable Lines of Code Results 
 

 Module eLOC Total Number of eLOC 

 
μp1 

 

SF1APP 249 

1537 

SF1CALTN 238 

SF1FUNCT 353 

SF1PROG 246 

SF1TEST1 184 

SF1TEST2 267 

 
μp2 

APP1 269 

1409 

CAL_TUNE 392 

MAIN 488 

ON_LINE 75 

POWER_ON 185 
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Table 17.3 Total Number of Executable Lines of Code Results (continued) 
 

 Module eLOC Total Number of eLOC 

CP 

COMMONLI 116 

811 
COMMPOW 183 

COMMPROC 132 

COMMSER 380 

Total 3757 

 

17.2.3  Determine the Number of Tested Lines of Code 
 
According to the original APP test plan [APP, Y6], in order to perform the tests, the following 
requirements should be met: 
   
1. The software to be tested must be available in PROM and installed in an operational APP 

module.  
2. An appropriate power supply for the module must be available.  
3. In most cases, an emulator for the microprocessor and its associated software is required. 
4. A compatible PC is required to monitor and control the emulator.  
 
It should be noted that a modification of the test cases was necessary in this research. Mainly, 
this was due to the following reasons: 
 
1. In this study, software testing was performed based on a real-time simulation 

environment and not the actual APP system. The software was not available in PROM, 
and debuggers were used to monitor the execution of the source code.  

2. The emulator was not available. Thus, all the functions performed by the emulator were 
modified.  

3. The main purpose of the testing in this study was different from the original purpose of 
the testing. The original test cases were used to test the program and check the 
functionality of the program. The execution of the test cases in this study was to 
determine the code coverage. Thus, only the input specifications sections needed to be 
considered. The output specifications did not need to be verified.  

 
After step 1, the APP source code was successfully compiled either using KEIL PK51 
Professional Developer’s Kit (for μp1 and CP) or using IAR EWZ80 workbench (for μp2). The 
compiler debugger tools were used to determine the percentage of code that had been executed, 
denoted as C1'. Therefore, the number of tested lines of code can be calculated by: 
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                                                         (17.3) 

 
The general procedure used to conduct each test case is given below: 
 
1. Set breakpoint to halt the execution at certain desired points. 
2. Check and change memory or variable values according to the input specifications 

described in the test plan. 
3. Allow the program to proceed to the next breakpoint where additional checks may occur. 
4. Record the code coverage given by the debugger.  
 
The following subsections show how to use the debugger tools to record the code coverage. 

17.2.3.1  Keil μVision2 Debugger 
 
The μVision2 debugger offers a feature called “Code Coverage Analysis” that helps to ensure the 
application has been thoroughly tested. The Code Coverage Window shows the percentage of 
code for each module (according to the level 2 module definition in Chapter 6) in the program 
that has been executed. Code Coverage aids in debugging and testing the application by allowing 
users to easily distinguish the parts of the program that have been executed from the parts that 
have not.  
 
In μVision2, colors displayed on the left of the assembly window indicate the status of the 
corresponding instruction.  
 
1. Dark Grey: Indicates that the line of code has not yet been executed.  
2. Green: Indicates that the instruction has been executed. In the case of a conditional 

branch, the condition has tested true and false at least once.  

17.2.3.2  IAR EWZ80 Debugger 
 
Similar to the Keil μVision2 Debugger, the IAR EWZ80 debugger also can provide code 
coverage information. The Code Coverage Window shows the percentage of code in the program 
module that has been executed. The untested lines of code (line number) also are shown in the 
window.  

17.2.4  Determine the Percentage of Requirement Primitives Implemented 
 
Chapter 16 described how to obtain the requirements traceability in details. Consult that chapter 
for the measurement rules. 
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17.3  Measurement Results 

17.3.1  Determine the Required Documents 
 
As described Section 17.4, the value of code coverage can be used to estimate the value of defect 
coverage. The number of defects remaining in the APP can then be estimated from the defect 
coverage and the number of defects found by test cases provided in the test plan. As stated 
earlier, the testing performed on the APP was not intended to test the program and check the 
functionality of the program as the original testing did. The number of defects was obtained by 
counting the number of defects identified in the original test reports. The reports distinguish five 
levels of test results: 
 
1. Test completed successfully; 
2. Test resulted in discrepancies that were resolved by Test Plan deviation; 
3. Test resulted in discrepancies that required modifications to the Test Plan; 
4. Test resulted in discrepancies that required modifications to the requirements 

specifications, design description, or code; 
5. Incorrect execution of the test which resulted in a discrepancy. The correct execution of 

the test resolved the discrepancy.  
 
Obviously, only level-four discrepancies were considered defects found by testing. Since there 
exist many versions of source code, test plans and test reports, one needs to determine which 
version is to be used for test coverage measurement. Table 17.4 shows this information.  
 
Therefore, the following documents were used to measure the test coverage: 
 

 APP Module μp1 System Software Code Revision 1.03 [APP, Y1] 
 APP μp1 Flux/Delta Flux/Flow Application Software Source Code Revision 1.03 [APP, 

Y2] 
 APP Module μp2 System Software Source Code Revision 1.02 [APP, Y3] 
 APP μp2 Flux/Delta Flux/Flow Application Software Source Code Revision 1.02 [APP, 

Y4] 
 APP Communication Processor Source Code Revision 1.04 [APP, Y5] 
 APP Test Plan for μp1 Software [APP, Y6] 
 APP Test Report for μp1 Software [APP, Y9] 
 APP Test Plan for μp2 Software [APP, Y7] 
 APP Test Report for μp2 Software [APP, Y10] 
 APP Test Plan for CP Software [APP, Y8] 
 APP Test Report for CP Software [APP, Y11] 
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Table 17.4 Testing Information for μp1 
 

 
Test 

Report 
Revision 

Applicable 
Code 

Revision 

Test Plan 
Used 

Critical + 
Significant 

Defects
Test Report Revision 

μp1 

#00 1.03 0 4 

1. Not all the address lines tested 
2. All inputs boards missing in Power-on 

without indicating fatal error 
3. Discrete inputs tripped condition 
4. Detect module ID with DPR 

#01 1.03 1 0 N/A 

#02 1.04 2 0 N/A 

#03 1.07 3 0 N/A 

#04 1.08 4 0 N/A 

μp2 

#00 1.02 0 2 
1. Online RAM test not complete 
2. Online EEPROM failure is not 

identified as fatal failure 

#01 1.03 0 0 N/A 

#02 1.04 2 0 N/A 

#03 1.05 4 0 N/A 

#04 1.06 5 0 N/A 

CP 

#00 1.04 0 1 Initialize variable problem 

#01 1.04 1 0 N/A 

#02 1.04 02 0 N/A 

17.3.2  Test Coverage Results 
 
Table 17.5 shows the statement coverage results. 
 

Table 17.5 Statement Coverage Results 
 

Microprocessor LOCTotal C1' LOCTested 

μp1 1537 0.886 1362 

μp2 1409 0.939 1324 

CP 811 0.898 729 

Total 3757 0.908 3379 
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From the measurement results of Chapter 16, the total number of implemented requirements of 
the APP system, , is 1,146. The number of original requirements specified in the SRS and 
derived requirements specified in the SDD is 1,150. There is one requirement that is 
implemented in code but not specified in either SRS or SDD. Thus the total number of the 
requirements, , is 1,151. Therefore, the test coverage for APP is:  
 ,, ,, 0.8955                    (17.4) 

 

17.3.3  Linear Execution Time Per Demand Results 
 
The linear-execution time, TL, is used in different RePSs. The linear-execution time is defined as 
the product of the number of lines of code per demand and the average execution time of each 
line [Malaiya, 1993]. 
 
APP linear-execution time is calculated by executing a segment of linear code (code without a 
loop) in the Keil-simulation environment. This segment contains seventy-four lines of code. The 
measurement procedure is described as follows: 
   
1. Set the clock frequency to 12 MHz for the Intel 80C32 microprocessor and 16 MHz for 

the Z180 microprocessor; 
2.  Set breakpoints at the beginning of the code and the end of the code; 
3. Execute the code and record the execution time in seconds at the start and end 

breakpoints (Tstart and Tend respectively). This information is available in the “secs” item 
in the register window; 

4. Calculate the difference between the breakpoints to obtain the execution time for the 74 
lines of code ( ).  

 
As such, the linear-execution time  for the given software is: 
 

       (17.5) 

 
where  LOC is the size in lines of code for the given software.39 
 
Table 17.6 summarizes the results of this experiment. 
 
 
 
 
 

                                                 
39 All 74 LOC are executable. 
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Table 17.6 Linear Execution Time for Each Microprocessor in the APP System 
 

 μp1 μp2 CP 

 (seconds) 0.000389 0.00029175 0.000389  (seconds) 0.002844 0.002133 0.002844  (seconds) 0.0000332 0.0000249 0.0000332 

LOC/demand with 
cycles disabled 

554 346 619 

 (seconds) 0.018 0.009 0.021 
 

17.3.4  Average Execution-Time-Per-Demand Results 
 
Similar to the linear-execution time,  also is used in many RePSs. The value of  can be 
determined during testing by recording the actual execution time. The approaches for 
determining τ in the simulation environments are not the same.  
 
For μp1 and CP, because these source codes are executed in the Keil μVision2 environment, 
source code execution time is shown by the system register in the watch window. From the test-
coverage experiment, the average execution time for μp1 is 0.082 seconds/demand and the 
average execution time for CP is 0.016 seconds/demand; 
 
For μp2, the execution time is not directly given by the simulation environment IAR EWZ80; but 
the number of cycles (processor clock cycles) is provided. The execution time can be calculated 
by 

        (17.6) 

where: 
   the number of cycles given by the simulation environment  
   the μp2 clock frequency (16 MHz) 
 
From the test coverage experiment, the average number of cycles was 2,064,135, so the average 
execution time of μp2 is: , ,. 0.129  second    (17.7) 
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17.4  RePS Construction from Test Coverage 

17.4.1  Determination of the Defect Coverage 
 
Malaiya et al. investigated the relationship between defect coverage, , and statement coverage, 

. In [Malaiya, 1996], the following relationship was proposed: 
 ln 1 1      (17.8) 
 
where , , and  are coefficients and  is the statement coverage [Malaiya, 1996]. The 
coefficients were estimated from field data. Figure 17.1 depicts the behavior of  for data sets 
two, three, and four given in [Malaiya, 1996]. 
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

T est (Statement) coverage

D
ef

ec
t 

C
o

ve
ra

DS2 DS3 DS4
 

 
Figure 17.1 Defect Coverage vs. Test Coverage 

 

17.4.2  Determination of the Number of Defects Remaining in APP 
 
According to Malaiya [Malaiya, 1993], the number of defects remaining in software, , is: 
 

  (17.9)

where 
  number of defects remaining in the software 
  number of defects found by test cases provided in the test plan 
  defect coverage 
 
From Table 17.4, the total number of defects found by test cases provided in the test plan is 
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 4 2 1 7 
 
Table 17.7 provides the defect coverage and the corresponding total number of defects remaining 
in APP given the parameters in [Malaiya, 1996] for three data sets. Since all three data sets are 
applicable to the APP case, the total number of defects remaining is estimated by an average 
value: 9 defects.  

 
Table 17.7 Defects Remaining, N, as a Function of TC and Defects Found for Three Malaiya Data Sets 

  ln 1 10.896 7  

Data Set     ⁄  

DS2 1.31 1.80E-03 6.95 0.847 8 (8.3) 

DS3 0.139 7.00E-04 14.13 0.751 9 (9.3) 

DS4 0.116 6.00E-04 15.23 0.723 10 (9.7) 

 
 

17.4.3  Reliability Estimation 
 
Malaiya [Malaiya, 1993] also suggested the following expression for the failure intensity 
 

      (17.10) 

where  
 

  the value of the fault exposure ratio during the n-th execution 
   the linear execution time  
 
and the probability of n successful demands  is given as:  
 

     (17.11) 
 
where T(n) is the duration of n demands. It is given by: 
 

      (17.12) 
where 
   the average execution-time-per-demand.  
   the number of demands. 
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Replacing  and  in Equation 17.11 with Equation 17.10 and Equation 17.12: 
 

     (17.13) 
 
The fault-exposure ratio for the seven defects identified during testing can be precisely estimated 
using the EFSM described in chapter 5. Using Equation 17.13: 
 

     (17.14) 

where 
 

  the probability of failure-per-demand corresponding to the known defects. This 
value is given by the APP EFSM and is 5.8 × 10-10. 

 
Table 17.8 lists the probability of success-per-demand. 
 

 
Table 17.8 Probability of Success-Per-Demand Based On Test Coverage 

 

9 

0.99999999942 

 
The linear execution time, TL, for each of the three subsystems (μp1, μp2, and CP) of APP has 
been identified in Section 17.3.3. There are several ways to estimate the linear-execution time for 
the entire APP system, such as using the average value of these three subsystems. For a safety-
critical application, such as the APP system, the UMD research team suggests making a 
conservative estimation of TL by using the minimum of these three subsystems. Namely,  
 
    min 1 , 2 ,   
         min 0.018, 0.009, 0.021     (17.15) 
         0.009 seconds 
where 
 1   Linear execution time of Microprocessor 1 (μp1) of the APP system. TL 

(μp1) = 0.018 seconds; 2   Linear execution time of Microprocessor 2 (μp2) of the APP system. TL 
(μp2) = 0.009 seconds; 

  Linear execution time of Communication Microprocessor (CP) of the APP 
system. TL (CP) = 0.021 seconds. 
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Similarly, the average execution-time-per-demand, τ, for each subsystem has been identified in 
section 17.3.4. To make a conservative estimation, the average execution-time-per-demand for 
the entire APP system is the maximum of the three subsystems. Namely,  
 
    max 1 , 2 ,   
       max 0.082,0.129,0.016      (17.16) 
       0.129 seconds/demand 
where 
 1   Average execution-time-per-demand of Microprocessor 1 (μp1) of the APP 

system. τ(μp1) = 0.082 seconds/demand; 2   Average execution-time-per-demand of Microprocessor 2 (μp2) of the APP 
system. τ(μp2) = 0.129 seconds/demand; 

  Average execution-time-per-demand of Communication Microprocessor (CP) of 
the APP system. τ(CP) = 0.016 seconds/demand. 

 

17.5  Lessons Learned 
 
Normally, the measurement of TC should be completed efficiently with the help of automation 
tools. In this research, the time required for the measurement was excessive: a great deal of time 
was devoted to modifying the original APP source code so that it could be compiled successfully 
by current compilers. In addition, a great deal of time was spent modifying the original test cases 
for the current simulation environments. If no such compatibility problems existed, the 
measurements would have been completed faster. 
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18. REAL RELIABILITY ASSESSMENT 
 
 

18.1  Definition 
 
In this study, “reliability” is defined as “the probability that the APP software (both system 
software and application software) functions normally within a one demand performance 
period.” 
 
Traditionally, the reliability of a system is estimated from failure data. The failure data is 
obtained either from operational failures or failures discovered during testing. In NUREG/CR-
6848 [Smidts, 2004], an automatic testing environment was established and the software under 
study was tested using that test-bed. In this study, operational failures will be used to quantify the 
APP reliability. 
 
Let us assume r failures are observed in T years of operating time. The maximum likelihood and 
unbiased estimate of the failure rate  is given as [Ireson, 1966]: 
 

       (18.1) 

 

18.2  APP Testing 
 
During the early stages of this research, UMD was unable to obtain operational data from the 
plant. Thus, UMD initiated its reliability-estimation effort using testing. A test-bed was 
established to conduct reliability testing for the APP safety module (see Figure 18.1).  
 
The test-bed was composed of a testing computer, which executed the testing software and 
provided inputs to the APP module and accepted outputs from the APP module. One PCI A/D 
card was installed for accepting the analog APP outputs and converting them to digital values; 
one D/A PCI card was installed for generating APP analog inputs; and one digital Input/Output 
(I/O) card was installed to establish bi-directional communication between the testing computer 
and the APP module. The wiring between the safety module and the testing computer was 
designed and implemented by the APP manufacturer. 
 
Interface software also was developed to generate and provide inputs into the APP module and to 
accept and display APP module outputs. Figure 18.2 depicts this testing software interface. The 
user can enter analog input values and digital input values in the two left columns. After pressing 
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the Start button, the values in these text boxes were sent to the APP. The outputs from the APP 
were retrieved and appeared in the two right columns. 
 

  
 

Figure 18.1 APP Reliability Testing Environment 
 
 
 

          
  

Figure 18.2 Testing Software 
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UMD did not follow the procedures described in NUREG/CR-6848 Chapter 4 [Smidts, 2004] to 
conduct APP reliability testing. In particular, generation of test cases from the TestMaster model 
was not performed because UMD was in the possession of a large amount of actual operational 
input data. The TestMaster model should be used when actual input information is unavailable, 
and to generate inputs that represent operational use using the operational profile.  
 
WinRunner was used as described in NUREG/CR-6848 Chapter 4 [Smidts, 2004] to harness the 
testing automatically. 
 
Within the test environment, one method to speed up the failure process was to use accelerated 
testing techniques. The principle of accelerated testing is to challenge a system under high stress. 
For mechanical components, meaningful high stresses include higher temperatures, higher 
voltages, higher speed of operation, etc. This technique forces the component into conditions 
rarely attained during normal operation. For software components, the same principle applies. 
High stress conditions correspond to inputs that rarely appear in normal operations.  
 
Two types of high-stress conditions were identified for the APP. The first set of high-stress 
conditions is related to the application software, i.e., the inputs around the trip conditions (points 
around the “barn shape”). UMD identified this set of conditions as the least important because 
these conditions largely challenge the application software (the predicates that judge whether a 
trip occurs). This part of the software is relatively simple and typically less problematic than the 
remaining system software. 
 
Another set of high-stress conditions was identified for the system software. The APP system 
software was designed to assure that the safety module (both software and hardware) was in 
healthy condition. Since hardware failures have a low likelihood of occurrence, it is important to 
fictitiously increase these likelihoods, in other words, to accelerate them, to observe module 
behavior under this type of high-stress condition. 
 
However, the current testing configuration depicted in Figure 18.1 was not suitable for 
accelerating such stress (hardware failure). A simulation-based accelerated testing was 
considered a possible approach in future testing.  
 
In summary, it was not possible to derive APPs failure rates from testing. Therefore, UMD 
contacted a plant using similar software to acquire failure information from operational data.  
 

18.3  APP Operational Data 
 
The APP had been deployed in a nuclear power plant and had been functioning for 10 years at 
the start of this research project. Per UMD’s request, the plant sent UMD copies of the plant 
maintenance Work Packages addressing APP failures. The Work Packages included 14 Problem 
Records that were related to the APP module. Each Problem Record consisted mainly of a 
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detailed problem description and a corresponding set of corrective actions. Table 18.1 
summarizes the 14 Problem Records. The table includes the date at which the Problem Record 
originated, the Problem Record Number, a determination of whether the problem was related to 
an APP failure, a determination of whether it was an APP software failure, the failure type (i.e., 
Type I or II), and the cause of the failure. From Table 18.1, several conclusions can be drawn as 
follows: 
 
1. A new version of the APP software was installed in the plant. The implementation was 

completed on December 2003 for one unit, and the completion dates for the other units 
were March 2004 and October 2004, respectively. A new EEPROM on a computer card 
was installed into the applicable RPS APP module. The software update was not the 
result of a failure. The existing Flux Imbalance/Flow trip limits were determined to 
perform their intended functions appropriately. A maximum power trip set-point was 
added so that the module would trip the plant at a predefined fixed, set power level if the 
measured power level exceeded the fixed power level due to increased flow. This 
Problem Record recorded the fact that several tuning parameters were set to new values 
due to a change of the core design. This thus defined the end point of the window of 
analysis. 

 
2. Among the 14 Problem Records there were 5 APP system failures (Numbers 6, 8, 9, 10, 

and 12). Not all APP system failures were related to the APP software. Three of the 
failures (Numbers 8, 9, and 10) were identified by the system developer as hardware 
failures.  

 
3. For the sixth Problem Record, the system developer could not determine the cause of 

failure. None of the testing or other diagnostic efforts identified a failed component or 
any other problem. As a consequence, the plant owner did not upgrade the APP software 
but replaced some critical hardware components, such as a voltage regulator. UMD 
conservatively considers this Problem Record as an APP software failure. This failure 
was a Type II failure because it produced a trip signal although plant parameters were 
normal. 

 
4. For the twelfth Problem Record, the system developer could not determine the cause of 

failure. UMD conservatively considers this Problem Record as an APP software failure. 
This failure was a Type II failure because it sent out a trip signal although plant 
parameters were normal. 

 
5. One more APP failure besides those specified in the 14 Problem Records was identified 

by UMD after a thorough analysis of Problem Record O-02-00463. An AVIM (Analog 
Voltage Isolation Module) failure caused a failure of the APP system. Therefore, it was 
concluded that this Problem Record was not due to an APP software failure. 
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6. Obviously, throughout the total deployment time of the APP software version 1 there was 
no software reliability growth because software defects could not be located. 

 
7. On the other hand, some APP module hardware was replaced when those modules were 

sent back to the system developer. Thus, the operational profile for the APP infrastructure 
inputs needed to be updated to reflect these changes (see Chapter 4). 

 
Table 18.1 Summary of Problem Records 

 

NO. 
Problem 
Record # 

APP 
Failure? 

APP 
Software 
Failure?

Failure 
Type 

Reason 

1 O-98-00932 No No N/A 
There was a connection problem 
when attempting to reinsert APP 
module into the cabinet.  

2 O-98-02070 No No N/A 
The instrumentation is capable of 
performing its intended function and 
there was no operability issue. 

3 O-98-03661 No No N/A 
Nothing abnormal happened and no 
Problem Record should be written.  

4 O-99-05230 No No N/A 
No equipment failure or loss of 
system/component function is 
involved. 

5 O-00-01770 No No N/A 

Developer believed that it was 
impossible to have a particular 
common element failed because no 
failure of any components in any of 
the modules was observed in the 
plant. This repeatedly out of 
tolerance calibration problem would 
due to the problem in CTC. 

6 O-01-03095 Yes Yes II 

APP module tripped while it should 
not. The failure cause was not able 
to be determined. None of the 
testing or other diagnostic efforts 
performed by developer identified a 
failed component or any other 
problem. 
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Table 18.1 Summary of Plant X’s Problem Records (continued) 
 

NO. 
Problem 
Record # 

APP 
Failure? 

APP 
Software 
Failure?

Failure 
Type 

Reason 

7 O-01-03118 No No N/A 
Module was not seated well due to 
loose connection.  

8 Unknown Yes No N/A 
AVIM  (analog voltage isolation 
module) failure. 

9 O-02-00463 Yes No N/A 

Loss of RC (Runs Commands) flow 
indication due to a failed AVIM 
(analog voltage isolation module). 
The cause of the AVIM failure is 
unknown. 

10 O-02-01360 Yes No N/A 

APP module tripped while it should 
not. The evaluation identified a 
failed 5V DC regulator as the failed 
component. 

11 O-03-02646 No No N/A 
Not an actual failure. Several tuning 
parameters were set to new values 
due to the change of the core design. 

12 O-03-08237 Yes Yes II 
APP module tripped while it should 
not. No reason was identified. 

13 O-04-01439 No No N/A 
CTC need to be calibrated or caused 
by a calculating rounding problem 
according to developer’s answer. 
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Table 18.1 Summary of Plant X’s Problem Records (continued) 
 

NO. 
Problem 
Record # 

APP 
Failure? 

APP 
Software 
Failure?

Failure 
Type 

Reason 

14 3/25/2005 No No N/A 

Company Y identified a software 
error. The error results in a 0.2% FP 
non-conservative trip setpoint for 
the Flux/Flow/Imbalance and only 
one of the modules is affected. 
However, this error is within the 
hardware tolerance and has not 
shown up in required testing 
performed routinely in Plant X. 
Plant X did not implement the 
changes to their APP modules. 

15 4/1/2005 No No N/A Same as Problem Record #14. 

 
The power plant control logic was comprised of three independent control units. Each unit 
contained four channels; each channel contained one APP safety module. The following table 
shows the deployment of the APP modules in the plant. 
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Table 18.2 Deployment of APP Modules in Plant 
 

Unit Number  Deployed in Plant 
From  

End Deployment Date in 
this Study

Total Deployment 
Time 

 1 December 1997  December 2003  73 months 

 2 May 1996 March 2004  95 months 

 3 June 1995 October 2004   113 months 

 
The number of demands over the deployment period for the APP modules in the plant is: 
 73 95 113 30 24 36000.129 5.646 10  demands 

 
Where τ is the average execution-time-per-demand determined through the simulation 
environment. Its value is 0.129 s. For additional detail refer to Section 17.3.4. 

 
The probability of failure per demand ( ) for the APP system can be estimated using 
Equation 18.1: 
 

 
2 failures5.646 10 demands 3.542 10 failure/demand (18.2)

 
Because , the APP system’s failure rate ( ) can be estimated using the following: 
 2 failures73 95 113 months 30 days month⁄ 24 hr day⁄ 3600 s hr⁄2.746 10  
 
The failure types of the APP software failures described in the Problem Records can be 
identified. As shown in Table 18.1, the failures were determined as Type II failures. Thus, the 
APP Type II rate of failure is also 2.746 × 10-9  failure per second and the probability of a type II 
failure-per-demand is 3.542 × 10-10 failure per demand. 
 
However, no Type I failure was observed during the period of investigation. Thus, Equation 18.1 
does not apply for failure-rate estimation of APP Type I failures. UMD opted for a statistical 
approach to estimate the failure rate based on field data knowing that no type I failures had been 
observed. 
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A common solution to failure-rate estimation when no failure event has been observed is to take 
one half as the numerator ( ) in Equation 18.1 [Welker, 1974]. 
 
The APP failure rate is thus given by: 
 0.573 95 113 30 24 2.471 10  failure/hour 

 
The probability that a trip actuation will be required can be estimated using Equation 4.6: 
 1072511 1.38 10  triphr  

 
Therefore, the APP type I failure-rate estimate is given by: 
   |            

 2.471 10  failure/hr1.38 10  trip/hr 0.01792     
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19. RESULTS 
 
 
The motivation of this project was to validate the RePS theory and the rankings presented in 
NUREG/GR-0019.  
 
In previous research, as shown in NUREG/CR-6848, a first set of six RePS models was 
constructed for the following six root measures: Requirements Traceability (RT), Mean Time to 
Failure (MTTF), Defect Density (DD), Bugs per Line of Code (BLOC), Function Point (FP), and 
Test Coverage (TC). These models were applied to two small scale systems, the Personnel 
Access Control System, PACS1 and PACS2, and it was found that the results of the assessment 
were consistent with the ranking of the measures.  
 
The research described in this report is a continuation of NUREG/CR-6848. Seven more RePS 
models were developed and were applied to a nuclear safety critical system, the APP. New 
RePSs were built for the measures: Cyclomatic Complexity (CC), Cause and Effect Graphing 
(CEG), Requirements Specification Change Requests (RSCR), Fault-days Number (FDN), 
Capability and Maturity Model (CMM), Completeness (COM), and Coverage Factor (CF).  
 
It should be pointed out that it is not necessary to validate the methodology using all 40 measures 
identified in NUREG/GR-0019. Based on the methodology provided in this NUREG/CR report, 
projects have the flexibility to select their own measures for software-reliability prediction. The 
selection criteria include the measure’s prediction ability, the measure’s availability to the 
specific project considering cost and schedule constraints. For example, when reviewing new 
nuclear reactor applications, reviewers may select measures with higher prediction ability 
dependent upon their reviewing schedule.  
 
In the current study, the MTTF measure was not applied to the APP and an alternative approach 
for assessing the failure rate was introduced in Chapter 18. As described in Section 18.3, APP 
failures were identified from the Problem Investigation Process (Problem Records) and the 
failure rate of the APP was assessed as the identified number of APP failures divided by the total 
APP deployment time. The other twelve RePSs are used to predict the software reliability of the 
APP system.  
 
A summary description of the twelve measures is provided in Section 19.1. The results of the 
RePS software reliability predictions are displayed and analyzed in Section 19.2. These 
predictions are then validated by a comparison to the “real” software reliability obtained from 
operational data and statistical inference. The comparison between the NUREG/GR-0019 ratings 
and the RePS prediction error is also made in this section, and the efficacy of the proposed 
methodology for predicting software quality is determined. 
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Further discussion about the measurement process for the twelve measures used in this research 
is provided in Section 19.3. The discussion includes an analysis of feasibility, which takes into 
account the time, cost, and other concerns such as special technology required to perform the 
measurements.  
 
Section 19.4 discusses the difficulties encountered during the measurement process as well as the 
possible solutions. Conclusions, a list of follow-on issues, and their priorities ranked by an expert 
panel composed of field experts are presented in Section 19.5 and 19.6, respectively. 
 

19.1  Summary of the Measures and RePSs 
 
Twelve measures were selected and their associated RePSs were created. A summary description 
of the measures and RePSs are presented in Section 19.1.1 and 19.1.2, respectively. 

19.1.1  Summary Description of the Measures 
 
Table 19.1 presents a summary of the twelve measures with their applicable life cycle phases and 
the phases for which they were applied to the APP system. The specific documents required to 
perform the measurements are also specified.  
 

Table 19.1 A Summary of Measures Used 
 

Family Measures 
Applicable Life Cycle 

Phases40 

Applied 
Phases for 

APP41 

Required 
Documents 

Estimate of Faults 
Remaining per Unit of 
Size 

BLOC IM, TE, Operation Operation Code  

Cause and Effect 
Graphing 

CEG 
RQ, DE, IM, TE, 
Operation 

Operation SRS, Code 

Software Development 
Maturity 

CMM 
RQ, DE, IM, TE, 
Operation 

Operation 
SRS, SDD, 
Code 

Completeness COM 
RQ, DE, IM, TE, 
Operation 

Operation SRS, Code 

Fault-Tolerant Coverage 
Factor 

CF TE, Operation Operation Code 

                                                 
40 RQ, DE, IM, and TE stand for Requirements phase, Design phase, Coding phase, and Testing phase respectively. 
41 It is assumed that the version used during operation is the version that was delivered at the end of the testing phase. 
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Table 19.1 A Summary of Measures Used (continued) 
 

Family Measures 
Applicable Life Cycle 

Phases42 

Applied 
Phases for 

APP43 

Required 
Documents 

Module Structural 
Complexity 

CC DE, IM, TE, Operation Operation Code 

Time Taken to Detect 
and Remove Faults 

FDN 
RQ, DE, IM, TE, 
Operation 

Operation 
SRS, SDD, 
Code 

Functional Size FP 
RQ, DE, IM, TE, 
Operation 

Operation SRS 

Faults Detected per Unit 
of Size 

DD TE, Operation Operation 
SRS, SDD, 
Code 

Requirements 
Specification Change 
Request 

RSCR 
RQ, DE, IM, TE, 
Operation 

Operation SRS, Code 

Requirement 
Traceability 

RT DE, IM, TE, Operation Operation SRS, Code 

Test Coverage TC TE, Operation Operation Code 

 
As shown in Table 19.1, all measurements are performed during the APP operation phase. Focus 
on the operation phase is driven by the time elapsed between delivery of the APP system and the 
consequent unavailability of important historical information that could have characterized the 
software-development process. For example, one can measure the FP count in the Requirement 
phase using an early version of the SRS. This would yield an estimate of reliability based on FP 
early in the development life-cycle. Unfortunately, these early versions of the APP SRS are no 
longer available. The only SRS version available is the final version, i.e., the version that was 
delivered at the end of the testing phase. 
 
According to the properties of the defects found by different families/measures, the above 12 
families/measures can be categorized into three groups.  
 
Group-I Families/Measures: 
 

 Estimate of Faults Remaining per Unit of Size/Bugs per Line of Code (BLOC) 
 Software Development Maturity/Capability Maturity Model (CMM) 

                                                 
42 RQ, DE, IM, and TE stand for Requirements phase, Design phase, Coding phase, and Testing phase respectively. 
43 It is assumed that the version used during operation is the version that was delivered at the end of the testing phase. 
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 Module Structural Complexity/Cyclomatic Complexity (CC) 
 Functional Size/Function Point (FP) 
 Requirements Specification Change Request/Requirements Specification Change Request 

(RSCR)  
 
Group-II Families/Measures: 
 

 Cause and Effect Graphing/Cause-effect Graphing (CEG) 
 Completeness/Completeness (COM) 
 Faults Detected per Unit of Size/Defect Density (DD) 
 Requirement Traceability/Requirements Traceability (RT) 
 Fault-Tolerant Coverage Factor/Coverage Factor (CF) 

 
Group-III Family/Measure: 
 

 Time Taken to Detect and Remove Faults/Fault Days Number (FDN) 
 Test Coverage/Test Coverage (TC) 

 
In the case of the first group of families/measures, only the number of defects can be obtained. 
Their location is unknown. The RePSs for these measures are based on Musa’s estimation model. 
Families/measures in the second group correspond to cases where actual defects are obtained 
through inspections or testing. Thus, the exact location of the defects and their number is known. 
Extended Finite State Machine Models (see Chapter 5) or Markov Chain Models (see Chapter 
10) are used to assess reliability. The measures in the third group have the combinational 
characteristics of the first two groups. The exact locations of defects in an earlier version are 
used to build the fault location models to obtain a software-specific fault exposure ratio and the 
final reliability estimation is based on Musa’s estimation model.  
 
It should be noted that seven out of the twelve measures are unique measures in their families 
while UMD selected one of the measures in the other five families. This information is presented 
in Table 19.2. 
 

Table 19.2 Family/Measure Information 
 

Family  Measure(s) in This Family UMD Selected Measure

Estimate of Faults Remaining 
per Unit of Size 

BLOC BLOC 

Cause and Effect Graphing CEG CEG 

Software Development 
Maturity 

CMM CMM 
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Table 19.2 Family/Measure Information (continued) 
 

Family Measure(s) in This Family UMD Selected Measure

Completeness COM COM 

Module Structural Complexity 

Cyclomatic Complexity (CC) 

CC Minimal Unit Test Case 
Determination 

Faults Detected per Unit of 
Size 

Code Defect Density (DD) 

DD Design Defect Density 

Fault Density 

Fault-Tolerant Coverage 
Factor 

CF CF 

Time Taken to Detect and 
Remove Faults 

Fault Days Number (FDN) 

FDN Man Hours per Major Defect 
Detected 

Functional Size 

Function Point (FP) 

FP Feature Point Analysis 

Full Function Point 

Requirements Specification 
Change Request 

RSCR RSCR 

Requirement Traceability RT RT 

Test Coverage 

Test Coverage (TC) 

TC Functional Test Coverage 

Modular Test Coverage 
 

 
Since BLOC, CEG, CMM, COM, CF, RSCR, and RT are the only measure in their respective 
families, these were automatically selected. The selection of the other measures among the 
members of their families is based on Table 19.3.  
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Table 19.3 Information about Families Containing More Than One Measure 
 

Family Measures Experts Rate

Module Structural Complexity 

Cyclomatic Complexity (CC) 0.72 

Minimal Unit Test Case 
Determination 

0.7 

Faults Detected per Unit of Size 

Code Defect Density (DD) 0.83 

Design Defect Density 0.75 

Fault Density 0.75 

Time Taken to Detect and 
Remove Faults 

Fault Days Number (FDN) 0.72 

Man Hours per Major Defect 
Detected 

0.63 

Functional Size 

Function Point (FP) 0.5 

Feature Point Analysis 0.45 

Full Function Point 0.48 

Test Coverage 

Test Coverage (TC) 0.68 

Functional Test Coverage 0.62 

Modular Test Coverage (MTC) 0.7 

As seen in the above table, the experts’ rates for each measure in a family do not vary much. 
Basically, either measure can be chosen to represent its family. The fundamental criterion that 
UMD used was to choose the measures with the highest rates. Thus, CC, DD, FDN, FP, and 
MTC are automatically chosen. However, considering the difficulties of their RePS 
constructions, TC was selected to replace the MTC measure because the RePS for TC is 
available while no RePS exists for the MTC measure. Therefore, UMD selected CC, DD, FDN, 
FP, and TC to represent their families. 
 

19.1.2  Summary Description of the RePSs 
 
Twelve RePSs were used to predict the software reliability of the APP system; they are 
summarized in Table 19.4. Multiple key elements are involved in the evaluation of each RePS. 
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Some can be measured directly using available documents, others can only be estimated. Table 
19.4 also lists these key elements and whether they can be measured or should be estimated.  
 

Table 19.4 Summary of the RePSs 

Measure Estimation of Probability of Failure  Key Elements 
Measured or 

Estimated 

BLOC 1 ∑ . . ⁄

: fault exposure ratio Estimated 

: the number of modules Measured 

: the number of lines of code (LOC) 
for each module 

Measured 

: the number of known defects 
found by inspection and testing 

Measured 

: linear execution time Measured 

: the average execution-time-per-
demand 

Measured 

SL: Severity level Estimated 

CEG ·, ·  

: the number and locations of 
defects found by the CEG measure 

Measured 

: Operational profile Measured 

: the propagation probability for 
the i-th defect 

Measured 

: the infection probability for the 
i-th defect 

Measured 

: the execution probability for 
the i-th defect 

Measured 

CMM 1  

: fault exposure ratio Estimated 

: the number of defects 
estimated by the CMM measure 

Estimated 

: linear execution time Measured 

: the average execution-time-per-
demand 

Measured 

COM · ·,  

: the number and locations of 
defects found by the COM measure 

Measured 

 : Operational profile Measured 

: the propagation probability for 
the i-th defect 

Measured 

: the infection probability for the 
i-th defect 

Measured 

: the execution probability for 
the i-th defect 

Measured 



 

332 
 

 

 Table 19.4 Summary of the RePSs (continued) 
 

Measure Estimation of Probability of Failure  Key Elements 
Measured 

or 
Estimated 

CF 1 ∑  

Pi(t): the probability that the system 
remains in the i-th reliable state. i = 1, 2, 
and 3, corresponding to the Normal, the 
Recoverable, and the Fail-safe states. 

Measured 

CC 1 · ·
 

K: fault exposure ratio Estimated 

A: the size of the delivered source code in 
terms of LOC 

Measured 

k: a universal constant Estimated 

F: a universal constant Estimated 

SLICC: the Success Likelihood Index for 
the CC measure 

Estimated 

TL: linear execution time Measured 

τ: the average execution-time-per-
demand 

Measured 

DD · ·,  

NDD: the number and locations of defects 
found by the DD measure 

Measured 

OP: Operational profile Measured 

P(i): the propagation probability for the i-
th defect 

Measured 

I(i): the infection probability for the i-th 
defect 

Measured 

E(i): the execution probability for the i-th 
defect 

Measured 

FDN 1  

K: fault exposure ratio Estimated 

NFDN: the number of defects estimated by 
the FDN measure 

Estimated 

TL: linear execution time Measured 

τ: the average execution-time-per-
demand 

Measured 

FP 1  

K: fault exposure ratio Estimated 

NFP: the number of defects estimated by 
the FP measure 

Estimated 

TL: linear execution time Measured 

τ: the average execution-time-per-
demand 

Measured 
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 Table 19.4  Summary of the RePSs (continued) 
 

Measure Estimation of Probability of Failure  Key Elements 
Measured 

or 
Estimated 

RSCR 1 · ·
 

K: fault exposure ratio Estimated 

A: the size of the delivered source code in 
terms of LOC 

Measured 

k: a universal constant Estimated 

F: a universal constant Estimated 

: the Success Likelihood Index 
for the RSCR measure 

Estimated 

TL: linear execution time Measured 

τ: the average execution-time-per-
demand 

Measured 

RT · ·,  

NRT: the number and locations of defects 
found by the RT measure 

Measured 

OP: Operational profile Measured 

P(i): the propagation probability for the i-
th defect 

Measured 

I(i): the infection probability for the i-th 
defect 

Measured 

E(i): the execution probability for the i-th 
defect 

Measured 

TC 

· ·,
 

 1 ln  
 

υK: fault exposure ratio Measured 

N0: the number and locations of defects 
found by testing in earlier version of code 

Measured 

OP: Operational profile Measured 

P(i): the propagation probability for the i-
th defect 

Measured 

I(i): the infection probability for the i-th 
defect 

Measured 

E(i): the execution probability for the i-th 
defect 

Measured 

a0, a1, a2: coefficients Estimated 

C1: test coverage Measured 

 
The current regulatory review process does not use metrics to assess the potential reliability of 
digital instrumentation and control systems in quantitative terms. The goal of the research 
described in this report was to identify methods that could improve the regulatory review process 
by giving it a more objective technical basis. While some of the models in this report use generic 
industry data, experimental data, and subjective assessments, much of the modeling is based on 
direct measurements of the application under study and, as such, is purely objective in nature. 
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Thus, the use of the proposed RePSs models (i.e., of the highly accurate RePSs) could potentially 
yield better results than what can be obtained from the current review process. 
 

19.2  Results Analysis 

 
This section presents a detailed analysis of the results, which includes an analysis of the number 
of defects estimated or measured by the twelve software engineering measures and an analysis of 
the reliability predictions. 

19.2.1  Defects Comparison 
 
The total number of Level-1 and Level-2 defects remaining in the APP source code according to 
the twelve measures is shown in Table 19.5 and also illustrated in Figure 19.1. 
 

Table 19.5 Number of Defects Remaining in the Code 
 

Measure Number of Defects Found 

BLOC 14 

CEG 1 

CMM 19 

COM 1 

CF 6 

CC44 29 

DD 4 

FDN 1 

FP 10 

RSCR45 12 

RT 5 

TC 9 

 
 
 
 

                                                 
44 The Number of Defects Found for CC is the number of faults remaining obtained without the use of support measures. 
45 The Number of Defects Found for RSCR is the number of faults remaining obtained without the use of support measures. 
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Figure 19.1 Number of Defects Remaining in the Code Per Measure 
 
If the measures are re-ordered according to the groups defined in Section 19.1, Figure 19.1 
becomes Figure 19.2. One can see from Figure 19.2 that the “number of defects remaining” 
estimated using Group-I measures is much larger than the actual number of defects remaining 
using Group-II measures. As discussed before, only an estimated number of defects can be 
obtained by Group-I measures. These estimated numbers are mainly based on Capers Jones’ 
historical data. However, Jones’ data does not cover the entire spectrum of system types. That is, 
there is no specific data available for safety critical software. In this research, data in the general 
“system software” category was used. As a consequence, the number of defects will be 
overestimated. In the case of Group-II measures, defects are uncovered through inspection. It is 
clear that the inspector will not uncover all the defects in the software. Thus, the number of 
defects is a lower bound estimate of the actual number of defects. These reasons explain why the 
number of defects predicted by Group-I measures is generally much larger than the number 
found by Group-II measures. 
 

 
 

Figure 19.2 Number of Defects Remaining Per Measure Per Group  
 
An analysis of defect characteristics is provided in Section 19.2.1.1. The actual number of 
defects can be estimated using a capture-recapture model. The derivation is shown in 19.2.1.2. 
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19.2.1.1  Discussion about Measures in the Second Group 
 
The obvious advantage of the measures in the second group is that the exact location of the 
defects can be determined. Table 19.6 provides the number of the defects found by measures in 
Group-II. 
 

Table 19.6 Defects Found by the Measures in the Second Group 
 

Measures 
Total 

Number of 
Defects 

Number of Level-1 
and Level-2 Defects 

Only 

Number of Defects Remaining in the 
Code (Level-1 and Level-2 only) 

CEG 7 7 1 

COM 113 29 1 

DD 11 6 4 

RT 7 5 5 

CF 6 6 6 

 
It should be noted that only the defects remaining in the code need to be considered to predict the 
reliability of the software system. A detailed description of all Level-1 and Level-2 defects 
remaining in the code is provided in Table 19.7. 
   
 

Table 19.7 Detailed Description of Defects Found by the Second Group of Measures 
 (Still Remaining in the Code) 

 

No. Defect Description CEG COM DD RT CF 

1 
The check algorithm of μp1 cannot 
detect coupling failures between address 
lines.  

  X X  

2 
The function “Copy the contents of the 
table to the Dual Port RAM” is not 
implemented in μp1 source code. 

   X  

3 
The function “Give up the semaphore” is 
not implemented in μp1 source code. 

   X  
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Table 19.7 Detailed Description of Defects Found by the Second Group of Measures  
(Still Remaining in the Code) (continued) 

 

No. Defect Description CEG COM DD RT CF 

4 
The check algorithm of μp2 cannot 
detect coupling failures between address 
lines.  

   X  

5 
The address lines test does not cover all 
16 address lines of μp2. 

  X   

6 
The application program of μp2 has a 
logic problem. 

  X   

7 
The check algorithm of CP cannot detect 
coupling failures between address lines.  

  X X  

8 
The logic to enter the CP diagnostics test 
is problematic. 

X X    

9 
Cannot detect incorrect value of the 
variable SA_TRIP_1_DEENRGZE. 

    X 

10 
Cannot detect incorrect value of the 
variable fAnalog_Input_6. 

    X 

11 
Cannot detect incorrect value of the 
variable Trip_condition. 

    X 

12 
Cannot detect incorrect value of the 
variable AIN[4]. 

    X 

13 
Cannot detect incorrect value of the 
variable chLEDs_Outputs. 

    X 

14 
Cannot detect incorrect value of the 
variable have_dpm. 

    X 

 
 
Table 19.8 presents the exact location of each defect in the delivered source code. From Table 
19.6 and 19.7, it is obvious that each measure discovered almost totally different defects. Only 
three out of the fourteen defects were simultaneously found by more than one measure. This 
implies the objectives of the measures are different and can be used to find different types of 
defects in the SRS, SDD, and code. It is also possible that a defect could not be found using only 
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these measures but the likelihood of this is very low, although it may be impossible to discover 
all existing defects through these measures. 
 

19.2.1.2 Obtaining the Actual Number of Defects Remaining in the APP 
 
Defects in the APP source code were identified through the Group-II measures. Unknown 
remaining defects in the APP system may still contribute to failure—ignoring them will result in 
an overestimation of reliability. The use of Capture/Recapture (C/R) models has been proposed 
to estimate the number of defects remaining in a software engineering artifact after inspection 
[Briand, 1997]. To determine the number of remaining defects, it is necessary to discuss C/R 
models, their use in software engineering, and their application specifically to the APP system. 
 
The five measures in Group-II were assigned to five inspectors whose abilities to detect defects 
were different. In addition, different defects have different detection probabilities. The C/R 
model introduced in NUREG/CR-6848 was applied to estimate the number of defects remaining 
in the APP.  
 

Table 19.8 Detailed Description of the Defects 
 

No. Defect Description 
Micro-
process

or
Modes Module 

1 
The check algorithm of μp1 cannot 
detect coupling failures between 
address lines.  

μp1 
Power-on 
Normal  

VAddr_Lines_Test() 

2 
The function “Copy the contents of 
the table to the Dual Port RAM” is not 
implemented in μp1 source code. 

μp1 
Calibration 
Tuning 

VCalibrate_Tune() 

3 
The function “Give up the 
semaphore” is not implemented in 
μp1 source code. 

μp1 
Calibration 
Tuning 

VCalibrate_Tune() 

4 
The check algorithm of μp2 cannot 
detect coupling failures between 
address lines.  

μp2 
Power-on 
Normal  

address_line_test() 
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 Table 19.8 Detailed Description of the Defects (continued) 
 

No. Defect Description 
Micro-
process

or
Modes Module 

5 
The address lines test does not cover 
all 16 address lines of μp2. 

μp2 
Power-on, 
Normal  

address_line_test() 

6 
The application program of μp2 has a 
logic problem. 

μp2 Normal update_application() 

7 
The check algorithm of CP cannot 
detect coupling failures between 
address lines.  

CP 
Power-on 
Calibration 
Tuning 

Addr_Line_Test() 

8 
The loop condition of CP’s PROM 
test is problematic. 

CP 
Power-on 
Calibration 
Tuning 

Chksum_Proc() 

9 
Cannot detect incorrect value of the 
variable SA_TRIP_1_DEENRGZE. 

μp1 Normal 
serial interrupt 
function 

10 
Cannot detect incorrect value of the 
variable fAnalog_Input_6. 

μp1 Normal application program 

11 
Cannot detect incorrect value of the 
variable Trip_condition. 

μp2 Normal application_function 

12 
Cannot detect incorrect value of the 
variable AIN[4]. 

μp2 Normal application_function 

13 
Cannot detect incorrect value of the 
variable chLEDs_Outputs. 

μp1 Normal 
Generate front panel 
LEDs output signals 
function 

14 
Cannot detect incorrect value of the 
variable have_dpm. 

μp2 Normal get_Semaphone 

 
 
Defects found by the Coverage Factor measure have different characteristics than defects found 
by the four other Group-II measures: their detectability does not depend on the inspector’s 
ability. Thus, the C/R model was only applied to the four other measures (CEG, COM, DD, and 
RT) to obtain the actual number of defects remaining in the APP system. 
 



 

340 
 

 

In the NUREG/CR-6848 study, the C/R model was applied only to the results of the Defect 
Density measurement that was performed by multiple inspectors. The defects were at the same 
level of detail. However, in this study, UMD attempted to apply the C/R model in the case of 
multiple-measurement approaches and the defects discovered may not be at the same level of 
detail. For example, Defect Density should discover defects more detailed than those discovered 
by Requirement Traceability. Yet it is necessary to maintain all defects at the same level of 
detail. That is, each defect represents only one functional problem, which is a numbered item 
specified in the SRS. Applying this new criterion to the defects found by the Group-II measures, 
Table 19.7 is modified as shown in Table 19.9. For example, the second and third defect were 
discovered using the Requirement Traceability measure. These two defects were affecting two 
sub-functions in the Calibration function of μp1. The Calibration function is a numbered 
specification in μp1 SRS. Thus, these two defects should be grouped together. 
 
 

Table 19.9 Modified Defects Description 
 

No. Defect Description CEG COM DD RT 

1 
The check algorithm of μp1 cannot 
detect coupling failures between address 
lines.  

  X X 

2 
The Calibration function of μp1 is not 
correctly implemented in the source 
code. 

   X 

3 
The check algorithm of μp2 cannot 
detect coupling failures between address 
lines.  

   X 

4 
The address lines test does not cover all 
16 address lines of μp2. 

  X  

5 
The application program of μp2 has a 
logic problem. 

  X  

6 
The check algorithm of CP cannot detect 
coupling failures between address lines.  

  X X 

7 
The logic to enter the CP diagnostics test 
is problematic. 

X X   
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The defect population size is given as: 
 1, 2, 3 (19.1)  

 
 
Where  

 the i-th defect population size estimator 

 the number of distinct defects found by t inspectors 

 the number of defects found by exactly one inspector 
 
The term  in Equation 19.1 is given as: 
 1 ∑  (19.2) 

 1 2 1 1∑  (19.3) 

 

1 2 1 1 6 11 2∑  (19.4)  

 
and  is given as:  
 max , ∑ 12 ∑ ∑ 1,0 1, 2, 3 (19.5)  

 
where 
 

, 1, 2, 3 (19.6)  

 
and  

 the number of inspectors ( 4) 

 the number of defects found by the j-th inspector 

 the number of defects found by exactly k inspectors, 1, … ,  
 



 

342 
 

 

 Table 19.10 shows the inspection information for the APP system: 
 

Table 19.10 Inspection Results for the APP System 
 

Measures CEG COM DD RT 

Inspector 1 3 4 5 

 1 1 4 4 

 
For the APP system: 
 
 The total number of distinct defects is D = 7 
 The number of defects found by one inspector is f1 = 4  
 The number of defects found by two inspectors is f2 = 3 
 The number of defects found by three inspectors is f3 = 0 
 The number of defects found by four inspectors is f4 = 0 
  
The results of Equations 19.2 to 19.5 are shown in Table 19.11. 
 

Table 19.11 Capture/Recapture Model Results for the APP System 
 

 1 2 3 

 0.6 0.8 0.8 

 0.061 0 0 

 11.67 8.75 8.75 

 
Sample coverage (SC), defined as the fraction of the detected defects, is calculated as follows: 
 711.67 0.60 60.0% 

 78.75 0.80 80.0% 

 78.75 0.80 80.0% 

 



 

343 
 

 

The point estimate of the defect-detection probability is given in Table 19.12. 
 

Table 19.12 Defects Discovery Probability 
 

Defect No. Detection Probability (Pi) 

1 0.5 

2 0.25 

3 0.25 

4 0.25 

5 0.25 

6 0.5 

7 0.5 

 
From Table 19.12, the coefficient of variation (CV)—defined as the standard deviation of p over 
the arithmetic mean of p—is 0.374. A Jackknife model [Otis, 1978] is appropriate when CV < 
0.4 and the sample coverage is greater than 0.50. This is the case for the APP system. By using a 
second-order Jackknife model, the result is: 
 2 3 21 4 3 54 4 412 3 11 

 
Therefore, the best estimation of the number of remaining defects, , for APP is 11. As 
addressed earlier in this section, the C/R model was applied to the seven defects identified 
through CEG, COM, DD, and RT-related inspections. These seven defects are listed in Table 
19.9. Since the application of CF to APP was incomplete (due to time and resource constraints), 
the defects identified through CF were not included in the C/R analysis. Thus, the remaining 
APP defects estimated through C/R should not be compared with the 14 defects listed in Table 
19.8, but with the seven defects listed in Table 19.9. 
 

19.2.2  Reliability Estimation Comparison 
 
As stated in Chapter 4, there are four operational modes in the APP system: power-on, normal, 
calibration, and tuning. The failure mechanisms in the power-on, calibration, and tuning modes 
are simple: any failure in these modes is considered a failure of the APP system. Unfortunately, 
the detailed, actual failure information in each mode is not available to UMD. Also, it is 
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unimportant to individually consider these modes because during its actual usage, APP will be 
bypassed during these modes. The most important mode is the normal operation mode. All data 
in the normal operational mode is available to UMD. The true failure probability was estimated 
successfully in Chapter 18 and will be used in the following to validate the RePSs and rankings. 
 
The probability of failure and reliability estimation results from the twelve measures is shown in 
Table 19.13. 

 
Table 19.13 Reliability Estimation Results 

 

Measure 
Probability of Failure  

(per demand)
Reliability 

(per demand) 

BLOC 0.0000843 0.9999157 

CEG 6.732 × 10-13 0.999999999999327 

CMM 0.0001144 0.9998856 

COM 6.683 × 10-13 0.999999999999332 

CF 1.018 × 10-11 0.9999999999898 

CC 0.0001746 0.9998254 

DD 2.312 × 10-10 0.9999999997688 

FDN 6.450 × 10-11 0.9999999999355 

FP 0.0000602 0.9999398 

RSCR 0.0000722 0.9999278 

RT 3.280 × 10-10 0.9999999996720 

TC 5.805 × 10-10 0.9999999994195 

 
 
It should be noted that the probabilities of failure obtained from the Group-I are much larger than 
those obtained from Group-II. This is because: 
 
1. The Extended Finite State Machine (EFSM) can model the actual structure of the APP 

system. For instance, during normal operation, μp1 and μp2 work redundantly for safety 
concerns. If either of the microprocessors calculates a trip condition, the APP system will 
send out a trip signal. However, the actual structure of the system may be very difficult to 
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take into account in Musa’s exponential model because it is difficult to separate the 
number of defects per processor and know what type of failure will occur.  

2. ESFM models simulate the actual fault exposure information of the system while the 
fault exposure ratio is estimated as 4.2 × 10-7 in Musa’s model. This number is outdated 
and incorrect by orders of magnitude for safety critical systems.  

3. The average number of defects found by Group-I is 17 and the average number of defects 
found by Group-II is only three.  

 
A more-detailed discussion of the reliability estimation results is provided in the following 
subsections. 

19.2.2.1  Reliability Estimation from Group-I Measures 
 
The results from Group-I are shown in Table 19.14. The reliability-estimation results are still 
very low compared with the measures in Group-II. This is mainly because the high-level 
structure of the APP system and the defect type cannot be taken into account in the reliability-
estimation process for the following measurements: BLOC, CMM, CC, and RSCR.  
 

Table 19.14 Failure Probability Results for Measures in the First Group 
 

Measure 
Number of 

Defects 
Probability of Failure 

(per demand)
Reliability 

(per demand) 

BLOC 14 0.0000843 0.9999157 

CMM 19 0.0001144 0.9998856 

CC 29 0.0001746 0.9998254 

FP 10 0.0000602 0.9999398 

RSCR 12 0.0000722 0.9999278 

 

19.2.2.2  Reliability Estimation from Group II Measures 
 
Because the exact location and nature of the defects found by the second group of measures 
could be determined, the EFSM model, the ROBDD program, or the Markov Chain Model for 
the four distinct operational modes could be built based on this information.  
 
The mechanisms of failure should also be incorporated into the models. As stated in Chapter 4, 
there are four operational modes in the APP system: power-on, normal, calibration, and tuning.  
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During the normal operational mode, defects can trigger two basic types of failures. In the case 
of the APP system, the failures are defined as follows: 
 
Type I:  The APP system should send out a TRIP signal but it did not; 
Type II:  The APP system should not send out a TRIP signal but did. 
 
The failure mechanism in power-on, calibration, and tuning modes are simple: any failure in 
these modes is considered a failure of the APP system. 
 
From the safety point-of-view, only a Type-I failure is critical and this concern was applied to 
the design of the system by using redundant microprocessors. Type-II failures should also be 
considered because there could be significant expenditures as a consequence of an unnecessary 
TRIP. It should be noted that only these two types of failure are considered. The third failure 
type, which is identified in Chapter 10 (Coverage Factor), is neglected in the discussion because 
it relates only to auxiliary failures.  
 
The failure probability estimates obtained using measures in Group-II are shown in Table 19.15 
and illustrated in Figure 19.3. The Coverage Factor was excluded from this table and figure 
because it only focused on the normal operational mode.  
 
 

Table 19.15 Failure Probability Results in Each Mode for Measures in the Second Group 
 

Measures 

Probability of Failure (per demand) 

Power-on Normal Calibration Tuning

Type I Type II Type I Type II Type I Type II Type I Type II

CEG 0 0 0 0 2.81e-11 2.81e-11 2.81e-11 2.81e-11 

COM 0 0 0 0 2.78e-11 2.78e-11 2.78e-11 2.78e-11 

DD 8.45e-11 8.45e-11 1.17e-10 1.17e-10 0 0 0 0 

RT 1.03e-10 1.03e-10 1.64e-10 1.64e-10 3.36e-13 3.36e-13 0 0 

 
 
 
 
 
 
 
 
 



 

347 
 

 

 
 

Figure 19.3 Failure Probability Estimates for Measures in the Second Group 
 
The failure probability of the APP system can be calculated using the failure probability results 
shown in Table 19.16 and the operational-mode profile presented in chapter 4. The results are 
shown below: 
 

 
Table 19.16 Failure Probability Results for Measures in the Second Group 

 

Measure 
Number of 

Remaining Defects 
Probability of Failure 

(per demand)
Reliability 

(per demand) 

CEG 1 6.732 × 10-13 1 

CF 6 1.018 × 10-11 0.9999999999898 

COM 1 6.683 × 10-13 1 

DD 4 2.312 × 10-10 0.99999999977 

RT 5 3.280 × 10-10 0.99999999967 

 
As shown in Figure 19.3, the probabilities of failure obtained from CEG and COM are very 
close. This is because their failures are caused by the same defects in both calibration and tuning 

Probability of Failure vs Different Measures

0

5E-11

1E-10

1.5E-10

2E-10

2.5E-10

3E-10

3.5E-10

CEG COM DD RT

Measures

P
f Power On

Normal

Calibration

Tuning



 

348 
 

 

modes. No defects were found in the power-on and normal operation modes. It should be noted 
that only the defects remaining in the code were considered and used to obtain the probability of 
failure of the APP system.  
 
Since both measures are specifically designed to discover requirement faults, their focus is not 
defect identification in code, and their performance for reliability evaluation is low. CEG is used 
to check logical relationships between inputs and outputs while completeness, COM, is used to 
check the completeness of the specifications. Table 19.17 shows the original defects found in the 
requirements specifications.  
 

Table 19.17 Original Defects Found in the APP Requirement Specification 
 

Modes 
CEG46 COM

Number of Defects Number of Defects 

Power-On 3 14 

Normal 3 9 

Calibration 1 6 

Tuning 1 6 

 
It is noticed that both CEG and COM are powerful tools to find imperfections in the SRS. 
However, most of the defects found in the SRS have been fixed later, such as in the design-
development phase and the coding phase. Therefore, the reliability estimation based on the 
original results is inappropriate. To get better reliability estimation, checking if the defects are 
still in the code is necessary. Further research can focus on applying CEG and COM measures 
directly to the SDD and the source code.  
 
Defect density is the most powerful measure to discover the defects remaining in the code by 
checking all the SRS, SDD documents, and source code. As already shown in Table 19.6, four 
out of 11 defects were found by the defect-density measure. Application of this measure, 
however, requires more software engineering experience than that which is required to 
implement measures like CEG and COMs. To obtain a better result, it is recommended that the 
checking speed of the documents should not exceed two pages per hour.  
 
For the requirements traceability measure, the defects were found in power-on, normal operation, 
and calibration mode. No defect was found in the tuning mode. 
 

                                                 
46 CEG defects documented in Chapter 7 were not partitioned per mode. Thus the total number of defects in Chapter 7 and in 
Table 19.17 may not necessarily be equal. One of the defects was common to calibration and tuning. 
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Since all of the above four measures need to examine the SRS, SDD, and source code carefully, 
the measurements are time-consuming. Constructing a corresponding EFSM model is also time-
consuming.  
 
Coverage factor is a special measure in this group. A Markov Chain model is used to estimate 
the reliability. In this study, because of several technical limitations, the complete fault injection 
experiments could not be conducted for the three microprocessors in the APP system. Only two 
safety function microprocessors were studied and the communication microprocessor was not 
subjected to fault injection. Thus the probability of failure in the power-on, calibration, and 
tuning mode could be obtained. Only the reliability in the normal operation mode was calculated. 
This is why the probability of failure from the coverage factor measure is so low. Also the faults 
were only injected in the RAM, PROM, and registers. It is obvious that the reliability has been 
overestimated.  

19.2.2.3  Reliability Estimation from Group-III Measures 
 
In the case of Test Coverage, the fault-exposure ratio, K, can be updated using the extended 
finite state machine models and defects found during testing. However, if no defect is found 
during the testing, then the method is not applicable. The problem can be circumvented by 
considering the last version with faults.  
 
From the results, it is found that for different subsystem structures, there are distinct fault 
exposure ratios. The seven defects used for estimating the new K ( ) were only in power-on 
and normal operation mode. The failure probability in power-on made a very small contribution 
to the total failure probability of the APP system, so only the fault exposure ratios in normal 
operation mode are considered. Therefore, from the test coverage measure, the  was obtained 
from the extended finite state machine results and shown in Table 19.18. 
 

Table 19.18 Fault Exposure Ratio Results 
 

 Fault Exposure Ratio 

Musa’s K 4.2 × 10-7 

New ratio K*( ) 4.5 × 10-12 

 
19.2.2.4  Applying the  to the Twelve Measures 
 
As shown in Table 19.18, the actual fault exposure ratio for the APP is much less than 4.2 × 10-7. 
It is proved that Musa’s K is no longer suitable for safety critical systems. By applying the new 
fault-exposure ratio, the reliability for the APP system from the Test Coverage and Fault-days 
Number measure are: 
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 · · . . . 0.9999999994195⁄  · · . . . 0.9999999999355⁄  

 
By applying this new fault-exposure ratio to Musa’s model, the results from the Group-I 
measures are very close to those calculated using the measures in Group-II. Table 19.19 shows 
the results if this  (fault-exposure ratio) obtained from the Test Coverage measure is applied 
to the measures in Group-I. 
 

Table 19.19 Updated Results if  is Applied to Group-II Measures 
 

Measure 
Number of 

Defects 

Probability of Failure 
with Old K 

(per demand) 

Probability of Failure 
with  

(per demand) 

BLOC 14 0.0000843 9.03 × 10-10 

CMM 19 0.0001144 1.23 × 10-09 

CC 29 0.0001746 1.87 × 10-09 

FP 10 0.0000602 6.45 × 10-10 

RSCR 12 0.0000722 7.74 × 10-10 

 
In conclusion, there are three approaches to update the results for the Group-I measures: 
 
1. Considering the high-level system structure; 
2. Using the new fault-exposure ratio ( ) that can be obtained using the Test Coverage 

ESFM model. 
3. Obtaining the exact  for each subsystem in each mode based on the number of defects 

found using fault-location models [Nejad, 2002].  
 
It is obvious that the third approach is the strongest, although it is time-consuming and not 
always applicable. If the structure of the subsystem is unknown or the system cannot be divided 
into separate modes, then the third approach cannot be applied. Therefore, for most systems, it is 
recommended to use the second approach.  
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19.2.2.5  Validate the Ranking by Reliability Comparison 
 
Having obtained reliability predictions based on each of the twelve measures, the estimations 
obtained were compared and contrasted to each other and to the rankings established in 
NUREG/GR-0019. 
 
First, the inaccuracy ratio ( ) is defined to quantify the quality of the software prediction: 
 log  

where 
    is the inaccuracy ratio for a particular RePS; 
 Pf    is the probability of failure-per-demand from reliability testing or operational    

  data; 
  is the probability of failure-per-demand predicted by the particular RePS. 
 
This definition implies that the lower the value of , the better the prediction. Table 19.20 
provides the inaccuracy ratio for each of the 12 measures. The rankings based on the calculated 
inaccuracy ratio and the experts’ rankings obtained in NUREG/GR-0019 are also provided in 
Table 19.20. The rates of these 12 measures during the testing phase are shown as the last 
column of Table 19.20. 
 
 

Table 19.20 Inaccuracy Ratio Results and Rankings for Each RePS 
 

Measure 
Probability of 

Failure /demand 
ρ RePS 

Rankings 
based on 
ρ RePS

Experts’ 
Rankings 

Rate 

BLOC 0.0000843 5.3764 10 11 0.4 

CEG 6.732 × 10-13 2.7243 7 10 0.44 

CMM 0.0001144 5.5091 11 7 0.6 

COM 6.683 × 10-13 2.7211 6 12 0.36 

CF 1.018 × 10-11 1.5416 5 2 0.81 

CC 0.0001746 5.6927 12 3 0.72 

DD 2.312 × 10-10 0.1853 2 1 0.83 
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Table 19.20 Inaccuracy Ratio Results and Rankings for each RePS (continued) 
 

Measure 
Probability of 

Failure /demand 
ρ RePS 

Rankings 
based on 
ρ RePS

Experts’ 
Rankings 

Rate 

FDN 6.450 × 10-11 0.7397 4 4 0.72 

FP 0.0000602 5.2303 8 9 0.5 

RSCR 0.0000722 5.3095 9 5 0.69 

RT 3.280 × 10-10 0.0334 1 8 0.55 

TC 5.805 × 10-10 0.2146 3 6 0.68 

 
Several conclusions can be drawn from these results as follows: 
 
1. From the table, it is clear that RePSs that use structural information and actual defects 

(Group-II RePSs) are clearly superior to RePSs that do not use structural information or 
actual defects (Group-I RePSs). The rankings based on the inaccuracy ratio appear not to 
be consistent with the expert-opinion rankings established in NUREG/GR-0019. UMD 
concludes that this is due to the fact Group-I RePSs use an exponential reliability-
prediction model with a fault-exposure ratio parameter set to 4.2 × 10-7. This parameter 
always dominates the results despite possible variations in the number of defects. This is 
evidenced by the small variation of the inaccuracy ratios observed for Group-I RePSs. 
Further development effort could focus on creating better prediction models from these 
measures or as suggested in Section 19.2.2.4 on experimentally obtaining a more accurate 
fault exposure ratio for the application instead of using a universal parameter such as the 
value 4.2 × 10-7. 

 
2. The rest of the section validates the rankings within Group-II RePSs. 
 
In Group-II CF could not be used in the validation of the rankings because the fault-injection 
experiments were not complete (see Table 19.21). Thus, UMD only compared the other four 
measures in this group to the experts’ ranking. DD remains a highly rated measure while CEG 
and COM are still rated low. RT is ranked higher than it should (i.e., it is found here that RT is 
better than DD). UMD carefully studied the reasons for this inversion as shown below: 
 

1)  A formal approach for measuring RT can be easily established. Indeed, in the case of RT 
one needs only to verify whether an item is present in the requirements documents and 
the code. Figure 19.4 illustrates how a simple measurement matrix can be built to 
systematically trace the requirements. 
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Table 19.21 Validation Results for Group II RePSs 
 

Measure Rankings based on ρ RePS Experts’ Rankings 

CEG 4 3 

COM 3 4 

CF N/A N/A 

DD 2 1 

RT 1 2 

 
 

2)  In the case of DD, checklists are available to guide the inspection process. However, the 
process remains difficult to execute for the following reasons: 

 
 For a single segment of requirement or design specification, or source code module, a 

large number of items need to be verified (see the Table 19.22 extract from Ebenau 
[Ebenau, 1993]). 

 
Table 19.22 DD Measure Checklist Information 

 

Inspection of 
Number of Items That Need to 

be Checked in the Checklist 

Software Requirements 12 

Detailed Design 16 

Code 46 

 
 Some of the items are high level and cannot be verified systematically nor answered 

objectively. For instance, the checklist does not provide a clear definition of “complete,” 
“correct,” and “unambiguous” for an item such as: “Are the requirements complete, 
correct, and unambiguous?” 

 The larger the application, the more difficult a complete measurement of defect density 
becomes. 
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3. As for Group-III RePSs, one cannot conclude FDN was ranked higher than TC in the case of  
the APP system but the actual experts’ ratings are close. 

 
4. As shown in column 4 and 5 of Table 19.20, the APP results only partially confirm the 

experts’ rankings obtained in NUREG/GR-0019. This may be due to the following reasons: 
 

1) It has been 10 years since the experts ranked the measures. During the past 10 years, new 
tools, techniques, and methodologies have been created or proposed. Additional experiments 
have been run for safety-critical and non-safety-critical systems. Our research has capitalized 
on these new developments while the experts did not have access to this extra knowledge. 
The experts’ ranking on the measures may thus not be in par with the current state of the art 
and probably need to be updated. 

 
2)  The experts ranked the measures and not the RePSs. It may be that our modeling effort has, 

in some instances, involuntarily created stronger RePSs than in other instances. In some cases 
(e.g., Test Coverage), we have increased the reliability-prediction potential by adopting 
strong support measures. For example, the precise definition of Test Coverage is “the 
percentage of the source code covered during testing.” In this study, we have taken advantage 
not only of the Test Coverage value but of the number and location of defects found during 
testing.  

 
In conclusion, the experts’ rankings could and should be updated by using the Bayesian theory so as 
to reflect the strength of the measure as well as the strength of the RePS. The original experts’ 
rankings can serve as prior information and the APP results are evidence that can be used to update 
this prior information. Further validation of this point could be obtained by collecting more data 
points as evidence to further update the experts’ rankings. 
 
The remainder of this section compares the results obtained in this study with results obtained in the 
preliminary validation report (NUREG/CR-6848). The application considered in NUREG/CR-6848 
was PACS, the control software activating a secure gate. 
 
In NUREG/CR-6848, five measures (DD, TC, RT, FP, and BLOC) were ranked with respect to 
their prediction error ( ) defined as: 
 | |1  

 
where  

  the probability of success-per-demand obtained from reliability testing 
  the probability of success-per-demand obtained from the RePS 

 
To be consistent with the method followed in this report, the five measures are re-ranked using 
the inaccuracy ratio proposed in this section. The vales of ρ and ranking results are presented in 
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Table 19.23. The validation rankings (and ρ) for these five measures on APP system are also 
listed in Table 19.23.  

 
As one can conclude from Table 19.23, RT ranks better than DD for APP while DD and RT 
ranked identically in NUREG/CR-6848. The reasons have been examined earlier in this section.  
 

 Table 19.23 Comparison of the Rankings with Results in NUREG/CR-6848 
 

Measures 
Rankings in this 

study (APP) 
ρ (APP) 

Rankings in 
NUREG/CR-6848 

(PACS 1) 
ρ (PACS 1) 

DD 2 0.1853 1 0.0345855 
TC 3 0.2146 3 0.0395085 
RT 1 0.0334 1 0.0345855 
FP 4 5.2303 4 1.631691 

BLOC 5 5.3764 5 3.4771213 
 

19.3  Discussion about the Measurement Process 
 
An estimate of the time for training, performing the different measurements, and calculating the 
values of predictions given by each corresponding RePSs is given in Table 19.24. Training here is 
defined as becoming familiar with the required tools prior to performing measurements. Some 
measurements are very time consuming. Table 19.24 shows the total time spent for the 12 RePSs. 
 

Table 19.24 Total Time Spent for the Twelve RePSs 
 

Measure Total Time Spent Duration 

Bugs Per Line of Code  160 hrs (20 days) Short 

Cause-effect Graphing 350 hrs (44 days) Medium 

Capability Maturity Model 120 hrs (15 days) Short 

Completeness 512 hrs (64 days) Medium 

Coverage Factor 752 hrs (94 days) Long 

Cyclomatic Complexity 360 hrs (45 days) Medium 

Defect Density 704 hrs (88 days) Long 

Fault Days Number 240 hrs (30 days) Short 

Function Point 128 hrs (16 days) Short 
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Table 19.24 Total Time Spent for the 12 RePSs (continued) 
 

Measure Total Time Spent Duration 

RSCR 360 hrs (45 days) Medium 

Requirements Traceability 640 hrs (80 days) Long 

Test Coverage 904 hrs (113 days) Long 

 
The duration is defined as follows: 
 
1. Short: The set of measurements and calculations can be finished within 300 hours 
2. Medium: The sets of measurements and calculations require at least 300 hours and no more 

than 600 hours 
3. Long: The sets of measurements and calculations require more than 600 hours 
 
Measurements and calculations related to BLOC, CMM, FDN, and FP RePSs can be completed 
quickly because there is no need to inspect the SRS, SDD, and code. Measurements and calculations 
related to CEG, Completeness, CC, and RSCR require careful inspections of the SRS or the code and 
therefore require more time. Measurements related to DD and RT require inspections of all the 
related documents. As a result, the RePSs measurement process for these two measures is slow. The 
time required for the measurement and calculations related to coverage factor and Test Coverage 
were excessive. This is because a great deal of time was spent on modifying the original APP source 
code so that it could be compiled successfully by current compilers. In addition, for the measurement 
of Test Coverage, a great deal of time was spent modifying the original test cases for the current 
simulation environments. If there were no such compatibility problems, the measurements would 
have been completed much faster. 
 
For CC and RSCR, additional effort (30 days for each) was spent developing new correlation models 
linking CC and RSCR measurements to a number of software defects. 
 
The effort includes the time spent for tool acquisition, comparison between possible tools, 
training to become familiar with the identified tools, and an initial upfront cost that would remain 
identical whether small or large applications are considered and would disappear for routine 
applications of the methodology. The effort also specifically includes measurement costs that 
may already be part of a routine development process. Measurements and RePSs construction 
were performed by graduate students that were implementing and refining the methodology as 
they applied it. It is expected that a routine application of the methodology would be less time-
consuming. Finally, the APP was developed more than 10 years ago and the development 
process did not benefit from current tools and methods (e.g., the effort devoted to RT 
measurement could have been improved with current traceability tools). 
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Some measurements also are quite costly. Table 19.25 shows the required tools and corresponding 
cost for performing measurements for these twelve measures. 
 

Table 19.25 Cost of the Supporting Tools 
 

RePSs Required Tools Cost 

Bugs Per Line of Code  RSM Software Free 

Cause-effect Graphing UMD Software 1 (CEGPT) $750 

Capability Maturity Model CMM Formal Assessment $50,000 

Completeness TestMaster $50,000 

Coverage Factor 
Keil μVision 2 $320 

IAR EWZ80 $900 

Cyclomatic Complexity RSM Software $Free 

Defect Density TestMaster $50,000 

Fault Days Number UMD Software 2 (FDNPT) $750 

Function Point FP Inspection $7,000 

RSCR No $0 

Requirements Traceability TestMaster $50,000 

Test Coverage 

TestMaster $50,000 

Keil μVision 2 $320 

IAR EWZ80 $900 

 
For three of these 12 RePSs, corresponding measurements have to be performed by experts. 
Table 19.26 presents related information. 
 
 



 

359 
 

 Table 19.26 Experts Required 
 

Measure Expert Training 

CMM 
CMM Authorized Lead Appraiser and 
Development Team 

SEI Formal Training 

DD Senior Software and System Engineer 10 Years Experience 

FP 
Function Point Analyzer and Development 
Team 

Function Point Training 

 
As shown in Table 19.26, some tasks must be performed by senior-level software- or system-
engineers with 10 years training. This requirement may vary depending on the talent of the engineer, 
but it is clear that experience in software engineering and nuclear systems will be necessary to find 
defects in nuclear power plant safety system software source code.  
 

19.4  Difficulties Encountered during the Measurement Process 
 
This section describes the experience with collecting and analyzing data during the measurement 
process and discusses the issues encountered. Possible solutions are briefly addressed. 
 
Two types of data were collected and analyzed: 1) data used to predict the reliability and 2) data used 
to estimate the reliability. The remainder of this section is organized as follows: Section 19.4.1 
discusses the study and problems encountered with the data collection and analysis for the reliability 
prediction; Section 19.4.2 discusses the study and problems encountered with the data collection and 
analysis for the reliability estimation. Possible solutions to the encountered problems are briefly 
addressed in Section 19.4.3. 

19.4.1  Data Collection and Analysis for Reliability Prediction 

 
For the 12 measures, detailed measurement rules should be provided to measure each primitive. 
Unfortunately, these rules are imprecisely defined. As an example, in the case of the BLOC measure, 
problems were encountered with the definition of a “module.” A “module” is defined as “an 
independent piece of code with a well-defined interface to the rest of the product” in [Schach, 1993]. 
IEEE [IEEE, 1990] defines “module” in the following two ways: “A program unit that is discrete and 
identifiable with respect to compiling, combining with other units, and loading,” or “A logically 
separable part of a program.” Gaffney, author of BLOC [Gaffney, 1984], however, did not provide a 
clear definition of “module” but only mentioned it as a “functional group.” The existence of multiple 
definitions of the module concept and the lack of consensus make its measurement problematic. The 
same endemic problem reoccurs for most of the measures considered. 
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For measures such as CEG, COM, DD, and RT, which need the direct inspection of the software 
requirement specifications (SRS), we encountered difficulties collecting and analyzing the data 
mainly because of issues with the clarity of the documents. Because the APP was developed more 
than ten years prior to the research, some of the documents did not follow or only partially followed 
the IEEE standards. More specifically, the first step of the inspection is typically to identify the 
“functional requirements” defined in the SRS. The IEEE standards mentioned that the keyword 
“shall” should be used to indicate a functional requirement. However, many segments of 
specifications that used this keyword were not functional requirements. Sometimes “shall” indicated 
“descriptive requirements.” Also, the SRSs under study failed to be unambiguous. For example, it 
was difficult to count the number of unique cause/effect pairs for the CEG measure since the authors 
of the SRS repeated themselves frequently. It should be noted that if the CEG measurement is done 
manually, the results are highly dependent on the ability of the analyst. This is mainly because: 
 
1)   It is not very easy to differentiate the prime effects from the intermediate effects if the analyzer 
does not have a comprehensive knowledge of the system. 
 
2)  It is not easy to identify the true logical relationship between the causes and the constraints since 
the relationships are usually implied and not specified explicitly using keywords like “and,” “or,” 
“either,” etc. 
 
It also should be mentioned that for the above four measures, the measurement process was time 
consuming. A considerable amount of time was spent to manually parse the natural language SRS. 
There were 289 pages of SRS to be inspected and the total measurement time for the COM measure 
was 512 hours (64 work days) and 350 hours for the CEG measure. In the case of DD, for a single 
segment of requirement or design specification, or source code module, a large number of items need 
to be verified (12 items for SRS, 16 for SDD, and 46 for code). Some of the items are high level and 
cannot be verified systematically nor answered objectively. For instance, checklists available for DD 
do not provide a clear definition of “complete,” “correct,” and “unambiguous” for an item such as: 
“Are the requirements complete, correct, and unambiguous?” 
 
In the case of the CMM measure, a standard CMM-level assessment had not been performed for the 
company that developed the software module. Furthermore, the software module was ten years old 
and most of the development team members were no longer working with the company. The CMM 
assessment could only be conducted based on the available team member’s answers to the Maturity 
Questionnaire. As a consequence, any results of an assessment are post-mortem and, as such, do not 
qualify for a formal assessment. 
 
For measures that require the collection of the software-development process data, we were unable to 
collect the exact required data since those data were not documented or clearly documented in the 
software development documents (SRS, SDD code, and V&V). For instance, in the FDN measure, 
the exact effort for each development phase could not be obtained. This is because the development 
effort for each team member was not recorded during the original development because the original 
development had not envisioned the measurement of FDN. Even if these data had been recorded, the 
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exact effort for each phase would have been hard to measure since the development did not precisely 
follow a waterfall development model. Developers did go back to work on the SRS after the code 
was written. 
 
Once the indirect indicators are measured, they are linked to reliability prediction models. Some of 
the RePS models are based on the PIE [Voas, 1992] technique and require the actual operational 
profile (OP). OP is used to measure software reliability by testing the software in a manner that 
represents actual use or it is used to quantify the propagation of defects (or unreliability) through 
EFSM models. However, determining the OP of the system is a difficult part of software reliability 
assessment in general [Musa, 1992].  
 
We assessed the infrastructure inputs related OP by inspecting the software requirement specification 
and relied on a related hardware component failure database to quantify portions of the OP. 
Unfortunately, some of the hardware-failure-rate information was not available in the database, i.e., 
the address line failure rate. In addition, we discovered that the information contained in the database 
was typically too generic. For instance, we were looking for the failure rate for an 8 kB RAM. 
However, only the general failure rate of the RAM was given without mention of the size. Also, 
obtaining such information from the manufacturer revealed itself as being impossible because of the 
obvious business implications.  
 
The plant-inputs-related OP was assessed by examining the operational data. The problem 
encountered here was the need to interpret the operational data available. We were not able to 
analyze the data correctly without the help of the plant experts. According to their opinions, the 
following three categories of data should not be considered part of the operational data:  
 
1) Outage data: Data recorded during plant outages cannot be considered an integral part of the 

normal operational data set. Indeed, data recorded during these time periods is out-of-range and 
basically meaningless;  

2) Missing data: Some data is missing from the data set. This data is typically labeled: “bad input,” 
“shutdown,” and “under range;” 

3) Aberrant data: There were several strange records either with a negative reactor flow value or an 
extremely large flow value (of the order of 1026, which far exceeds normal values that are 
typically of the order of 105). 

 
Once the valid operational data was identified, a statistical extrapolation method was used to estimate 
the trip condition probability due to the rarity of the events. However, the accuracy of the 
extrapolation should be further validated and may jeopardize the validity of the profile. 
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19.4.2  Data Collection and Analysis for the Reliability Estimation 

 
The quality of the safety-critical system under study is measured in terms of its reliability estimate. 
Reliability was estimated through operational data. This type of operational data was obtained mainly 
based on the problem records provided by the nuclear power plant that utilized the system under 
study for ten years.  
 
The main problem encountered was the analysis and interpretation of the problem records. More 
specifically, since the records documented all the problems experienced with the reactor protection 
system, it included the actual failures/false alarms of the entire protection system and the actual 
failures/false alarms of the digital system itself. The first step of the analysis required distinguishing 
actual failures of the digital system from the others. For example, one problem record described the 
digital system as working improperly due to a connection problem when attempting to reinsert the 
digital system into the cabinet. This problem, apparently, was not an actual digital system failure. 
 
The second step of the analysis required distinguishing software module failures from the hardware 
failures of the digital system. For example, one of the problem records documented that a software 
module was sent back to its manufacturer since a trip signal was sent out when it should not have 
been. However, none of the testing or other diagnostic efforts performed by the manufacturer 
identified a failed component or any other problem. 
 
Another problem encountered was the identification of the actual usage duration of each software 
module. A typical safety-critical system possesses redundant units. Thus, multiple digital systems 
and correspondingly, multiple software modules, were installed to monitor one nuclear reactor unit. 
The actual usage duration for each such module differed. Some of the modules were in active use, 
others were kept as cold spares while others might have been sent back to their manufacturer for 
repair or diagnostics. The exact usage duration was difficult to determine since part of the 
information necessary to determine usage was kept at the plant while other information was kept by 
the manufacturer under different denominations. Sometimes the information provided by these two 
organizations was not consistent.  

19.4.3  Possible Solutions 

 
As discussed in Section 19.4.1, the measurement process can be extremely time-consuming, error 
prone, and highly dependent on the qualification of the inspectors involved. Two solutions to these 
problems are possible: 1) Training and certification of inspectors; 2) Automation of the measurement 
process. 
 
For TC and RT, training would focus on how to trace requirements forward to the source code and 
from the source code back to the requirements. For DD, trainees should understand how to inspect 
different software system artifacts. For CEG and COM, trainees should know how to distinguish the 
functional requirements from the descriptive requirements. For any of these measures, trainees 
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should already have some experience in developing software systems. They also should have had at 
least an introductory course on software engineering.  
 
For the measures under study, much of the measurement is manually accomplished, so training is 
probably the largest factor for ensuring repeatability. The measures should be further formalized and 
industry-wide standard definitions also might improve the current situation, especially if the 
measurement rules that support the definition can be embedded in tools. As such, developing tools 
for automatic extraction of semantic content from the different artifacts created during the 
development process is one of the possible solutions.  
 
Audit of the data collection process also should be made part of an organization’s processes. There 
should be an independent evaluation of the quality of the data collected, to ascertain compliance to 
standards, guidelines, specifications and procedures. 
 
Since data collected by different companies may not always be consistent as discussed in Section 
19.4.2, when multiple companies enter an interaction, sharing of information standards and tools or 
data repositories between the companies should be defined. 
 

19.5  Recommended Measures and RePSs 

 
A panel of experts was invited to review and provide comments on the methodology and results 
presented in this report. The following experts were contacted and invited to participate in the 
review:  
 
· David N. Card, Fellow, Software Productivity Consortium 
· J. Dennis Lawrence, Partner, Computer Dependability Associates, LLC 
· Michael R. Lyu, Professor, Chinese University of Hong Kong, and 
· Allen P. Nikora, Principal Member, Jet Propulsion Laboratory  
 
As an integral part of their review of this document and based on the results of this research, the 
experts recommended a subset of the measures and corresponding RePS for use. The experts elected 
to recommend a measure if the prediction error, ρ, of its related RePS was less than 1 (see Table 
19.27).  
 

Table 19.27 Recommended Measures 
 

Measure 
Probability of 

Failure/demand
ρ 

Recommended? 
(Yes/No) 

BLOC 0.0000843 5.3765 No 

CEG 6.732 × 10-13 2.7243 No 
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 Table 19.27 Recommended Measures (continued) 
 

Measure 
Probability of 

Failure/demand
ρ 

Recommended? 
(Yes/No) 

CMM 0.0001144 5.5091 No 

COM 6.683 × 10-13 2.7211 No 

CF 1.018 × 10-11 1.5416 No 

CC 0.0001746 5.6927 No 

DD 2.312 × 10-10 0.1853 Yes 

FDN 6.450 × 10-11 0.7397 Yes 

FP 0.0000602 5.2303 No 

RSCR 0.0000722 5.3095 No 

RT 3.280 × 10-10 0.0334 Yes 

TC 5.805 × 10-10 0.2146 Yes 

 
 

19.5.1  Recommended Use of this Methodology in Regulatory Reviews 
 
This section discusses the recommended use of the RePS theory for nuclear regulatory review. 
  
IEEE Std 7-4.3.2 clause 5.3.1.1 [IEEE, 2003] specifies: 
  
 The use of software quality metrics shall be considered throughout the software life cycle to 

assess whether software quality requirements are being met. When software quality metrics 
are used, the following life cycle phase characteristics should be considered: 

  — Correctness/Completeness (Requirements phase) 
  — Compliance with requirements (Design phase) 
  — Compliance with design (Coding phase) 
  — Functional compliance with requirements (Test and Integration phase) 

— On-site functional compliance with requirements (Installation and Checkout 
phase) 

  — Performance history (Operation and Maintenance phase) 
Table 19.28 describes how each measure supports these six characteristics and therefore supports the 
regulatory review process. Symbol “√” in the table indicates that a measure supports a specific 
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characteristic. “N/A” is used when a measure is not applicable to a specific lifecycle phase. 
Symbol “◊” indicates that a measure does not directly support a specific characteristic but could 
assist the review process, i.e., serve as a general indicator. Group-I measures fall into the “◊” 
category. These measures cannot tell us the exact nature of problems encountered. For example, 
a high value of CC cannot tell us whether the application contains a large number of functional 
compliance issues. However, if one compares multiple modules whose values of CC have been 
assessed, a high CC for one module while another is small may indicate that the latter module 
would be less likely to contain compliance with design issues. In essence, these measures should 
only be used as general “indicators” of fault proneness. But in order to use these indicators, one 
will need to define acceptable and unacceptable ranges of values for these indicators. For this, 
the reader is referred to some of the efforts made in the software engineering literature. 
 

Table 19.28 Measures and Life-Cycle Phase Characteristics 
 

Measures 

Correctness 
Completeness 
(Requirement 

phase) 

Compliance 
with 

requirements 
(Design 
phase) 

Compliance 
with design 

(Coding phase)

Functional 
compliance 

with 
requirements 

(Test and 
Integration 

phase) 

On-site 
functional 

compliance 
with 

requirements 
(Installation 

and Checkout 
phase) 

Performance 
history 

(Operation 
and 

Maintenance 
phase) 

BLOC N/A N/A ◊ ◊ N/A ◊ 

CEG √ √ √ √ N/A √ 

CMM ◊ ◊ ◊ ◊ N/A ◊ 

COM √ √ √ √ N/A √ 

CF N/A N/A N/A √ N/A √ 

CC N/A ◊ ◊ ◊ N/A ◊ 

DD N/A N/A N/A √ N/A √ 

FDN √ √ √ √ N/A √ 

FP ◊ ◊ ◊ ◊ N/A ◊ 

RSCR ◊ ◊ ◊ ◊ N/A ◊ 

RT N/A √ √ √ N/A √ 

TC N/A N/A N/A √ N/A √ 
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19.6  Follow-On Issues 
 
This section discusses the follow-on issues raised as a consequence of performing this study. The 
issues are first listed and briefly discussed. A prioritization of the issues based on recommendations 
of three field experts is provided at the end of this section. 
 

19.6.1  Defect Density Robustness 
 
Defect density is the root measure of one of the highest ranked RePSs. As such, it is the primary 
element of one of the most important RePSs. The key step in this measurement is to identify defects 
in the products of each software-development phase. That is, to reveal defects in the SRS, SDD, and 
the code. 
 
The quality of results obtained using this RePS is a function of the inspector’s detection efficiency. 
More specifically, the question is “What is the relationship between the ability of an inspector to 
detect a defect and the fault-exposure probability of this defect?” Restated: “Is an inspector more 
likely to detect a defect with high exposure-probability (probability of observing the failure is high) 
than with low exposure-probability (probability of observing the failure is low) or reversely? Or is 
his/her detection ability independent of the fault-exposure probability of that defect?” If the inspector 
mostly detects defects that have a small probability of occurrence then reliability assessments may be 
of low quality. On the other hand, if the inspector detects defects that have a high likelihood of 
occurrence, then reliability estimation may be precise even if the defect-detection efficiency is low. 
For a safety-critical system, one would in addition want the inspector to detect defects that are safety-
relevant. 
 

19.6.2  Test Coverage Repair 
 
The Test Coverage (TC) RePS relies on the assumption that the number of defects found during the 
testing is not zero. This assumption may not hold for safety critical software, and this was the case 
for the APP system. Multiple versions of the APP test plans and source code exist. The testing of the 
final version did not reveal any failures. However, the version before the final version discovered 
defects. The approach currently followed by UMD uses this earlier version of the source code and 
test plan to conduct the TC measurement and RePS calculation. This approach introduced errors as it 
is either: 
 

a.  Too conservative if the defects found are actually fixed; this is the most likely case; or 
b. Incorrect if new defects are introduced during repair and not detected by the new test cases. 

 
The approach can be improved by considering the defect introduction and removal mechanisms in 
the testing stage. More specifically, one could calculate a repair rate for the APP using the available 
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life-cycle data. One could also calculate a probability for introducing new defects due to repair using 
this same life-cycle information. This would reduce the errors discussed [Shi, 2010] [Smidts, 2011]. 
 

19.6.3  Issues with the Fault Exposure Ratio 
 
The fault exposure ratio K is used in the RePSs for several measurements (CC, RSCR, CMM, 
BLOC, FP, FDN, and TC). This parameter is currently extracted from the literature. Experience from 
this study has shown that: 
 
1) K is a critical parameter for reliability estimation; 
2) The values of K proposed in the literature are outdated and incorrect by orders of magnitude, in 

particular for safety critical applications. 
 
Thus, a follow on issue is to examine how to obtain an accurate value of K for each system under 
study. 
 

19.6.4  CC, RSCR, and FDN Models 
 
Chapters 7, 13, and 15 introduced new RePSs for CC, FDN, and RSCR, respectively. These RePSs 
have not been validated on other applications. A follow on issue is to validate these models on 
additional applications (especially FDN since this is a highly ranked measure). 
 

19.6.5  Cases Where No Defects Are Found 
 
As can be seen in Table 19.17, high-ranked measures do not always detect defects in all modes of 
operation. The smaller the partitioning of the application under study, the more likely it becomes that 
defects are not found. This may require conducting multiple measurements in parallel or else involve 
a group of inspectors. 
 

19.6.6  Issues with Repeatability and Scalability 
 
As has been shown in Table 19.24, the measurement process can be extremely time-consuming, error 
prone, and highly dependent on the qualification of the inspectors involved. A considerable amount 
of time may be spent in manually “parsing” the natural language SRS, SDD, or even the code. The 
number and type of defects found may depend heavily on the inspectors. 
 
Two solutions to these problems are possible: 1) Training and certification of inspectors; 2) 
Automation of the measurement process. A follow on issue is to examine each of these avenues and 
how the solutions should be implemented. 
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19.6.7  Issues with Common-Cause Failures 
 
At this point, none of the measures considered include a measurement of common cause failure 
potential. This may lead to an underestimation of the probability of failure at the software system 
level since it is currently assumed there is independence between the versions. This underestimation 
may be several orders of magnitude low. For measures such as Cyclomatic Complexity, Function 
Point, Bugs Per Line of Code, and Requirements Specification Change Request, a CCF correction 
factor will need to be investigated. This factor would represent the fraction of CCF which will be 
observed. For measures such as Defect Density and Requirements Traceability, the EFSM 
propagation technique will need to be modified to account for similar defects in multiple versions. 
 

19.6.8  Issues with Uncertainty and Sensitivity 
 
Software reliability prediction is subject to uncertainty. The sources of uncertainties in software 
reliability prediction can be divided into two general categories: measurement uncertainty and model 
uncertainty. The measurement uncertainty can arise from inaccuracies in the methods and tools used 
to assess a quantity, from the artifact being measured, from the operator, and from other sources. 
Model uncertainty can stem from simplifications, assumptions and approximations, or from 
uncertainties in the values assumed by the model parameters. 
 
An initial qualitative sensitivity analysis that accounts for measurement and parameter uncertainty 
was conducted. The results are shown in Table 19.29 (note: effect of parameter uncertainty is limited 
to  and ; CF sensitivity equations are grouped together with Group II measures as a first 
approximation of CF behavior). For each measure, quantities that drive the uncertainty are identified. 
A follow on issue is to perform a quantitative sensitivity analysis for inclusion of model uncertainty. 
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19.6.9  Data Collection and Analysis 
 
As discussed in Section 19.4, a follow on issue is to define a data collection and analysis process 
based on ISO 15939 [ISO, 2007]. 
 

19.6.10  Combining Measures 
 
A follow on effort could determine how to down-select to a smaller number of measures that can be 
combined to yield a more accurate reliability estimation—an estimation that would be better than any 
single measure alone. 
 

19.6.11  Automation Tools 
 
As shown in Table 19.24, performing some of the measurements is time consuming. It would be 
helpful if automation tools were developed to assist the measurement process. However, the 
development of automation tools is out of the scope of this particular research. Tools have been 
used to evaluate the number of lines of code in BLOC, code cyclomatic complexity in CC, and 
test coverage in TC. For other measures, i.e., CEG, COM, DD, RSCR, and RT, the measurement 
process was conducted manually. No validated tools with the ability to replace humans in the 
inspection of natural language-based requirements and design documents currently exist. The 
development of such natural-language processing tools was not the objective of this research and 
should be the focus of a follow on effort. Reliance on such tools would significantly reduce the 
time necessary to apply the methods discussed in the report and would, in addition, increase the 
repeatability of the measurement process. Approaches to automation will be discussed in 
Chapter 20. 
 

19.6.12  Priority Ranking of the Follow-On Issues 
 
The experts provided a ranking of the follow-on issues displayed in Table 19.30 and identified 
possible solutions to each of the high-priority issues. 
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 Table 19.30 Priority Ranking for Follow-On Issues 
 

Follow on Issue Priority 
Overall 

Rankings
Recommendations 

Repeatability H 1 Perform Requirements Review studies; 

Data collection process 
and Data Analysis 
(Detailed Guidelines) 

H 1 

Define a data collection and analysis process based 
on ISO 15939 for each of the measures selected 
(i.e., Measures Recommended in Table 19.27). This 
standard provides a detailed process to ensure the 
quality of the data collection; Draft piloted; 

Uncertainty (failure 
probability distribution 
for predictions based on 
different measures) 

H 1 

Consider both Measurement Uncertainty and 
Model Uncertainty; The uncertainty can be reduced 
by ensuring the quality of the data collection and 
repeatability; Reduce the model uncertainty from 
OP, EFSM and Parameters. 

Combining measures M 5  

Additional applications M 4  

Common Cause 
Failures 

M 6  

Cases with no defect M 6  

Tools/Automation L 8  

Old Parameters L 8  
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20. DEVELOPMENT AND USE OF AUTOMATION TOOLS 
 
 
This chapter discusses the development or increased use of automation tools as discussed in 
Section 19.6.11. 
 
The RePS methodology has been validated on PACS 1, PACS 2, and the APP. However, many 
of the measurements and processes required to predict reliability were manually performed or 
used limited automation. As addressed in chapter 19, 10 out of the 12 measurements and related 
reliability predictions required more than 30 days effort to complete. 
 
Measurements related to Defect Density (DD), Requirements Traceability (RT), and Test 
Coverage (TC), which were identified in chapter 19 as the best candidates for reliability 
prediction, cannot be fully automated. More specifically, current tools for inspecting 
requirements documents have not been validated. Also, currently there is no available tool 
support for inspecting design documents. A number of tools exist claiming the ability to perform 
automated requirements traceability and test-coverage analysis. A follow on issue is to evaluate 
existing tools. 
 
Construction of the Extended Finite State Machine (EFSM), which is used to propagate the 
defects uncovered by various measurement processes, is time-consuming. Current tools used for 
EFSM construction provide only limited support in automatically propagating the identified 
defects. Further development is required to automate straightforward but tedious activities. 
 
The purpose of future efforts would be to develop an automated reliability prediction tool. This 
CASE tool should provide for: 
 

1. Construction of the EFSM from requirements documents 
2. Building the operational profile (OP) 
3. Mapping the defects uncovered by different measurement processes to the constructed 

EFSM 
4. Mapping the OP to the EFSM 
5. Running the modified EFSM and obtaining reliability predictions 

 
This follow on development effort should first evaluate existing tools that were designed to aid 
the measurements process for DD, RT, and TC and determine whether these tools implement the 
claimed functionalities as well as assess their efficiency and effectiveness. A new tool for 
assessing the quality of software code and documents would be based on the most efficient and 
effective of these tools. New functionalities should be developed as required.  
 
To meet the above objectives, the following activities should be performed: 
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1. Construct the EFSM semi-automatically based on the requirements documents and the 
procedure, which will be described in detail in Appendix A. 

 
2. Obtain the OP (operational profile) using the following possible approaches: 

 
2.1 If some operational data is available, develop a function that could either 

automatically or semi-automatically transform the information to a format that 
can be mapped into the constructed EFSM 

2.2 If PRA records are available, develop a function that could either automatically or 
semi-automatically transfer and transform the information into a form that can be 
interpreted by the EFSM 

2.3 If hardware-failure information is available, also develop a function that could 
either automatically or semi-automatically transfer the information to the EFSM 

 
3. Develop a function that could either automatically or semi-automatically map the 

uncovered defects into the EFSM. 
 

 4. Connect the obtained OP, uncovered defects, and the constructed EFSM and create a 
function for reliability prediction. The entire process is illustrated in Figure 20.1. 
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Figure 20.1 Structure of the Automated Reliability Prediction System 
 

5. Systematically evaluate current tools used for measurement processes. 
 

5.1 Evaluate the tools for requirements analysis. Example tools are the NASA ARM 
(Automated Requirements Measurement, 1997) and the SEI QuARS (Quality 
Analyzer for Requirements Specifications 2005) [Lami, 2005]. 

5.2 Evaluate currently available code inspection tools. 
5.3 Evaluate currently available requirements traceability analysis tools. 
5.4 Evaluate currently available code coverage tools. 
5.5 Select efficient and effective tools. 
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APPENDIX A:  EXTENDED FINITE STATE MACHINE AND ITS 
CONSTRUCTION PROCEDURES47 

 
As specified in Section 5.1, the PIE concept was introduced to describe the software failure 
mechanism if one knows the location of the defects. How to implement the PIE concept for 
reliability quantification is discussed in this appendix. [Shi, 2009] 
 
In the original assessment method, P, I, and E are quantified statistically using mutation [Voas, 
1992]. This method, however, is neither able to combine the operational profile nor able to 
consider defects that do not appear in the source code such as requirements or design errors (e.g., 
“missing functions”). Moreover, the large amount of mutants required hampers the practical 
implementation of the method for complex systems. 
 
In this appendix, a simple, convenient, and effective method to solve this problem using an 
Extended Finite State Machine (EFSM) [Wang, 1993] model is proposed. An EFSM describes a 
system’s dynamic behavior using hierarchically arranged states and transitions. A state describes 
a condition of the system; and the transition visually describes the new system state as a result of 
a triggering event. The operational profile of the software system is mapped into the model to 
analytically represent the probabilities of the system traversing each execution state. More 
specifically, an EFSM is a septuple (Σ, Γ, S, T, P, V, OP), where: 

 
 Σ is the set of software input variables. These variables cross the boundary of the 

application. 
 Γ is the set of software output variables. These variables cross the boundary of the 

application. 
 S is a finite, non-empty set of states. A state usually corresponds to the real-world 

condition of the system. 
 T is the set of transitions. An event causes a change of state and this change of state is 

represented by a transition from one state to another. 
 P is the set of predicates, the truth value of the predicates is attached to the relevant 

transition. 
 V is the set of variables defined and used within the boundary of the application, and 
 OP is the set of probabilities of the input variables. 

 

                                                 
47 Extract from “On the Use of Extended Finite State Machine Models for Software Fault Propagation and Software Reliability 
Estimation,” by Ying Shi, et al. Published in the International Topical Meeting on Nuclear Plant Instrumentation Control, and 
Human-Machine Interface Technologies, Knoxville, TN, March 5-9, 2009. Copyright 2009 by the American Nuclear Society, La 
Grange Park, Illinois. 
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The method proposed for assessing software reliability based on an EFSM proceeds in five 
stages: 
 

1) Construct a high-level EFSM based on the Software Requirement Specifications (SRS) 
2) Identify, record and classify the defects 
3) Modify the high-level EFSM by mapping the identified defects 
4) Map the operational profile of the software to the appropriate variables (or transitions) 
5) Obtain the probability of failure by executing the modified EFSM 

 
As stated before, the failure probability can be assessed by calculating the product of the 
execution probability, the infection probability, and the propagation probability. The first three 
steps of the proposed method are used to construct the EFSM model and identify the infected 
states. The execution probability can be determined through Step 4 by mapping the operational 
profile to the EFSM. The overall failure probability can be obtained through execution of the 
EFSM in Step 5. 
 
Generally speaking, the proposed approach is based on constructing and refining the EFSM 
model. Both construction and refinement steps are rule-based processes. Different rules for 
handling different requirement specifications and different types of defects are provided. Thus, 
the approach is actually a Rule-based Model Refinement Process (RMRP). 
 
The advantages of this approach are:  

1) it can avoid time- and labor-intensive mutation testing;  
2) it can combine the operational profile which reflects the actual usage of the software 

system; and 
3) it allows assessment of the impact of requirements defects, e.g., “missing functions,” on 

software reliability; 4) tools are available for executing the constructed EFSM model.  
 
Each of the five steps for assessing software reliability based on an EFSM is discussed in turn in 
the following sections. 

A.1 Step 1: Construct of a High-Level EFSM Based On the SRS 
 
This step is used to construct a High-Level EFSM (HLEFSM) based on the SRS. This step is 
independent of the defect identification process and corresponding results, i.e., the defects 
identified. 
 
The HLEFSM can be systematically constructed by mapping each occurrence of a function 
specification to a transition. The HLEFSM will be manually constructed based on the SRS. 
Figure A.1 shows a typical prototype outline for an SRS [IEEE, 1998]. 
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Figure A.1 Typical Prototype Outline for SRS 

 
The general procedure to be followed for constructing a HLEFSM is illustrated in Figure A.2. 
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START
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function
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S
Y

e s

Examine the next function

Identify the Beginning State and Ending State
of the function currently examined

Is this the last
bulleted function?

No

No

 
Figure A.2 SRS-Based HLEFSM Construction 

 
The general construction procedure includes: 

a) Study the SRS and focus on the Functional Requirements section (Section 3.1 in Figure 
A.1). It should be noted that there exists several other SRS prototypes [IEEE, 1998]. For 
those prototypes, one can still find a section similar to the Functional Requirements 
section that describes the functions of the software system. 

b) Create an ENTRY state and an EXIT state for the entire application. 
c) Examine the first bulleted48 function  defined under 3.1.1 in Figure A.1. 

                                                 
48 A bulleted function is a function explicitly documented using a bullet in the SRS document for distinguishing it from other 
functions.  
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d) Define the corresponding states of the function  (normally it is logically the first 
function of the software system): the starting state :  and the ending state :  of the function . 

e) Identify the following elements: 
i. Specify the input variables  of function  based on Section 3.1.1.2 

“Input:” iv could be part of Σ or V or a combination of Σ and V.  
ii. Specify the predicates . Normally, the predicates can be found in Section 

3.1.1.1 “Introduction.” 
iii. Specify the output variables  of function  based on Section 3.1.1.4 

“Output:”  could also be part of Γ or V or a combination of Γ and V.  
iv. Specify the variables stored in , denoted as , and the variables stored 

in , denoted as , since a state is the condition of an extended finite 

state machine at a certain time and is represented by a set of variables and their 
potential values. It should be noted that not all of the variables stored in  
will be used by function  that is . The predicates also should be 

part of the variables stored in  and . Those variables, denoted 

as , which are neither used as the input variables nor used as the predicates 
of function  will remain the same and be part of the variables stored in the 
output. Thus  and . 

f) Link the beginning state and the ending state of function  by a transition, :  and 
 is the set of the function  and its associated predicates , , , 

pointing from starting state  to the ending state . 
g) For function , link the starting state  to the ENTRY state. For function , link the 

starting state  to the ending state of the logically previous function . The logical 
relationship between the functions should be specified in the “introduction” subsection of 
the description of the bulleted function. The variables stored in the starting state of 
function , , should be the variables stored in the ending state of its logically 

previous function,  plus some inputs from Σ. That is, , 

where .  
h) Iterate step d) to step g) for the next function until all the bulleted functions are 

represented in the HLEFSM. It should be noted that the HLEFSM model should remain 
at a high level to minimize the construction effort. Only the bulleted functions, i.e., 3.1.1, 
3.1.2 etc. shown in Figure A.1 should be represented in this HLEFSM model. There is no 
need at this point to further break down the bulleted functions and display their 
corresponding sub-functions. 

i) Link the ending state of the logically last bulleted function to the EXIT state. Normally, 
the logically last bulleted function will send out all required outputs and reset all 
variables to their initial values for the next round of processing.  
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Example 1: To better illustrate the above EFSM construction step, a paragraph excerpted from 
PACS (Personal Access Control System49) SRS and its associated EFSM elements 
identifications are shown in Table A.1. 

 
Table A.1 EFSM Construction Step 1 for Example 1 

 
PACS SRS:  Software will validate the entrant’s card data (SSN and last name). If correct data, 
software will display “Enter PIN.” 
Function 1 Function f1: card validation function; 

 Starting State of the function Si(f1):card is awaiting for validation; 

 Ending state of the function So(f1):card has been validated; 

 Input variables iv(f1) = {SSN, Last name}; 

 Output variables ov(f1) = {card validation results}; 

 Predicates N/A 

 Variables stored in the starting state 
In this case, the variables stored in Si(f1) will all be used by 
function f1. That is, 

 1 1( )
iS fV iv f  

 Variables stored in the ending state  1 1( )
oS fV ov f

Function 2 Function f2: card validation results display function; 

 Starting State of the function Si(f2): card validation results are awaiting to be displayed; 

 Ending state of the function So(f2): card validation results have been displayed; 

 Input variables iv(f2) = {card validation results}; 

 Output variables ov(f2) = {“Enter PIN” displayed}; 

 Predicates p(f2) ={card data = correct}. 

 Variables stored in the starting state  2 2 2( ) ( )
iS fV iv f p f 

 Variables stored in the ending state  2 2( )
oS fV ov f

 

A.2 Step 2: Identify, Record, and Classify the Defects 
 
This step is used to identify defects through software inspection or testing. Software defects can 
be uncovered by using different inspection and testing techniques [Fagan, 1976] [Beizer, 1990]. 
All the defects identified through inspection or testing should be recorded properly for further 
references and examinations. Table A.2 or similar table should be generated. 

                                                 
49 PACS is a system which provides privileged physical access to rooms/buildings, etc. The user needs to swipe his card and 
enter a four-digit PIN. The application verifies this against a database and if authorized, provides access to the room/building by 
opening the gate. 
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Table A.2 Example Table for Recording Identified Defects 
 

NO. Defect Description Defect Location Defect Type Variables/Functions Affected 

1     

2     

…     

 

The possible instances or further description of each field are shown in Table A.3. In the Defect 
Description column, the inspector should provide a general description of the defect using plain 
English sentences; in the Defect Location column, one should record where the defect originated, 
i.e., either in the SRS, Software Design Documents (SDD), or Code. The module name or function 
name (associated to the location of the defect) should be provided as well. The specific defect 
type should be documented in the Defect Type column of the table. The exact affected 
variable/function should be specified in detail in the Variable/Functions Affected column of 
Table A.2. 

 
Table A.3 Possible Instances or Further Description for Each Field in Table A.2 

 

Item Possible Instances of Each Field in Table A.2 

Defect Description Plain English sentence.  

Defect Location SRS; SDD; Code 
Function name (if the defect is in SRS);  
Module name (if the defect is in SDD or code) 

Defect Type 

Missing function; Extra function; Incorrect function; Ambiguous function;  
Missing input; Extra input; Input with incorrect/ambiguous value; Input with 
incorrect/ambiguous type; Input with incorrect/ambiguous range; Missing output; 
Extra output; Output with incorrect/ambiguous value; Output with 
incorrect/ambiguous type; Output with incorrect/ambiguous range; 
Missing predicate; Extra predicate; Incorrect/ambiguous predicate. 

Variables/Functions 
Affected 

The exact name of the affected variables or functions given in the documents. 

 

Using the same PACS SRS described in step 1 as an example, the following table should be 
generated: 
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Table A.4 Record of Identified Defects for Example 1 
 

NO. Defect Description Defect Location 
Defect 
Type 

Variables/Functions 
Affected 

1 
This requirement specification does 
not specify the case where the data 
stored in the card is not correct.  

PACS SRS: Card 
validation results 
display function 

Missing 
predicate 

 = {card data = 
incorrect} 

 

A.3 Step 3: Modify the HLEFSM by Mapping the Identified Defects 
 
Once defects have been identified, they should be mapped into the HLEFSM and the infected 
states should be identified for later assessment of their final impacts. The defect mapping process 
ultimately modifies the HLEFSM. The modified EFSM obtained is therefore an octuple (Σ, Γ, S, 
T, P, V, OP, D) where D is the set of defects discovered through inspection. 
 
The defect mapping procedures are shown in Figure A.3. The following subsections will 
describe how to localize the defects in the HLEFSM and how to modify a HLEFSM and the 
obtained low-level EFSM (LLEFSM).  
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Figure A.3 General Procedures for Defect Mapping 

 

 

A.3.1 Section A: Localize the Defects in the HLEFSM: 
 
One must know the exact locations of the defects to correctly modify the HLEFSM. The 
localization of the defects is based on tracing among the development documents: SRS, SDD, 
and code that have been inspected. Figure A.4 illustrates the detailed tracing procedures.  

 

A.3.2 Section B: Modify the HLEFSM: 
 
The infected state should be identified during the EFSM modification process. The process of 
definition and identification of the infected state is discussed next. If a defect found was directly 
related to a bulleted function, (i.e., the defect is a bulleted function-level defect,) there is no need 
to split the HLEFSM. A new state or transition should be created or certain variables within the 
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transitions should be flagged to reflect the infections. It should be mentioned that all the defects 
should be represented by a variable, i.e., variable , and attached to the transitions. If  with the 
initial value of 0 is assigned to 1, it means there is a defect along with the transition. Thus, the 
attributes of the transition  have now changed from ,  to , , . 

 

 
 

Figure A.4 Flowchart for Localizing the Defects 
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Using the defect mapping procedures, the original and the modified EFSM for example 1 is 
shown below: 

 

 
 

Figure A.5 Original EFSM for Example 1 
 
 

 
 

Figure A.6 Modified EFSM for Example 1 
 

 

A.3.3 Section C: Split the HLEFSM to a LLEFSM 
 
If a defect is not directly related to a bulleted function, the HLEFSM model should be 
decomposed to a lower level of modeling. This is because a defect could be within a bulleted 
function while only part of the bulleted function is infected and will fail to perform adequately. 
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Thus, one needs to break down the bulleted function to the level where the defect can be 
represented directly50.  
 
The general procedures for the construction of the HLEFSM are still valid for the construction of 
the LLEFSM. However, special attention should be paid to the following issues: 
 

1) Function  has a hierarchical structure, i.e., it is the parent function of its  sub-functions , 1,2, … , . These identified sub-functions act as child functions; 
2) The I/O connections between the child functions can be easily determined by following 

Steps (c) to (f) of the general construction procedures for the bulleted functions (Step 1) 
but applying it now to the “Processing” section of the bulleted function. One should 
determine the interface between the child functions and their parent function by linking 
the beginning state  of the parent function with the beginning state of its first child 
function  and directly linking the ending state  of the last child function with 
the ending state of its parent function .  

3) The input and output of the child functions may not be only in the “input” and “output” 
section of their parent function. The “processing” part also needs to be manually examined 
to identify the input and output of the child functions. 

A.3.4 Step 4: Map the OP to the Appropriate Variables (or Transitions) 
 

Generally, the operational profile is defined as ,  in EFSM, where  is the set of 
input variables and  is the set of probabilities of . As a very important attribute of the 
EFSM, OP should be predetermined and then mapped into the EFSM constructed through steps 1 
to 3. If there is any predicate existing in the constructed EFSM, the probability of the execution 
of each branch needs to be determined since there are multiple subsequent states after the 
predicate.  
 
If the predicate is only a function of the input variables from set Σ, which are crossing the 
boundary of the application, the probability of execution of each branch is usually determined by 
analyzing the operational data or can be found in various databases.  
 
If the predicate is a function of internal variables from set V, i.e., variables which are within the 
boundary of the application, the probability of execution of each branch can be calculated based 
on input variables from set Σ because the internal variables are actually functions of the input 
variables from set Σ. For instance, consider the case where a predicate is determined by the value 
of an internal variable  which is a function of variable , that is, . Variable  is from 
set Σ whose OP is known either by analyzing operational data or by searching in databases. 
Thus, the OP of variable  can be analytically calculated through function . If function 

 is a complex function, the input/output table as suggested in Garret [Garret, 1995] should be 

                                                 
50 A defect can be represented directly if the variable/function/sub-function which contains the defect is visible in the model since 
the level of detail in the model reaches the variable/function/sub-function. 
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utilized to obtain the value of  based on which the execution probability of each branch can be 
determined.  
 
It should be mentioned that the mapping process does not entail as much work as one might 
think because the constructed EFSM is a compact version of the actual application since only 
defect related sections are modeled in detail. Furthermore, for safety critical systems, the 
relationship between the internal variables and the variables crossing the boundary of the system 
is kept simple to reduce the calculation error.  

A.3.5 Step 5: Obtain the Failure Probability by Executing the Constructed EFSM 
 
Application of the procedure described in Steps 1 to Step 4 yields the execution probability and 
the infected state. As for the propagation probability, it is assumed to be equal to 1. If a low-level 
defect is detected, experimental methods such as fault injection can be used to assess the exact 
propagation probability.  

The failure probability can be obtained by executing the constructed EFSM. The execution of the 
EFSM can be implemented using an automatic tool such as TestMaster. TestMaster is a test 
design tool that uses the EFSM notation to model a system. TestMaster and similar tools capture 
system dynamic internal and external behaviors by modeling a system through various states and 
transitions. A state in a TestMaster model usually corresponds to the real-world condition of the 
system. An event causes a change of state and is represented by a transition from one state to 
another. TestMaster allows models to capture the history of the system and enables 
requirements-based extended finite state machine notation. It also allows for the specification of 
the likelihood that events or transitions from a state will occur. Therefore, the operational profile 
can be easily integrated into the model. Thus, the probability of failure from unresolved known 
defects can be assessed by simply executing the constructed TestMaster model.  
 
First, TestMaster will execute all the possible paths of the constructed EFSM model. The paths 
which contain defect(s) can be recognized by TestMaster automatically. Thus, the probability of 
execution of the i-th path with defect(s)  can be calculated. The probability of failure is: 
 

 

 
where 
 

     the probability of failure 
     the probability of execution of the i-th path with defect(s) 
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APPENDIX B:  LIST OF SYMBOLS 
 

  Chapter 4 

  Operational profile 

  Operational profile for subsystem 1 

  Operational profile for subsystem 2 

  Operational profile for subsystem  

  Operational profile for the voter 

  Operational profile for subsystem  

  Operational profile for the first system mode of subsystem  

  Operational profile for the n-th system mode of subsystem  

  Operational profile for the plant inputs 

  Operational profile for the infrastructure inputs 

  Operational profile for the APP system 

  Operational profile for μp1 

  Operational profile for μp2 

  Operational profile for CP Pr   Probability of failure per demand 

  Average failure rate Pr   Updated probability of failure per demand 

  Unbiased failure rate 

  Failures 

  Hours 
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 Chapter 5 

  Failure probability (unreliability) 

  Propagation probability for the i-th defect 

  Infection probability for the i-th defect 

  Execution probability for the i-th defect 

  g-th input/output path Pr   Probability of traversing the g-th path 

  Probability of failure caused by defect 

  Probability that the q-th transition is traversed in the g-th path 

  Transition index 

  Path index 

  Number of transitions in the g-th path 

  Failure rate 

  Software reliability 

  Fault exposure ratio 

  Linear execution time 

  Number of defects 

  Execution time 

  New fault exposure ratio 

   

  Chapter 6 

  Total number of defects in the software 

  Module index 

  Number of modules 
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  Function point count 

  Number of lines of code for the i-th module 

  Reliability estimation for the APP system using the BLOC measure 

  Fault exposure ratio, in failure/defect 

  Number of defects estimated using the BLOC measure 

  Number of defects estimated using the BLOC measure 

  Linear execution time 1   Linear execution time of μp1 of the APP system 2   Linear execution time of μp2 of the APP system 

  Linear execution time of CP of the APP system 1   Average execution-time-per-demand of μp1 2   Average execution-time-per-demand of μp2 

  Average execution-time-per-demand of CP 

   

  Chapter 7 

  Ambiguities in a program remaining to be eliminated 

  Total number of ambiguities identified %  Percentage of ambiguities remaining over indentified 

  Actually implemented cause-effect graph 

  The cause set of the ACEG 

  The observable effect set of the ACEG 

  The Boolean function set of the ACEG 

  The constraint set of the ACEG 

  Benchmark cause-effect graph 
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  The cause set of the BCEG 

  The observable effect set of the BCEG 

  The Boolean function set of the BCEG 

  The constraint set of the BCEG 

  The j-th distinct observable effect in the ACEG 

  The number of distinct effects in the union set  

  The peer observable effect in the BCEG corresponding to  

  A Boolean function in  corresponding to  

  A Boolean function in  corresponding to  

  The set of causes appearing in  

  The set of causes appearing in  

  The union set of  and  

  The number of distinct causes in  

  A cause state vector, which represents a state combination of all causes 

  The k-th vector of  

   

  Chapter 8 

  Reliability estimation for the APP system using the CMM measure. 

  Fault Exposure Ratio, in failures/defect 

  Number of defects estimated using the CMM measure 

  Average execution-time-per-demand, in seconds/demand 

  Linear execution time of a system, in seconds 

,   Number of delivered critical defects (severity 1) 

,   Number of delivered significant defects (severity 2) 
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1   Linear execution time of μp1 of the APP system 2   Linear execution time of μp2 of the APP system 

  Linear execution time of CP of the APP system 1   Average execution-time-per-demand of μp1 2   Average execution-time-per-demand of μp2 

  Average execution-time-per-demand of CP 

   

  Chapter 9 

  Completeness measure 

  The weight of the i-th derived measure 

  The i-th derived measure 

  The fraction of functions satisfactorily defined 

  The fraction of data references having an origin 

  The fraction of defined functions used 

  The fraction of referenced functions defined 

  
The fraction of decision points whose conditions and condition options are 
all used 

  The fraction of condition options having processing 

  
The fraction of calling routines whose parameters agree with the called 
routines defined parameters 

  The fraction of condition options that are set 

  The fraction of set condition options processed 

  The fraction of data references having a destination 

  The number of functions not satisfactorily defined 

  The number of functions 

  The number of data references not having an origin 
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  The number of data references 

  The number of defined functions not used 

  The number of defined functions 

  The number of referenced functions not defined 

  The number of referenced functions 

  The number of decision points missing condition(s) 

  The number of decision points 

  The number of condition options having no processing 

  The number of condition options 

  
The number of calling routines whose parameters not agreeing with the 
called routines defined parameters 

  The number of calling routines 

  The number of condition options not set 

  The number of set condition options having no processing 

  The number of set condition options 

  The number of data references having no destination 

   

  Chapter 10 

  Coverage factor of a fault-tolerance mechanism 

  The probability of 1 when  

  A variable characterizing the handling of a particular fault/activity pair 

  The global input space of a fault-tolerance mechanism 

  Fault Space 

  Activity space, or activation space 

  A fault/activity pair, or a point in space  
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  The probability of occurrence of  

  The value of  for a given point  

   is the expected value of  

  The number of occurrences of the Normal State for an experiment 

  The number of occurrences of the Fail-safe State for an experiment 

  The number of occurrences of the Normal State for an experiment 

  The number of occurrences of the Fail-safe State for an experiment 

  The total number of experiments with analog input inside the “Barn shape” 

  The total number of experiments with analog input outside the “Barn shape”

  
The weight of experiments such that the analog input is inside the “Barn 
shape” 

  
The weight of experiments such that the analog input is outside the “Barn 
shape” 

  The failure rate of a microprocessor 

  The failure rate of the i-th primary component 

  
The rate at which the system deals with the fault injected and generates the 
result 

  
The probability that the system is brought back to the Normal State when an 
erroneous state is recovered 

  
The probability that the system remains in the Recoverable State when an 
erroneous state cannot be recovered 

  
The probability that the system enters the Failure State 1 when an erroneous 
state leads to the system failure 

  
The probability that the system enters the Failure State 2 when an erroneous 
state leads to the system failure 

  Failure rate of RAM 

  Failure rate of PROM 

  Failure rate of EEPROM 

  Failure rate of DPM 
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  Failure rate of Address Bus Line 

  Failure rate of CP register 

  
The number of occurrences of the Recoverable State for an experiment such 
that the analog input is inside the “Barn shape” 

  
The number of occurrences of the Recoverable State for an experiment such 
that the analog input is outside the “Barn shape” 

  
The number of occurrences of the Failure State 1 for an experiment such 
that the analog input is outside the “Barn shape” 

  
The number of occurrences of the Failure State 3 for an experiment such 
that the analog input is outside the “Barn shape” 

  
The number of occurrences of the Failure State 2 for an experiment such 
that the analog input is inside the “Barn shape” 

  
The number of occurrences of the Failure State 3 for an experiment such 
that the analog input is inside the “Barn shape” 

  A column vector whose elements are the system state probabilities at time 

  The probability that the system is in a state  at time  

  A finite and countable number of states for a state space 

  The  matrix of the transition rates 

  The probability the system is in “Normal State” at time  

  The probability that the system is in “Recoverable State” at time  

  The probability that the system is in “Fail-safe State” at time  

  the probability that the system is in “Failure State 1” at time  

  The probability that the system is in “Failure State 2” at time  

  The probability that the system is in “Failure State 3” at time  

  The reliability of a microprocessor 

  The reliability of the whole APP system 

  The probability of the i-th type of failure 
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  Chapter 11 

  The cyclomatic complexity measure of the i-th module 

  The number of edges of the i-th module 

  The number of nodes of the i-th module %  Percentage of modules whose cyclomatic complexity is less than 4 %  
Percentage of modules whose cyclomatic complexity is greater than or 
equal to 4 and less than 10 %  
Percentage of modules whose cyclomatic complexity is greater than or 
equal to 10 and less than 16 %  
Percentage of modules whose cyclomatic complexity is greater than or 
equal to 16 and less than 20 %  
Percentage of modules whose cyclomatic complexity is greater than or 
equal to 20 and less than 30 %  
Percentage of modules whose cyclomatic complexity is greater than or 
equal to 30 and less than 80 %  
Percentage of modules whose cyclomatic complexity is greater than or 
equal to 80 and less than 100 %  
Percentage of modules whose cyclomatic complexity is greater than or 
equal to 100 and less than 200 %  
Percentage of modules whose cyclomatic complexity is greater than or 
equal to 200 

  
The percentage of modules whose cyclomatic complexity belong to the i-th 
level 

  
The number of modules whose cyclomatic complexity belong to the i-th 
level 

  The SLI value of the cyclomatic complexity factor 

  Failure likelihood  used for  calculations 

  The number of faults remaining in the delivered source code 

  A universal constant, estimated by fitting experiment data 

  The amount of activity in developing the delivered source code 

  Universal constant, estimated by fitting experiment data 

  The Success Likelihood Index of the entire software product 
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  The size of the delivered source code in terms of LOC 

  
Reliability estimation for the APP system accounting for the effect of 
Cyclomatic Complexity (CC) 

  Fault Exposure Ratio, in failure/defect 

  Number of defects estimated using the CC measure 

  Average execution-time-per-demand, in seconds/demand 

  Linear execution time of a system, in seconds 1   Linear execution time of μp1 of the APP system 2   Linear execution time of μp2 of the APP system 

  Linear execution time of CP of the APP system 1   Average execution-time-per-demand of μp1 of the APP system 2   Average execution-time-per-demand of μp2 of the APP system 

  Average execution-time-per-demand of CP of the APP system 

  Actual time to develop the software, in calendar months 

  Nominal time to develop the software, in calendar months 

  The size of developed source code, in KLOC 

  The size of finally delivered source code, in KLOC 

  The size of source code discarded during development, in KLOC 

  The size of new code developed from scratch, in KLOC 

  The equivalent size of adapted code, in KLOC 

  The equivalent size of reused code, in KLOC 

  The equivalent size of off-the-shelf software, in KLOC 

  Percentage of assessment and assimilation 

  Adaptation adjustment factor 

  Adaptation adjustment modifier 
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  Percentage of code re-engineered by automation 

  Percentage of code modified 

  Percentage of design modified 

  
Percentage of integration effort required for integrating adapted or reused 
software 

  Percentage of software understanding 

  Programmer unfamiliarity with software 

  The weight of the i-th influence factor 

  The SLI value of the i-th influence factor 

   

  Chapter 12 

  Defect Density 

  
An index reflecting the development stage. A value of 1 represents the 
requirements stage, a value of 2 represents the design stage and a value of 3 
represents the coding stage 

  The index identifying the specific inspector 

,   
The number of unique defects detected by the j-th inspector during the i-th 
development stage in the current version of the software ,   The number of defects found in the l-th stage and fixed in the k-th stage 

  
The number of defects found by exactly m inspectors and remaining in the 
code stage 

  Total number of inspectors 

  The number of source lines of code (LOC) in thousands 

   

  Chapter 13 

  Fault-days for the total system 

  Fault-days for the i-th fault 

  Date at which the i-th fault was introduced into the system 
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  Date at which the i-th fault was removed from the system 

  Total number of faults 

  Ending date of the phase  in which the fault was introduced/removed 

  Beginning date of the phase  in which the fault was introduced/removed 

  Expected fault count at time  

  A category of faults introduced during phase  

  A life cycle phase 

  Life cycle time 

  Estimate of fault introduction rate in phase  

  Intensity function of per-fault detection in phase  

  Expected change in fault count due to each repair in phase  

  Unadjusted estimate of the fault introduction rate of the j-th fault categories

  A constant 

  Fault potential per function point 

  Fraction of faults that originated in phase  

,   Mean effort necessary to develop a function point in phase  

  Expected change in fault count due to 1 repair in the life cycle phase  

  A life cycle phase 

  Number of requested repairs that are fixed in the life cycle phase  

  Number of repairs requested in the life cycle phase  

  The intensity function of per-fault detection 

  Fault-detection rate 

  Fault-detection efficiency 

  Effort necessary to develop a function point 
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   at which the considered phase originates 

  Date at which type  faults are introduced into a system 

,   Date at which type  faults are removed from a system ∆ ,   Number of type  faults (critical and significant) removed during phase  

,   Expected number of type  faults at the beginning of  phase  

,   Expected number of type  faults at the end of  phase  

,    Fault-days number per fault of type  removed during phase  

  Removal date of faults remaining in the delivered source code 

  
Ending date of testing phase, which is the last phase in the software 
development life cycle of the APP system 

   Fault-days number per fault of type  remaining in the delivered source code

,   
Number of type  faults (critical and significant) remaining in the delivered 
source code ∆   The fault-days number at time ∆  

  The fault-days number at time  

  Estimate of fault introduction rate 

  Intensity function of per-fault detection 

  Expected change in fault count due to each repair 

  Expected fault count at time  

  The apparent fault-days number ; , , ,   A function of , , , and  which relates  to  

  The exact fault-days number 

,   Total number of delivered faults in APP estimated using the FDN measure 

  Reliability estimation for the APP system using the FDN measure 

  Fault exposure ratio, in failures/fault 

  Number of defects in APP estimated using the FDN measure 
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,   
Number of delivered critical defects (severity 1) estimated using the FDN 
measure 

,   
Number of delivered significant defects (severity 2) estimated using the 
FDN measure 

  Average execution-time-per-demand, in seconds/demand 

  Linear execution time, in seconds 1   Linear execution time of Microprocessor 1 (μp1) of the APP system 2   Linear execution time of Microprocessor 2 (μp2) of the APP system 

  
Linear execution time of Communication Microprocessor (CP) of the APP 
system 1   
Average execution-time-per-demand of Microprocessor 1 (μp1) of the APP 
system 2   
Average execution-time-per-demand of Microprocessor 2 (μp2) of the APP 
system 

  
Average execution-time-per-demand of Communication Microprocessor 
(CP) of the APP system 

   

  Chapter 14 

  The delivered defect density for the APP system, in defects/function point 

,   The number of total delivered defects for the APP system 

  The function point count for the APP system 

  Reliability estimation for the APP system using the FP measure 

  Fault Exposure Ratio, in failure/defect 

  Number of defects estimated using the FP measure 

  Average execution-time-per-demand, in seconds/demand 

  Linear execution time of a system, in second 

,   Number of delivered critical defects (severity 1) 

,   Number of delivered significant defects (severity 2 1   Linear execution time of Microprocessor 1 (μp1) of the APP system 
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2   Linear execution time of Microprocessor 2 (μp2) of the APP system 

  
Linear execution time of Communication Microprocessor (CP) of the APP 
system 1   
Average execution-time-per-demand of Microprocessor 1 (μp1) of the APP 
system 2   
Average execution-time-per-demand of Microprocessor 2 (μp2) of the APP 
system 

  
Average execution-time-per-demand of Communication Microprocessor 
(CP) of the APP system 

   

  Chapter 15 

  Measure of requirements Evolution and Volatility Factor 

     
Size of changed source code corresponding to requirements specification 
change requests, in Kilo Line of Code (KLOC) 

  Size of the delivered source code, in KLOC 

     
Size of added source code corresponding to requirements specification 
change requests, in KLOC 

     
Size of deleted source code corresponding to requirements specification 
change requests, in KLOC 

     
Size of modified source code corresponding to requirements specification 
change requests, in KLOC 

  Number of faults remaining in the delivered source code 

  Size of the delivered source code in terms of LOC 

  Success likelihood index of a software product 

  Reliability estimation for the APP system based on REVL 

  Fault exposure ratio, in failure/defect 

  Number of defects estimated based on REVL 

  Average execution-time-per-demand, in seconds/demand 

  Linear execution time of a system, in second 1   Linear execution time of Microprocessor 1 (μp1) of the APP system 
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2   Linear execution time of Microprocessor 2 (μp2) of the APP system 

  
Linear execution time of Communication Microprocessor (CP) of the APP 
system 1   
Average execution-time-per-demand of Microprocessor 1 (μp1) of the APP 
system 2   
Average execution-time-per-demand of Microprocessor 2 (μp2) of the APP 
system 

  
Average execution-time-per-demand of Communication Microprocessor 
(CP) of the APP system 

   

  Chapter 16 

  The value of the measure requirements traceability 

  The number of requirements met by the architecture 

  The number of original requirements 

   

  Chapter 17 

  The value of the test coverage 

  The number of requirements implemented 

  The number of requirements that should have been implemented 

  
The number of requirements that should be implemented plus the number of 
requirements that were added 

  
The number of lines of code that are being executed by the test data listed in 
the test plan 

  The total number of lines of code 

  The number of cycles given by the simulation environment 

  The frequency of μp2 (16 MHz)  

  The number of defects found by test cases provided in the test plan 

  The defect coverage 

  Failure intensity 
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  Value of the fault exposure ratio during the n-th execution 

  The linear execution time 

  The number of defects remaining in the software 

  The average execution-time-per-demand 

  The number of demands 

  The probability of failure-per-demand corresponding to the known defects 

   

  Chapter 18 

  Failures 

  Years 

  Failure rate 

  Average execution time per trial 

  Failure rate per trial 

   

  Chapter 19 

  Fault Exposure Ratio 

  The total number of modules 

  The number of lines of code (LOC) for each module 

  The number of known defects found by inspection and testing 

  Linear execution time 

  The average execution-time/demand 

  Severity Level 

  The number and locations of defects found by the CEG measure 

  Operational Profile 



 

B-18 

  The propagation probability for the i-th defect 

  The infection probability for the i-th defect 

  The execution probability for the i-th defect 

  The number of defects estimated by the CMM measure 

  The number and locations of defects found by the COM measure 

  The probability that the system remains in the i-th reliable state 

  The size of the delivered source code in terms of LOC 

  A universal constant 

  A universal constant 

  The Success Likelihood Index for the CC measure 

  The number and locations of defects found by the DD measure 

  The number of defects estimated by the FDN measure 

  The number of defects estimated by the FP measure 

  The Success Likelihood Index for the RSCR measure 

  The number and locations of defects found by the RT measure 

  Fault exposure ratio 

  
The number and locations of defects found by testing in an earlier version of 
code , ,   Coefficients 

  Test coverage 

  The i-th defect population size estimator 

  The number of distinct defects found by  inspectors 

  The number of defects found by exactly one inspector 

  The number of inspectors 

  The number of defects found by the j-th inspector 
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  The number of defects found by exactly  inspectors  

  The inaccuracy ratio for a particular RePS 

  
The probability of failure-per-demand from the reliability testing or 
operational data 

  The probability of failure-per-demand predicted by the particular RePS 

  The probability of success-per-demand obtained from reliability testing 

  The probability of success-per-demand obtained from the RePS 

  Severity level as a function of function point count 

  Function point count 

  Size of the delivered source code in terms of LOC 

  Failure likelihood used for  calculations 

  The Heaviside step function, where 0, 0 and 1, 0 

  The Dirac delta function, where  

  The lower boundary of level  

  The upper boundary of level  

  CC of module  

  The slope of ,  

  The intercept of ,  

  An index that specifies the category of the application 

  A variable obtained from the curve-fitting process 

  Size of changed source code 

  Size of delivered source code 

  The location of a defect 

  The type of a defect 

  The number of faults identified in the last version of development code 
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  A function of , , , and  which relates  to  

  The number of distinct defects found by  inspectors 

  The apparent fault-days number 

  The defect coverage 

  The number of requirements implemented 

  
The number of requirements that should be implemented plus the number of 
requirements that were added 

  
The number of lines of code that are being executed by the test data listed in 
the test plan 

  The total number of lines of code 

   

  Appendix A 

  
The set of software input variables; these variables cross the boundary of the 
application 

  
The set of software output variables; these variables cross the boundary of 
the application 

  
A finite, non-empty set of states; a state usually corresponds to the real-
world condition of the system 

  
The set of transitions; an event causes a change of state and this change of 
state is represented by a transition from one state to another 

  
The set of predicates, the truth value of the predicates is attached to the 
relevant transition 

  The set of variables defined and used within the boundary of the application

  The set of probabilities of the input variables 

  
The first explicitly documented function; logically the first function of the 
software system 

  The starting state of  

  The ending state of  

  The set of input variables 

  The set of predicates 
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  The set of output variables 

  The variables stored in  

  The variables stored in  

  
Variables neither used as the input variables nor used as the predicates of  
that remain the same and are part of the variables stored in the output 

  A transition; the set of the function  and its associated predicates 

  The bulleted function-level defects  

  An internal variable that is a function of  

  
Variable from the set  whose OP is known either by analyzing operational 
data or by searching in databases 

  A complex function used to analytically calculate the variable , given  

  The probability of failure 

  The probability of execution of the i-th path with defect(s) 

 





NRC FORM 335
(12-2010)
NRCMD 3.7

U.S. NUCLEAR REGULATORY COMMISSION 1. REPORT NUMBER
(Assigned by NRC, Add Vol., Supp., Rev.,
and Addendum Numbers, if any.)

BIBLIOGRAPHIC DATA SHEET
(See instructions on the reverse) NUREG/CR-7042

3. DATE REPORT PUBLISHED2. TITLE AND SUBTITLE

A Large Scale Validation of a Methodology for Assessing Software Reliability

5. AUTHOR(S)

C. S. Smidts, Y. Shi, M. Li, W. Kong, J. Dai

MONTH

Julv
4. FIN OR GRANT NUMBER

N6878
6. TYPE OF REPORT

Technical

YEAR

2011

7. PERIOD COVERED (Inclusive Dates)

8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Commissim, and mailing address; if contractor,
provide name and mailing address.)

Reliability and Risk Laboratory
Nuclear Engineering Program
The Ohio State University
Columbus, Ohio

9. SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type "Same as above"; if contractor, provide NRC Division, Office or Region, U.S. Nuclear Regulatory Commission,
and mailing address.)

Division of Engineering
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

10. SUPPLEMENTARY NOTES

R. Shaffer S. Arndt N. Carte and M. Waterman Proiect Manaaers
11. ABSTRACT (200 words or less)

This report summarizes the results of a research program to validate a method for predicting software reliability using software
quality metrics. The method is termed the Reliability Prediction System (RePS). The RePS methodology was initially validated
on a small control system application with a set of five software quality metrics. The effort described in this report is a validation
of the RePS methodology using twelve software quality metrics.

The application used to validate the RePS methodology was based on a safety-related digital module typical of what might be
used in a nuclear power plant. The module contained both discrete and high-level analog input and output circuits that read
signals and produced outputs for actuating system equipment, controlling processes, or providing alarms and indications. The
transfer functions performed between the inputs and outputs were dependent on the software installed in the application.

The twelve RePS software quality metrics are ranked based on their prediction capabilities. The rankings are compared with
those obtained through an expert opinion elicitation effort and with those obtained through the small scale validation effort. The
research provides evidence that the twelve metrics used in the RePS methodology can be used to predict software reliability in
safety-critical applications.

12. KEY WORDSIDESCRIPTORS (Ust words or phrases that will assist researchers in locating the report.)

RePS, software reliability, software quality, software metrics

NRC FORM 335 (12-2010)

13. AVAILABILITY STATEMENT

unlimited
14. SECURITY CLASSIFICATION

(This Page)

unclassified
(This Report)

unclassified
15. NUMBER OF PAGES

16. PRICE







U
N

IT
E

D
 S

TA
T

E
S

  
N

U
C

L
E

A
R

 R
E

G
U

L
A

T
O

R
Y

 C
O

M
M

IS
S

IO
N

W
A

S
H

IN
G

T
O

N
, D

C
 20555-0001

--------------------
O

F
F

IC
IA

L B
U

S
IN

E
S

S



   
 

 
 

 
 

 
 

 
  

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 

N
U

R
EG

/C
R

-7042 
   A LA

R
G

E SC
A

LE VA
LID

A
TIO

N
 O

F A M
ETH

O
D

O
LO

G
Y FO

R
  

A
SSESSIN

G
 SO

FTW
A

R
E R

ELIA
B

ILITY 
JU

LY 2011  

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 


	1smrecyclelogo.pdf
	Page 1




